Développements limités usuels en 0
|
|
|
- Maxime Laurent
- il y a 10 ans
- Total affichages :
Transcription
1 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n + )! + O ( x n+3) = x! + x4 xn + + ( )n 4! (n)! + O ( x n+) ( + x) α = + αx + x α(α )! x + + = + x + x + x x n + O ( x n+) α(α ) (α n + ) n! ln( x) = x x x3 3 x4 4 xn n + O ( x n+) + x ln( + x) = + x = x + x x ( ) n x n + O ( x n+) x x + x3 3 x4 xn + + ( )n 4 n + O ( x n+) x = + x 8 x n + O ( x n+) 3 (n 3) + + ( )n x n + O ( x n+) 4 n = x + x x + ( ) n 3 (n ) x n + O ( x n+) 4 n Arctan x = x x ( )n xn+ n + + O ( x n+3) Argth x = x + x xn+ n + + O ( x n+3) Arcsin x = x + x 3 3 Argsh x = x x 3 3 th x (n ) 4 n x n+ + + ( )n 3 (n ) 4 n = x x x x7 + O ( x 9) tan x = x + 3 x3 + 5 x x7 + O ( x 9) n + + O ( x n+3) x n+ n + + O ( x n+3)
2 Développements en série entière usuels e ax = a n n! xn a C, x sh x = (n + )! xn+ x ch x = (n)! xn x sin x = ( ) n (n + )! xn+ x cos x = ( ) n (n)! ( + x) α = + a x n= x n α(α ) (α n + ) n! x x n (α ) x ] ; [ = a n+ xn (a C ) x ] a ; a [ = (a x) = (a x) k ln( x) = ln( + x) = n + a n+ xn (a C ) x ] a ; a [ C k n+k a n+k x n (a C ) x ] a ; a [ n xn x [ ; [ n= n= ( ) n n x n x ] ; ] x + x = + + n 3 (n 3) ( ) x n x ] ; [ n= 4 (n) = + ( ) n 3 (n ) x n x ] ; [ + x 4 (n) n= Arctan x = ( ) n n + xn+ x [ ; ] Argth x = n + xn+ x ] ; [ Arcsin x = x + n= 3 (n ) 4 (n) x n+ n + Argsh x = x + ( ) n 3 (n ) 4 (n) n= x n+ n + x ] ; [ x ] ; [
3 3 Dérivées usuelles Fonction Dérivée Dérivabilité x n n Z nx n x α α αx α + e αx α C αe αx a x a + a x lna ln x log a x a + {} x xlna cosx sinx sin x cosx tan x + tan x = cos x cotan x cotan x = sin x { π } + kπ k Z πz ch x sh x sh x ch x th x th x = ch x coth x coth x = Arcsin x x sh x ] ; [ Arccos x x ] ; [ Arctan x Argsh x + x x + Argch x x ] ; + [ Argth x x ] ; [
4 4 Primitives usuelles I Polynômes et fractions simples Fonction Primitive Intervalles (x x 0 ) n x 0 n Z { } (x x 0 ) α x 0 α C { } (x z 0 ) n z 0 C n Z { } x a x (a + ib) (x x 0 ) n+ n + (x x 0 ) α+ α + (x z 0 ) n+ n + n N : x n Z (N { }) : x ] ; x 0 [, ] x 0 ; + [ ] x 0 ; + [ a ln x a ] ; a [, ] a ; + [ a, b ln[ (x a) + b ] + i Arctan x a b II Fonctions usuelles Fonction Primitive Intervalles lnx x(ln x ) ]0 ; + [ e αx α C α eαx sin x cosx cosx sin x tan x ln cosx ] π + kπ ; π [ + kπ cotan x ln sinx ] kπ ; (k + )π [ sh x ch x ch x sh x th x ln(ch x) coth x ln sh x ] ; 0 [, ] 0 ; + [
5 Primitives usuelles 5 III Puissances et inverses de fonctions usuelles Fonction Primitive Intervalles sin x cos x tan x x sin x 4 x sin x + 4 tan x x ] π + kπ ; π + kπ [ cotan x cotan x x ] kπ ; (k + )π [ sh x ch x sh x 4 sh x 4 x + x th x x th x coth x x coth x ] ; 0 [, ] 0 ; + [ sin x cosx sh x ch x ln tan x ] kπ ; (k + )π [ ( x ln tan + π ) ] π 4 + kπ ; π [ + kπ ln th x ] ; 0 [, ] 0 ; + [ Arctan e x sin x = + cotan x cotan x ] kπ ; (k + )π [ cos x = + tan x tanx ] π + kπ ; π + kπ [ sh x = coth x coth x ] ; 0 [, ] 0 ; + [ ch x = th x th x sin 4 x cos 4 x cotan x cotan 3 x 3 tanx + tan3 x 3 ] kπ ; (k + )π [ ] π + kπ ; π + kπ [
6 6 Primitives usuelles IV Fonctions dérivées de fonctions réciproques Fonction Primitive Intervalles + x Arctan x a + x a a Arctan x a x a x a Argth x ln + x x a Argth x a a ln a + x a x ] ; [ ] ; [, ] ; [, ] ; + [ ] a ; a [ ] ; a [, ] a ; a [, ] a ; + [ x Arcsin x ] ; [ a x a Arcsin x a ] a ; a [ x + Argsh x = ln ( x + x + ) x x + a a Argch x Argch( x) ln x + x ln x + x + a ] ; + [ ] ; [ ] ; [ ou ] ; + [ a > 0 : a < ] 0 : ; a [ ou ] a;+ [ (x + ) Arctan x + x (x + ) x (x + ) Arctan x x (x + )
7 7 Trigonométrie I Fonctions circulaires Premières propriétés Ensemble de définition sin x cos x tan x cotan x { π } + kπ k Z πz Période π π π π Parité impaire paire impaire impaire f(π x) sin x cosx tanx cotan x f(π + x) sinx cosx tan x cotan x ( π ) f x cos x sin x cotan x tan x ( π ) f + x cosx sinx cotan x tanx Ensemble de dérivabilité { π } + kπ k Z Dérivée cosx sinx + tan x = cos x πz cotan x = sin x Valeurs remarquables π π π 3 π 4 π 6 sin x cotan x tan x 3 0 cosx 0
8 8 Trigonométrie 0 π/6 π/4 π/3 π/ sinx 0 / / 3/ cosx 3/ / / 0 tanx 0 / 3 3 indéfini cotan x indéfini 3 / 3 0 II Fonctions réciproques des fonctions circulaires Définition Les périodicités et les symétries des fonctions trigonométriques introduisent une difficulté pour résoudre les équations du type sin x = λ. Par exemple, π/6, 5π/6 et π/6 + 4π ont tous la même image par la fonction sinus. Les «fonctions circulaires réciproques» Arcsin, Arccos, Arctan et Arccot ne sont pas de vraies réciproques, puisque les fonctions de départ ne sont pas des bijections ; ajoutons qu elles ne sont pas périodiques. Il faut les combiner avec la périodicité et, pour sinus et cosinus, avec les symétries par rapport à l axe des ordonnées et l axe des abscisses respectivement. Si sin x = λ [ ; ], alors x = Arcsin λ mod π ou x = π Arcsin λ mod π Si cosx = λ [ ; ], alors x = Arccos λ mod π ou x = Arcsin λ mod π Si tan x = λ, alors x = Arctan λ mod π Si cotan x = λ, alors x = Arccot λ mod π Le problème réciproque est, lui, sans difficulté : si x = Arcsin λ, alors sin x = λ. Propriétés Ensemble de définition Ensemble image Arcsin x Arccos x Arctan x Arccot x [ ; ] [ ; ] [ π/ ; π/ ] [ 0 ; π ] ] π/ ; π/ [ ] 0 ; π [ Période aucune aucune aucune aucune Parité impaire aucune impaire aucune Ensemble de dérivabilité ] ; [ ] ; [ Dérivée x x + x + x
9 Trigonométrie 9 3 elations Arccos x + Arcsin x = π/ Arctan x + Arctan y = Arctan x + y 0 si xy < + επ où ε = si xy > et x, y 0 xy si xy > et x, y 0 Arctan x + Arccot x = π/ { Arctan /x si x > 0 Arccot x = π + Arctan /x si x < 0 Arctan x + Arctan /x = sign(x) π/ III Formules Corollaires du théorème de Pythagore cos x + sin x = cos x = sin x = + tan x + cot x = tan x + tan x Addition des arcs cos(a + b) = cosacosb sin a sin b sin(a + b) = sinacosb + sin b cosa tan(a + b)= tan a + tanb tan a tan b cos(a b) = cosacosb + sin a sin b sin(a b) = sinacosb sin b cosa tan(a b)= tan a tan b + tanatan b 3 Arc double, arc moitié cosx = cos x sin x = cos x = sin x sin x = sinxcosx tan x = tanx tan x cosp + cosq = cos p + q sinp + sinq = sin p + q tanp + tanq = sin(p + q) cospcosq sinp sinq = sin p q cosp cosq = sin p + q tanp tanq = cos x = + cosx sin x = cosx tan x = sin(p q) cospcosq cos p q cos p q cos p + q sin p q sin x + cosx = cosx sin x
10 0 Trigonométrie En notant t = tan x comme dans les règles de Bioche, on a : sinx = t + t cosx = t + t 4 Formule de Moivre (cosa + i sina) n = cosna + i sinna d où cos3a = cos 3 a 3 cosa sin a = 4 cos 3 a 3 cosa sin 3a = 3 cos a sin a sin 3 a = 3 sin a 4 sin 3 a tan 3a = 3 tan a tan3 a 3 tan a 5 Arcs en progression arithmétique n sin kx = k=0 sin nx sin (n + )x sin x n coskx = k=0 cos nx (n + )x sin sin x IV Trigonométrie hyperbolique ch x sh x = ch (a + b)= ch a ch b + sh a sh b sh (a + b)= sh a ch b + sh b ch a th (a + b)= th a + th b + th a th b ch (a b)= ch a ch b sh a sh b sh (a b)= sh a ch b sh b ch a th (a b)= th a th b th a th b ch p + ch q = ch p + q sh p + sh q = sh p + q th p + th q = sh (p + q) ch p ch q ch p ch q = sh p + q sh p sh q = sh p q th p th q = sh (p q) ch p ch q ch p q ch p q sh p q ch p + q ch x= ch x + sh x ch x= = ch x = + sh x sh x= sh xch x sh x= th x= th x + th x th x= ch x + ch x sh x ch x = ch x + sh x
11 Trigonométrie En notant t = th x, on a : sh x = t t ch x = + t t (ch a + sh a) n = ch na + sh na d où ch 3a = ch 3 a + 3 ch a sh a = 4 ch 3 a 3 ch a sh 3a = 3 ch a sh a + sh 3 a = 4 sh 3 a + 3 sh a th 3a = 3 th a + th 3 a + 3 th a
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Développements limités
Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Cours arithmétique et groupes. Licence première année, premier semestre
Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
DUT Techniques de commercialisation Mathématiques et statistiques appliquées
DUT Techniques de commercialisation Mathématiques et statistiques appliquées [email protected] Université de Caen Basse-Normandie 3 novembre 2014 [email protected] UCBN MathStat
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Traceur de courbes planes
Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Mathématiques Algèbre et géométrie
Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique NicolasVandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 1.2 Où trouver des informations......................
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Dérivées d ordres supérieurs. Application à l étude d extrema.
Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Algorithmes et mathématiques. 1. Premiers pas avec Python. Exo7. 1.1. Hello world!
Exo7 Algorithmes et mathématiques Vidéo partie 1. Premiers pas avec Python Vidéo partie 2. Ecriture des entiers Vidéo partie 3. Calculs de sinus, cosinus, tangente Vidéo partie 4. Les réels Vidéo partie
Nathalie Barbary SANSTABOO. Excel 2010. expert. Fonctions, simulations, Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4
Nathalie Barbary Nathalie Barbary SANSTABOO Excel 2010 Fonctions, simulations, bases bases de de données expert Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4 Du côté des mathématiciens 14 Il n est pas
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Exercices et corrigés Mathématique générale Version β
Université libre de Bruxelles Années académiques 2008-2050 Université catholique de Louvain Exercices et corrigés Mathématique générale Version β Laurent Claessens Nicolas Richard Dernière modification
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Nombres complexes. cours, exercices corrigés, programmation
1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
Premiers pas avec Mathematica
Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique N.Vandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE Table de matières INTRODUCTION 2 ITINÉRAIRE MEL3E/MEL4E 6 ITINÉRAIRE MBF3C/MAP4C 9 ITINÉRAIRE MCF3M/MCT4C 12 ITINÉRAIRE MCR3U/MHF4U
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse
Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Python - introduction à la programmation et calcul scientifique
Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de
