Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse
|
|
|
- Marie Leblanc
- il y a 10 ans
- Total affichages :
Transcription
1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et Sciences Mathématiques (SM) Module Mathématiques I NOTES de cours d'analyse I Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse Par Saïd EL HAJJI Groupe d'analyse Numérique et Optimisation [email protected] et Samir HAKAM [email protected] Année
2 Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse Objectif 1 : Connaitre et interpréter : La notion de limite (rappels) La notion de continuité (rappels) La notion de dérivée (rappels) Approfondir les notions de fonctions continues et dérivables : Théorème des valeurs intermédiaires. Théorème de Rolle Théorème des Accroissement Finis). Connaitre et utiliser les corollaires du Théorème des Accroissement Finis. Connaitre et utiliser la règle de l'hospital pour le calcul de limites Plan : I - Notions de limite et variantes Rappels Notion de Limite : Dénitions et propriétes de Base Notion de Continuite : Dénitions et Théorème(s) des Valeurs Intermédiaires Fonctions réciproques II - Notion de Dérivabilite, Théorèmes de Rolle (ses variantes) et Applications Dénition Opérations élémentaires Diérentielle Théorème de Rolle Théorème des Accroissements Finis Règle de l'hospital Calcul de Limites 1S. EL HAJJI et S. HAKAM SMI &SM
3 Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse I - Notions de limite et variantes : 1) - Rappels : Soit D une partie de IR. Dénition : On appelle fonction réelle d'une variable réelle, toute application f dénie sur une partie D de IR à valeur dans IR. D est appelé domaine de dénition de f et est noté D f. D f = {x IR : f(x) existe}. Exemples : 1) f(x) = sin( 1 x ), D f = IR =], + [ ) f(x) = x 1, D f = {x IR : x 1 0} = {x IR : x 1 et x 1} =], 1] [1, + [. Dénition (Graphe d'une fonction) : Dans un plan rapporté à un repère (o, i, j) (généralement orthonormé). Les points M(x, f(x)) avec x D f constituent la courbe représentative de f, noté C f. C f = {M(x, f(x)) : x D f } On appelle graphe de f, l'ensemble des couples (x, f(x)) où x D f. Dénition (Périodicité) : Soit f : D f IR. f est dite périodique et de période T si i) x D f, (x + T ) D f ii)f(x) = f(x + T ) T est la plus petite période qui vérie ii). Remarque : Si f est de période T alors n IN : (x + nt ) D f, f(x + nt ) = f(x) Exemple : Soit f(x) = sin(x). Le domaine de dénition de f est D f = IR, f est périodique et de période π. Le domaine d'étude de f est D E = [ π, π] ou tout intervalle de longueur π. Dénition (Parité) : Soit f : D f IR S. EL HAJJI et S. HAKAM SMI &SM 3
4 i) f est dite paire si x D f., ( x) D f et f( x) = f(x) ii) f est dite impaire si x D f., ( x) D f et f( x) = f(x). Si la fonction est paire ou impaire, son domaine d'étude est réduit de moité. Remarque : Dans la dénition de la parité, on suppose que D f admet 0 pour centre de symétrie Dénition (axe de symétrie) : Soit f : D f IR. i) On dit que la fonction f est symétrique par rapport à l'axe vertical x = a, si et seulement si : x D f : (a x) D f, (a + x) D f, on a f(a x) = f(a + x). ii) On dit que la fonction f est symétrique par rapport au point M (a, f(a)), si et seulement si : x D f : (a x) D f, (a + x) D f, on a f(a + x) + f(a x) = f(a). Remarque : Si la fonction f est paire, impaire et/ou périodique et/ou posséde un axe ou un point de symétrie, on peut grâce à ces éléments de symétrie, réduire le domaine de dénition de f à un domaine plus petit. Exemple : Soit f(x) = sin(x). On a D f = IR, f est périodique et de période π D E = [ π, π]. f est impaire, donc le domaine d'étude de f se raméne à D E = [0, π] Dénition (Fonctions bornées) : Soit f : D f IR i) f est dite majorée (resp. minorée) si l'image de D f par f est une fonction majorée i.e. f(d f ) est une partie majorée de IR (resp. minorée) de IR c'est à dire M IR : x D f,f(x) M (resp. m : x D f, f(x) m). ii) f est dite bornée si f(d f ) est une partie bornée de IR c'est à dire m IR et M IR : x D f, m f(x) M. Exemples : 1) f(x) = sin(x) f est bornée, x IR : 1 f(x) 1 ) f(x) = e x est non bornée, mais elle est minorée par 0. x IR, 0 e x. 4
5 Remarque : L'image d'une partie bornée par une application n'est pas forcément bornée. En eet si on prend : { 1,si x ]0, 1] x f(x) =, 0 si x = 0 on a f : [0, 1] IR mais f([0, 1]) n'est pas bornée. ) Notion de Limite : Dénitions et propriétes de Base 3 Pour x 0 IR, on appelle voisinage de x 0 tout intervalle de la forme ]x 0 ε, x 0 + ε[ où ε > 0. Tout voisinage de x 0 est noté ϑ(x 0 ) ou ϑ x0 ou V (x 0 ) ou V x0 ou V.1) Dénitions et Notations : Dénition : Soit f une fonction dénie au voisinage du point x 0, sauf peut être en x 0. On dit que f admet une limite l lorsque x tend vers x 0 si et seulement si : ε > 0, η ε > 0; x x 0 < η ε = f(x) l ε On note lim f(x) = l x x0 ou limf(x) = l x0 ou lim x x0 f(x) = l ou lim x0 f(x) = l Remarque : i) x x 0 < η ε x 0 η ε x x 0 + η ε c'est à dire x V (x 0 ). ii) f(x) l < ε l ε f(x) l + ε c'est à dire f(x) V (l). iii) Si f est dénie en x 0 alors limf(x) = f(x 0 ) x0 Dénition (Limite à gauche et limite à droite) : Soit f une fonction dénie sur un intervalle I. On dit que f admet une limite à gauche l en x 0 si et seulement si : On note lim x x + 0 ε > 0, η ε > 0; x 0 η ε < x < x 0 = f(x) l ε f(x) = l ou lim x x0 f(x) = l ou limf(x) = l ou lim x x + f(x) = l ou x + 0 x>x 0 0 lim x + 0 f(x) = l On dit que f admet une limite à droite l en x 0 si et seulement si : On note lim x x 0 ε > 0, η ε > 0; x 0 < x < x 0 + η ε = f(x) l ε f(x) = l ou lim x x0 lim x 0 f(x) = l Propriété : 3S. EL HAJJI et S. HAKAM SMI &SM f(x) = l ou lim x x<x f(x) = l ou lim x x f(x) = l ou
6 Si lim f(x) = l et lim f(x) = l alors lim f(x) = x x + 0 x x x x0 l. 0 Preuve : lim x x + 0 lim x x 0 f(x) = l = ε > 0, η 1 > 0; x 0 < x < x 0 + η 1 = f(x) l ε f(x) = l = ε > 0, η > 0; x 0 η < x < x 0 = f(x) l ε Soit η = sup(η 1, η ) alors x < x 0 < x 0 + η et x 0 η < x 0 < x d'où Remarque : 1) Si lim x x + 0 ε > 0, η = sup(η 1, η ); x 0 η < x < x 0 + η = f(x) l ε f(x) = l 1 et lim f(x) = l avec l 1 l alors f n'admet pas de limite en x x 0 x 0. ) lim f(x) = l lim x x x x + f(x) = lim f(x) = l 0 0 x x 0 Généralisation sur les limites lim f(x) = l ε > 0, A ε > 0, x > A ε = f(x) l ε x + lim f(x) = l ε > 0, A ε > 0, x > A ε = f(x) l ε x lim f(x) = + A > 0, η > 0; x x 0 < η = f(x) > A x x 0 etc....) Propriétés et Théorèmes de base sur les limites 4 En géneral, les Propriétés et Théorèmes de base sont les même que pour les suites. Leur démonstration est omise mais ils sont à connaitre par coeur. Théorème 1 : i) Unicité : Si lim f(x) = l x x0 alors l est unique. ii) Si f admet une limite l en x 0 alors f est bornée au voisinage de x 0 càd x V (x 0 ), l ε f(x) l + ε. Propriété (Opération sur les limites) Si lim f(x) = l x x0 et lim Théorème i) i) lim x x0 [f(x) + g(x)] = l + l x x0 g(x) = l alors ii) lim x x0 [f(x).g(x)] = l.l iii) si de plus, l f(x) 0 et g 0 au V (x 0 ), lim = l x x0 g(x) l si f > 0 ou f 0 lim x x 0 f(x) = l 4S. EL HAJJI et S. HAKAM SMI &SM } = l 0 6
7 Si f > g ou f g ii) lim f(x) = l x x 0 et lim g(x) = l x x0 iii) Théorème d'encadrement : Théorème 3 : } Si f < h < g ou f h g lim f(x) = l x x 0 et lim g(x) = l x x0 } = l l. i) Si g est continue et lim x x0 f(x)) = l alors lim = l lim x x0 h(x) l. x x0 g f(x) = g(l). ii) Si lim f(x) = x x0 et lim g(x) = l x alors lim g f(x) = x x0 l. iii) Si lim f(x) = y 0 x x0 et lim g(x) = l x y0 alors lim g f(x) = l x y0 si Im(f) D g. Remarque : 1) On calcule les limites à partir des limites des fonctions usuelles, des théorèmes sur les limites mais aussi aprés transformation algébrique (on dit par "astuces"). ) On reviendra en détails sur le calcul des limites à la n de ce chapitre mais aussi au chapitre suivant. Exemples 5 : 1) f(x) = sin(x) sin(x) = lim = 1 x x 0 (par dénition de la dérivée de sin(x) au point x = 0). x g(x) = log(1+x) x x = 0). log(1+x) = lim x 0 x donc lim x 0 [f(x) + g(x)] = 3, lim ) f(x) = log(1+x ) x 3) f(x) = log(1+x ) x g(x) = log(1+x ) x = (par dénition de la dérivée de log(1+x) au point x 0 [f(x)g(x)] =, lim f(x) = 1 x 0 g(x) log(1+x > 0 au voisinage de 0 = lim ) 0 x 0 x = 1, (on pose X = x ) x = lim x 0 log(1+x ) = lim x 0 log(1+x ) x = et f(x) g(x) au voisinage de 0 donc 1 = lim x 0 log(1+x ) x lim x 0 log(1+x ) x = Propriété caracteristiques de la limite d'une fonction lim x x0 f(x) = l ε > 0, η > 0; x x 0 < η = f(x) l ε pour tout voisinage ϑ(l) de l, il existe un voisinage ϑ(x 0 ) de x 0 telque : x ϑ(x 0 ) {x 0 } on a : f(x) ϑ(l) Propriété (lien entre suite et limite) lim x x0 f(x) = l pour toute suite (x n ) qui tend vers x 0 on a : lim f(x n) = l n + Preuve : lim x x0 f(x) = l ε > 0, η ε > 0; x x 0 < η ε = f(x) l ε puisque lim x n = x 0 pour ce même η ε, N IN tel que n > N on a x n x 0 < η ε n + donc 5S. EL HAJJI et S. HAKAM SMI &SM 7
8 ɛ > 0, N IN : n > N f(x n ) l ɛ lim f(x n) = l. n + Remarque : Cette propriété sert plutôt à montrer que la limite n'existe pas en un point et plus tard qu'une fonction n'est pas continue en un point. Exemple : Si f(x) = sin( 1 ) alors limf(x) n'existe pas, en eet pour x x 0 x n = 1 0 on a : f(x nπ n) = sin(nπ) = 0 y n = 1 0, on a : f(y nπ+ π n ) = sin(nπ + π) = 1.3) Formes indéterminées 6 : Dénition : Dans le calcul des limites, on appelle Forme Indéterminée (on note F.I.), toute situation qui conduit à un cas où les théorémes portant sur les opérations sur les limites ne permettent pas de conclure. Les formes indéterminées les plus courantes sont : 0, ±, 0, +, 0 ± 1, 0 0, 0, 0, etc... Remarque : Le résultat de l'étude d'une F.I. dépend des fonctions. Exemple : Si f(x) = sin(x) et g(x) = x alors limf(x) = 0 x 0 et limg(x) = x 0 0. f(x) On dit que lim = lim sin(x) x 0 est une forme indéterminée de la forme 0. Car cette g(x) x 0 x 0 limite ne peut être déterminer directement d'où le nom de F.I. f(x) Elle l'est par dénition de la dérivée et lim = lim sin(x) = 1. x 0 g(x) x On reviendra à la n de ce chapitre mais aussi au chapitre suivant, sur deux techniques de bases pour " lever les indéterminations" et donc calculer ces limites. 3 - Continuité : Dénitions et Théorème(s) des Valeurs Intermédiaires. 3.1) Dénitions et Notations : Dénition : Soient f une fonction réelle dénie sur un intervalle I et x 0 I. i) On dit f est continue en x 0 si et seulement si lim x x0 f(x) = f(x 0 ) ε > 0, η ε > 0; x x 0 < η ε = f(x) f(x 0 ) ε ii) On dit f est continue à droite en x 0 si et seulement si lim f(x) = f(x 0 ) x x + 0 x 0 iii) On dit f est continue à gauche en x 0 si et seulement si lim x x 0 f(x) = f(x 0 ) iv) On dit f est continue dans l'intervalle [a, b] si elle est continue en tout point x de ]a, b[, et est continue à droite de a et à gauche de b. 6S. EL HAJJI et S. HAKAM SMI &SM 8
9 Remarque : Contrairement à ce qui peut se passer pour les limites, si f est continue à droite et à gauche en x 0 alors elle est continue en x 0. Théorème (Opération sur les fonctions continues) Soient f et g deux fonctions continues en x 0, alors : i) f + g et f g sont continues en x 0. ii) Si g(x) 0 au voisinage de x 0 et g(x 0 ) 0, alors f g est continue en x 0. iii)si f est continue en x 0 est g est continue en f(x 0 ), alors g fest continue en x 0. Exemples : (fonctions continues) 1) Les Fonctions polynômes P (x) = a n x n + a n 1 x n a 1 x + a 0 Pour tout p IN, les fonctions a p x p sont continues sur IR. ) Les Fonctions trigonométriques sont continues dans leur domaine de dénition respectif. Cas de la Fonction Sinus : f(x) = sin(x). Pour tout x et x 0 IR, on a : Or pour tout u IR, sin(u) u d'où sin(x) sin(x 0 ) = sin( x x 0 ) cos( x+x 0 ) sin(x) sin(x 0 ) sin( x x 0 ) 1 x x 0 donc ε > 0, η = ε; x x 0 < η = sin(x) sin(x 0 ) x x 0 ε. Ainsi la fonction sin(x) est continue dans IR. ) Les Fonctions élémentaires sont continues dans leur domaine de dénition respectif. Exemples : e x est continue dans IR, log(x) est continue dans IR +, etc... 3.) Théorème(s) des Valeurs Intermédiaires 7. Le théorème des Valeurs Intermédiaires, noté V.I., s'écrit sous plusieurs formes. On dit qu'il admet plusieurs formulations. Ces formes et/ou formulations reposent toutes sur les postulats suivants dans la démonstration est hors programme. Postulat 1 : Une fonction continue sur [a, b] est bornée dans cet intervalle. Postulat : Si une fonction est continue sur [a, b], alors elle atteint un maximum M et un minimum m sur l'intervalle fermé [a, b]. Théorème 1 des Valeurs Intermédiaires (1ère forme) : Si f est une fonction continue sur [a, b], alors i) f([a, b]) = [m, M] 7S. EL HAJJI et S. HAKAM SMI &SM 9
10 et de plus ii) il existe x 0 [a, b] et x 1 [a, b] : f(x 0 ) = m et f(x 1 ) = M. Théorème : Soit f une fonction continue sur l'intervalle [a, b]. L'image de l'intervalle fermé borné [a, b] par la fonction continue f est un intervalle fermé borné [m, M] c'est à dire pour tout a x b on a m f(x) M donc f varie entre un minimum m = inf x [a,b] f(x) est un maximum M = sup x [a,b] f(x); m = f(c) et M = f(b) Conclusion : Si f est une fonction continue sur un intervalle fermé borné [a, b], alors le minimum m et le maximum M de f sont atteint par f sur [a, b] c'est à dire x 0 [a, b] telque f(x 0 ) = m et y 0 [a, b] telque f(y 0 ) = M On appelle oscillation de la fonction continue f sur [a, b], la dierence M m. Propriété : x n n + x 0 } = f(x n ) f(x 0 ) f continue en x 0 c'est à dire si f est continue en x 0 et la suite (x n ) n converge vers x 0 alors lim n + f(x n ) = f(lim n + x n ) = f(x 0 ) Théorème 3 (dit de Théorème de Bolzano) 8 : Si f est continue sur un intervalle fermé borné [a, b] et si le produit f(a).f(b) < 0, alors il existe au moins un point c ]a, b[ tel que f(c) = 0 Preuve du Th de Bolzano : On a a+b i) Si f( a+b [a, b] ) = 0 c'est ni, c existe et c = a+b { si f(a).f( a+b ii) Si f( a+b) 0 ) > 0 on pose a 1 = a+b et b 1 = b si f( a+b).f(b) > 0 on pose a 1 = a et b 1 = a+b On remarque que dans les deux cas on a : f(a 1 ).f(b 1 ) < 0, en eet f(a).f( a+b ) > 0 f(a).f(b) < 0 f( a+b ).f(b) > 0 f(a).f(b) < 0 } } = f( a+b ).f(b) < 0 = f( a+b ).f(a) < 0 Comme f est { continue sur [a, b] = f est continue sur [a 1, b 1 ] car ([a 1, b 1 ] [a, b]). f(a On a donc 1 ).f(b 1 ) < 0 b 1 a 1 = b a 8S. EL HAJJI et S. HAKAM SMI &SM 10
11 * Si f( a 1+b 1 ) = 0 on prend c = a 1+b 1 { ** Si f( a 1+b 1 ) 0 = f( a 1+b 1 ).f(a 1 ) > 0 on pose a = a 1+b 1 et b = b 1 f( a 1+b 1 ).f(b 1 ) > 0 on pose a = a 1 et b = a 1+b 1 Dans les deux cas, on a encore : f(a ).f(b ) < 0 et b a = b 1 a 1 = b a En iterant ce procédé plusieurs fois, on obtient une suite de segment (dit emboités) avec [a, b] [a 1, b 1 ] [a n 1, b n 1 ] [a n, b n ] f(a n ).f(b n ) < 0 et b n a n = b a n. De plus, (a n ) n une suite croissante, (b n ) n une suite décroissante a n b n, n IN et b a lim n + b n a n = lim n + = 0. Donc les suites n (a n ) n et (b n ) n sont deux suites adjacentes. Le théorème des segments emboités nous donne l'existence de l tel que : n IN [a n, b n ] = {l} et on a lim n + a n = l et lim n + b n = l. f étant continue = lim n + f(a n ) = f(l) et lim n + f(b n ) = f(l) = lim n + f(a n ).f(b n ) = f(l) 0 or lim n + f(a n ).f(b n ) = f(l) 0 d'où = f(l) = 0 = f(l) = 0. Remarques : 1) Dans le Théorème des V.I., le point c n'est pas unique. En eet pour f(x) = sin(x) dans [0, 4π],on a : f(x) = sin(x) dans [0, 4π] 11
12 sin( π ). sin( 7π ) < 0, et sin(π) = 0, sin(π) = 0 et sin(3π) = 0. ) Sous cette forme, le théorème des V.I. sert à localiser (encadrer) et à calculer une approximation d'une solution de l'équation f(x) = 0. Exemple : Soit l'équation f(x) = x 3 + x + 3x = 0. On a f est continue dans IR, f(0) = et f(1) = 3 donc f(0).f(1) < 0. Donc d'aprés le Th des V.I., il existe c ]0, 1[ : f(c) = 0. Si on pose α 1 = 0+1 = 1, on a f(1) = 1 < 0 8 f(1)f(1) < 0 Donc d'aprés le Th des V.I., il existe c ] 1, 1[ : f(c) = 0. Si on pose α = 1 +1 = 3 4, on a f(3 4 ) = > 0 f(1 )f(3 4 ) < 0. Donc d'aprés le Th des V.I., il existe c ] 1, 3 4[ : f(c) = 0. c est donc une approximation d'une solution dans ] 1, 3 4[ de f(x) = 0 avec une précision de 5% car = 1 4 = 0.5 Théorème 4 : Soient f une fonction dénie et continue sur [a, b] et β un nombre réel strictement compris entre f(a) et f(b) càd.f(a) < β < f(b) ou f(b) < β < f(a). Alors il existe au moins un point α ]a, b[ telque f(α) = β. Remarque : Le théorème des V.I. doit son nom à cette version. Preuve : Soit g la fonction dénie par g(x) = f(x) β g est une fonction continue sur [a, b] et on a : g(a) = f(a) β, g(b) = f(b) β g(a).g(b) = (f(a) β).(f(b) β) comme β est strictement compris entre f(a) et f(b) on a g(a).g(b) 0. Donc d'aprés le théorème des valeurs intérmediaires, il existe un nombre α compris entre a et b tel que : g(α) = 0 = f(α) = β donc α [a, b] telque f(α) = β. Corollaire : Si f est continue sur [a, b]. alors 1) β [m, M] α [a, b] telque f(α) = β ) f est surjective Exemples : 1) Soit f : x [ 1, +1] x IR On a f est continue dans [ 1, 1] et f([ 1, 1]) = [0, 1]. 1
13 { 1 ) Soit f : [0, 1] IR dénie par si x ]0, 1] x f(x) = 1 si x = 0 On a f n'est pas continue en 0 et f([0, 1]) = {0} [1, + [. Ainsi l'image de [0, 1] par f n'est pas un intervalle car f n'est pas continue dans [0, 1]. 3) Soit f : [ 1, +1] {0, 1} dénie par f(x) = 1 si x = 0 On a f([ 1, +1]) = {0, 1} n'est pas un intervalle car f n'est pas continue dans [ 1, +1]. { 0 si x 0 4) Fonctions Réciproques (ou inverses) 9 4.1) Rappels : Soit f une fonction dénie sur un intervalle I, on dit que : f est strictement croissante x < y = f(x) < f(y) f est strictement décroissante x < y = f(x) > f(y) Remarques : Si f est une fonction strictement croissante de [a, b] dans IR alors x [a, b], a x b = f(a) f(x) f(b) d'où f(a) est le minimum (f(a) = m) et f(b) est le maximum (f(b) = M). Donc [f(a), f(b)] = [m, M] = f[a, b]). De même si f est strictement décroissante de [a, b] dans IR, on a [f(b), f(a)] = [m, M] = f[a, b]). Théorème : f est une fonction continue et strictement croissante (resp. décroissante) sur un intervalle [a, b], alors f est une bijection de [a, b] vers [f(a), f(b)] (resp. [f(b), f(a)]). Preuve : Si f est une fonction continue et strictement croissante sur l'intervalle [a, b] alors, d'apres le théorème des valeurs intérmediaires, f([a, b]) = [f(a), f(b)], β [f(a), f(b)] = α [a, b] tel que f(α) = β = f est surjective de [a, b] dans [f(a), f(b)] et, de plus, puisque f est strictement croissante sur l'intervalle [a, b], x, y [a, b], x y = 9S. EL HAJJI et S. HAKAM SMI &SM { x < y = f(x) < f(y) x > y = f(x) > f(y) 13
14 Donc, dans les deux cas, on a x y f(x) f(y). i.e.f est donc injective dans [a, b]. Consequence : Si f est une fonction continue strictement croissante (resp.strictement décroissante) de [a, b] [m, M] alors, f admet une bijection reciproque notée f 1 avec f 1 : [m, M] [a, b]. Théorème 10 : Si f est une fonction continue et strictement croissante (resp. strictement décroissante) sur un intervalle [a, b], alors f admet une fonction réciproque f 1 continue et strictement croissante (resp. strictement décroissante) sur [f(a), f(b)] (resp. [f(b), f(a)]) vers [a, b]. Preuve : Montrons que si f est une fonction strictement croissante sur [a, b] alors f 1 l'est sur [f(a), f(b)]. Soit x, y [f(a), f(b)], a-t-on, x < y =? f 1 (x) < f 1 (y) Démonstration par l'absurde. Si pour tout x, y [f(a), f(b)],on a f 1 (x) f 1 (y) alors (f est une fonction strictement croissante sur [a, b] ) f(f 1 (x)) f(f 1 (y)) i.e.x y ce qui contredit l'hypothèse x < y. Donc f 1 est strictement croissante. Montrons que si f est une fonction continue sur [a, b] alors f 1 l'est sur [f(a), f(b)]. Soit y 0 [f(a), f(b)], montrons que f 1 est continue en y 0. Il faut montrer que ε > 0, η > 0 telque y y 0 < η = f 1 (y) f 1 (y 0 ) y 0 [f(a), f(b)] = x 0 [a, b] tel que x 0 = f 1 (y 0 ). Posons y 1 = f(x 0 ε) et y = f(x 0 + ε) f étant strictement croissante nous donne Pour tout x 0 ]a, b[ et ɛ > 0, on a : x 0 ε < x 0 < x 0 + ε Comme f étant strictement croissante dans [a, b], x 0 ε < x 0 < x 0 + ε f(x 0 ε) < f(x 0 ) < f(x 0 + ε) i.e. 1 < y 0 < y D'autre part, y y 0 < η η < y y 0 < η y 0 η < y < y 0 + η Pour η = min {y 0 y 1, y y 0 }, y y 0 < η y 0 + η < y et y 1 < y 0 η D'où : y 1 < y 0 η < y < y 0 + η < y = f 1 (y 1 ) < f 1 (y 0 η) < f 1 (y) < f 1 (y 0 + η) < f 1 (y ) = x 0 ε < f 1 (y 0 η) < f 1 (y) < f 1 (y 0 + η) < x 0 + ε Or x 0 = f 1 (y 0 ) d'où f 1 (y 0 ) ε < f 1 (y) < f 1 (y 0 ) + ε = f 1 (y) f 1 (y 0 ) < ε. Remarques : i) Si f : I J est une bijection et si y J ne pas confondre f 1 1 (y) avec f(y). ii) Si f : I J est une bijection alors 10S. EL HAJJI et S. HAKAM SMI &SM 14
15 * x I, f 1 f(x) = x * y J, f f 1 (y) = y * La notation f f 1 = f 1 f = I,où I la fonction identité, est une notation abusive. Donc à utiliser avec modération. Graphe d'une fonction réciproque : Dans un repère orthonormé le graphe de la fonction réciproque de f, f 1, est symétrique par rapport à la première bissectrice (droite y = x) au graphe de la fonction f. Théorème : Si f admet pour dérivée f (x 0 ) 0 au point x 0 alors la fonction réciproque admet pour dérivée au point x 0 = f 1 (y 0 ), (f 1 (y 0 )) 1 = f (f 1 (y 0 )). Voir la preuve de ce théorème dans le chapitre sur les fonctions dérivables. Exemple : Si x IR +, f(x) = x alors f 1 (y) = y est la fonction réciproque de f(x) = x. Pour y 0 = f(x 0 ) f (x 0 ) = x 0 = (f 1 (y 0 )) 1 = = 1 f (f 1 (y 0 )) y 0. 4.) Exemples de fonctions réciproques 11. 1) La fonction f : x IR. e x IR + est une fonction continue et strictement croissante de IR dans IR +. La fonction réciproque est par édnition la fonction log dénie de IR + dans IR. ) La fonction réciproque de la fonction sin La restriction à [ π, π ] de la fonction y = sin(x) est une fonction continue et strictement croissante. Elle admet donc une fonction réciproque continue et strictement croissante, noté Arc sin sin : [ π, π ] [ 1, 1] Arc sin : [ 1, 1] [ π, π] Arc sin(x) est l'arc dont le sinus est x. C'est la fonction réciproque de la fonction sin lorsque celle ci est dénie dans de [ π, π ] [ 1, 1]. Elle est dite détermination principale. x = Arc sin(y) 1 y 1 11S. EL HAJJI et S. HAKAM SMI &SM y = sin(x) π x π 15
16 sin(x) dans [ π, π ] Arc sin(x) dans [ 1, 1] Propriété : La fonction Arcsin est : une fonction impaire Preuve : Parité : et y ] 1, 1[, Arc sin(y) = 1 x [ π, π ] x [ π, π ] 1 y. = y = sin(x) = y = sin( x) d'où y ] 1, 1[, Arc sin(y) = Arc sin( y). Dérivée : } y = 1 (sin(y)) = 1 cos(y) = 1 1 x = x = arcsin(y) x = arcsin( y) 3) La fonction réciproque de la fonction cos La restriction à [0, π] de la fonction y = cos(x) est une fonction continue strictement décroissante. Elle admet donc une fonction réciproque continue strictement décroissante, noté Arccos cos : [0, π] [ 1, 1] Arc cos : [ 1, 1] [0, π] x = Arc cos(y) y = cos(x) 1 y 1 0 x π 16
17 Dérivée Exemples 1 : 1) Montrer que dans [ π, 3π Soit f(x) = Arc sin(sin(x)) On a : D f = IR cos(x) dans [0, π] Arc cos(x) dans [ 1, 1] y = 1 (cos(y)) = 1 sin(y) = 1 1 x ], Arc sin(sin(x)) = π x f(x) est periodique et de période π d'où l'étude sur [ π, 3π] si x [ π, π ] = Arc sin(sin(x)) = x si x [ π, 3π] = x [ 3π, π] = π x [ π, π] sin(x) = sin(π x) = Arc sin(sin(x)) = Arc sin(sin(π x)) = π x = Arc sin(sin(x)) = π x. ) Montrer que pour tout x IR, Arc cos(x) + Arc sin(x) = π. Soit g(x) = Arc cos(cos(x)) On a : D g = IR g est une fonction paire g( x) = g(x). g est periodique et de periode π d'où étude sur [ π, π]. x [ 1, 1], Arc sin(x) [ π, π ] x [ 1, 1], π arcsin(x) [0, π] x [ 1, 1], cos( π Arc sin(x)) = sin(arc sin(x)) = x x [ 1, 1], Arc cos(cos( π Arc sin(x))) = π Arc sin(x) = Arc cos(x) x [ 1, 1], Arc cos(x) = π Arc sin(x). 4) La fonction réciproque de tg(x) = cos(x), sin(x) La restriction à [ π, π ] de la fonction y = tg(x) est une fonction continue et strictement croissante de [ π, π ] adns IR. Elle admet donc une fonction réciproque continue et strictement croissante de IR dans [ π, π ], noté Arctg(x) 1S. EL HAJJI et S. HAKAM SMI &SM 17
18 tg :] π, π [ ], + [ Arctg(x) :], + [ ] π, π[ lim x π tg(x) = et lim x π tg(x) = + lim x π tg(x) = et lim x π tg(x) = + x = Arctg(y) y + (y IR) Propriétés : 1) y = Arctg(x) est une fonction impaire ) et Arctg(x) = 1. 1+x { 3) Arctg(x) + Arctg( 1) = ε π x Preuve : 1) parité : y = tg( x) avec π < x < π ) Dérivée : y = 1 = 1 = 1 tg (y) 1+tg (y) 1+x 3) d'où = ε = 1 si x > 0 ε = 1 si x > 0 y = tg(x) π < x < π = Arctg( x) = y x > 0 = 1 x > 0 = Arctg( 1 x ) ]0, π [ et tg(x) ]0, π [ π Arctg( 1) ]0, π[ x tg(arctg(x)) = x tg( π Arctg( 1 x )) = cot g(arctg( 1 x )) = 1 tg(arctg( 1 x )) = 1 1 x tg( π Arctg( 1)) = tg(arctg(x)) = x = π Arctg( 1 ) = Arctg(x) (car tg est bijective) x x donc Si x < 0 alors x > 0 Arctg(x) + Artg( 1 x ) = π si x > 0. Arctg( x) + Arctg( 1 x ) = π = Arctg(x) Arctg( 1 x ) = π car Arctg est impaire = Arctg(x) + Arctg( 1 x ) = π. Exercices : Ex 1 : Déterminer le domaine de dénition des fonctions suivantes : a) f(x) = c) f(x) = x + 4 x 3 + x + x, b) g(x) = x(x 1) 1, d) g(x) = 6 [x ) 1 x 18 = x
19 Ex : Calculer les limites suivantes : (x + 1) a) 1 lim x 0 x 9 + x, b) lim x 3 3 d) lim, x 0 e) lim x x π Ex 3 : Montrer que les fonctions x 0.Ex 4 : Soit la fonction dénie par : x 3 7x + 6 x + x 3 sin (x) 1 + cos(x) x et cos( 1 x sin(x) f(x) = x x, c) 3x + lim x x + x 6, f) lim x 0 1 cos ( x) cos(x) sin(x) ) n'ont pas de limites lorsque x tend vers si x < 0 (x + c) si x > 0 Trouver le nombre c telle que la limite de f quand x tend vers 0 existe. quelle est dans ce cas cette limite. Ex 5 : Montrer en utilisant la dénition que lim x (x 4x + 7) = 3 Ex 6 : Pour la fonction dont le graphe est ci dessous trouver les limites si elles existent : a) lim f(x), lim f(x), lim f(x) x 1 x 1 + x 1 b) lim f(x), lim f(x), lim f(x) + x 1 x 1 x 1 Ex 7 : Comment dénir f(a) pour que la fonction f soit continue en a : a) f(x) = x 1 b) f(x) =, { x 1 a = 1 x + 1 x < 1 a = 1 x + 3 x > 1 c) f(x) = cos (x) 1, a = 0 sin(x) Ex 8 : Montrer que les équations suivantes admettent aux moins une solution réelle. a) 1 cos(x) 1 (x + 1) = 0 b) x 3 3x + 15x 7 = 0 c) 1 + sin(x) x = 0 Ex 9 : a) Montrer que si lim f(x) x a existe alors la limite est unique. b) Montrer que si f(x) g(x) et si lim g(x) = l x a alors lim f(x) l x a ( si cette limite existe ) Ex 10 : a) Soit la fonction dénie par f(x) = Etudier le continuité de la fonction f. { x 1 si x 0 x 1 si x < 0 19
20 b) même question pour la fonction a IR + 1 exp( f(x) = x a ) si x < a 0 si x a II - Dérivabilité et Théorèmes de Base associés 13 : 1) Dénitions et Notations : Dénition : Soit f une fonction dénie au voisinage de x 0 I. On dit que f est dérivable en x 0, si le rapport f(x) f(x 0) x x 0 admet une limite réelle lorsque x x 0. On écrit alors : f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0 f (x 0 ) est appelée le nombre dérivée de f en x 0 ou la dérivée de f en x 0. Remarques : i) Si on pose x = x 0 + h alors x x 0 h 0 et f (x 0 ) = lim h 0 f(x 0 +h) f(x 0 ) h ii) Si f est dérivable au point x 0 alors : f(x 0+h) f(x 0 ) h en eet on a f (x 0 ) = lim h 0 f(x 0 +h) f(x 0 ) h ɛ(h) h 0 0 et si ɛ(h) h 0 0 lim h 0 f(x 0 +h) f(x 0 ) h = f (x 0 ) Propriété : Si f est dérivable en x 0 alors f est alors f continue en x 0. Preuve : Si f est dérivable en x 0, alors f(x 0 + h) f(x) = h[f (x 0 ) + ɛ(h)] avec ɛ(h) h 0 0 lim [f(x 0 + h) f(x)] = lim h[f (x 0 ) + ɛ(h)] = 0 h 0 h 0 = f (x 0 ) + ɛ(h), avec ɛ(h) h 0 0 lim f(x 0 + h) = f(x) f est continue en x 0 h 0 Remarque : La réciproque de la propriété précedente est fausse. En eet, la fonction f(x) = x est continue en 0 mais elle n'est pas dérivable au point 0 f(x) f(0) x 0 13S. EL HAJJI et S. HAKAM SMI &SM { = x x = 1 si x < 0 +1 si x > 0 0
21 f(x) f(0) lim x 0 x f(x) f(0) lim x 0 + x = 1 donc f(x) f(0) n'admet pas de limite lorsque x 0 x 0 Interprétation géométrique 14 : Soit M 0 x 0 f(x 0 ) et M x f(x) deux points de la courbe représentative : on a : x x 0 = M 0 H et f(x) f(x 0 ) = y y 0 = MH La fonction g(x) = y y 0 x x 0 = MH représente le coecient directeur de la droite M M 0 H 0M, g(x) est la pente de la droite M 0 M. On dit que la droite M 0 M de pente g(x) tend vers une droite-limite de pente f (x 0 ). C'est la tangente à la courbe au point M 0. Posons Il vient : = 1 x x 0 = x : accroissement de la variable f(x) f(x 0 ) = f(x) : accroissement de la fonction f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0 = lim x 0 y x. Equation de la tangente à la courbe au point M 0 x 0 f(x 0 ) : y f(x 0 ) = f (x 0 )(x x 0 ) Dénition : Dérivée à droite et dérivée à gauche i) On dit que f est dérivable à gauche au point x 0 si lim x x 0 f(x) f(x 0 ) x x 0 existe on note f (x f(x) f(x 0 ) = lim 0 ) x x 0 x x 0 ou f g(x 0 ) = lim x x 0 ii) De même, on dit que f est dérivable à droite au point x 0 si : f(x) f(x 0 ) x x 0 f (x + 0 ) = lim x x + 0 f(x) f(x 0 ) x x 0 iii) On dit que f est dérivable dans [a, b]si f est dérivable pour tout point x ]a, b[, f est dérivable à gauche au point b et si f est derivable à droite de a. Remarques : i) si f est derivable à droite et à gauche et si f (x 0 ) = f (x + 0 ) alors f est derivable en x 0. On a : f (x 0 ) = f (x + 0 ) = f (x 0 ) 14S. EL HAJJI et S. HAKAM SMI &SM 1
22 ii) f peut être dérivable à gauche et à droite de x 0, sans l'être en x 0 en eet : Soit f(x) = x, on a f (0 ) = lim x x 0 = 1 et f (0 + ) = lim x x x 0 + = 1 x donc f (0 ) f (0 + ) f n'est pas derivable en 0. ) Opérations sur les dérivées 15 : i) Opérations élémentaires : Soient u, v des fonctions dérivables sur I (u + v) est dérivable sur I et on a (u + v) = u + v λ IR, λu est dérivable sur I et on a (λu) = λu (uv) est dérivable sur I et on a (uv) = u v + v u u, avec v 0 sur I, est dérivable sur I et on a ( u v v ii) Dérivée logarithmique : Soit f une fonction dérivable et non nulle sur I, On appelle dérivée logarithmique de f la fonction : f (x) f(x). Dérivée logarithmique d'un produit de deux fonction : On considère deux fonctions dérivables u 0 et v 0 (uv) uv = u v + v u uv = u u + v v Dérivée logarithmique d'un quotient de deux fonctions : ) = u v v u v ( u v ) u v = u v v u iii) Dérivée d'une fonction composée : Soit f et g : f : I J g : K IR, avec J K Si f est dérivable en x 0 I et si g est dérivable en y 0 = f(x 0 ) J, alors g f est dérivable en x 0 et on a : Preuve : On a : (g f) (x 0 ) = g [f(x 0 )] f (x 0 ). (g f)(x 0 + h) (g f)(x 0 ) = g[f(x 0 + h)] g[f(x 0 )] 15S. EL HAJJI et S. HAKAM SMI &SM
23 et f étant dérivable en x 0, on a : Donc f(x 0 + h) = f(x 0 ) + h[f (x 0 ) + ɛ(h)] (g f)(x 0 + h) (g f)(x 0 ) = g[f(x 0 ) + h[f (x 0 ) + ɛ(h)]] g[f(x 0 )] puisque h 0 k = h[f (x 0 ) + ɛ(h)] 0 et comme g dérivable en f(x 0 ) : avec ɛ (k) 0 ɛ 3 (h) 0 g[f(x 0 ) + k] = g[f(x 0 )] + k[g [f(x 0 )] + ɛ (k)] (g f)(x 0 + h) (g f)(x 0 ) = g[f(x 0 )] + k[g [f(x 0 )] + ɛ (k)] g[f(x 0 )] = k[g [f(x 0 )] + ɛ (k)] = h[f (x 0 ) + ɛ(h)][(g f(x 0 )] + ɛ (k))] = hf (x 0 ).g f(x 0 ) + hɛ 3 (h) lim h 0 g f(x 0 +h) g f(x 0 ) h = g [f(x 0 )] f (x 0 ) iii) Dérivée d'une fonction réciproque : Soit f une fonction dénie continue et strictement monotone sur [a, b] et g la fonction réciproque de f. Si f est dérivable en x 0 et f (x 0 ) 0, alors i) g est dérivable en y 0 = f(x 0 ) ii) et on a : (f 1 ) = 1 f f 1 i.e. (f 1 ) (y 0 ) = 1 f (f 1 (y 0 )) et g (y 0 ) = 1 f (x 0 )). Preuve : x 0 = g(y 0 ) y 0 = f(x 0 ) x = g(y) y = f(x) g(y) g(y 0 ) y y 0 = x x 0 = 1 f(x) f(x 0 ) f(x) f(x 0 ) x x 0 g g(y) g(y (y 0 ) = lim 0 ) 1 y y0 y y 0 = lim y y0 f(x) f(x 0 ) 1 = = 1 lim f(x) f(x 0 ) f (x 0 )) x x 0 x x 0 iv) Dérivées successives : Dénition : Soit f une fonction derivable sur I, f : x f (x) Si f est derivable, f dérivée de f s'appelle la dérivée seconde de f. D'une façon générale, la dérivée nème de f dite dérivée d'ordre n, sera dénie par la formule de recurence : 3
24 f (n) = (f (n 1) ), n 0 avec f (0) = f. Exemples : 1) Pour tout n IN et pour tout x IR, on a : sin n (x) = sin(x + nπ ) f(x) = sin x f (x) = cos x = sin(x + π ) f (x). = sin x = sin(x + π) f (n) (x) = sin(x + nπ) ) Si pour tout x IR, f(x) = x h, avec h IN alors, pour tout n IN et pour tout x IR, on a : f (n) (x) = h(h 1)(h ) (h n+1)x h n f(x) = x h, h IN f (x) = hx h 1. f (n) (x) = h(h 1)(h ) (h n + 1)x h n Si n = h f h (x) = h! et f p (x) 0, p > h. 3) pour tout n IN et pour tout x IR, on a : cos (n) (x) = cos(x + nπ). iv) Formule de Leibniz : Soient u et v deux fonctions n fois dérivables sur I (uv) (n) = u (n) v + Cnu 1 (n 1) v + + u.v (n) on écrit : (uv) (n) = n k=0 Ck nu (n k) v (k) Propriété 16 : i) Si f est dérivable et impaire f est paire. En eet ( x) = f(x) (f( x)) = (f(x)) (f( x)) 1 = (f(x)) (f( x)) = (f(x)). ii) Si f est dérivable et paire f est impaire. En eet f( x) = f(x) (f( x)) = (f(x)) (f( x)) = f(x) v) Changement de variable : Soit f une fonction dérivable sur [a, b]. et ϕ une fonction dérivable sur[α, β].on pose x = ϕ(t) avec a = ϕ(α), b = ϕ(β) et [ϕ(α), ϕ(β)] [a, b] F (t) = f(ϕ(t)) est alors dérivable sur [α, β], d'aprés le théorème de la dérivée d'une fonction composée : 16S. EL HAJJI et S. HAKAM SMI &SM 4
25 F (t) = f (ϕ(t)).ϕ (t) = f (x).ϕ (t). F (t) est donc diérentiable sur [α, β] et admet pour diférentielle : df (t) = f (x).ϕ (t)dt On dit que df (t) est la diérentielle de y par rapport à t. 3) Diérentielle 17 : Dénition : Soit f une fonction dérivable en x 0, on appelle dierentielle de f en x 0, l'application linéaire dénie par : df x0 : h f (x 0 ) h Exemple : Si f : x IR x x 0 IR, f (x 0 ) = 1 dx x0 : h h. Pour tout f on a df x0 = f (x 0 ).dx et pour tout x on a df = f (x).dx f (x) = df dx Interpretation géométrique : Soit M 0 x 0 f(x 0 ) et M x 0+dx f(x 0 +dx),p la tangente P x 0+dx f(x 0 +dx), H x 0+dx f(x 0 ), dans le triangle M 0 HP on a : HP M 0 H = f (x 0 ) HP = f (x 0 )M 0 H = f (x 0 )dx = df x0 Remarque : i) HP = f (x 0 )dx = df x0 ii) HM = y et lorsque x x 0 y df x0 iii) l'accroissement y de la fonction est : y = f(x 0 + dx) f(x 0 ) = HM iv) Ne pas confondre y et dy. En eet, d'aprés la dénition de la dérivée : y y 0 x x 0 = f (x 0 ) + ɛ(x x 0 ) y x 0 + dx x 0 = f (x 0 ) + ɛ(dx) y dx = f (x 0 ) + ɛ(dx) y = dx(f (x 0 ) + ɛ(dx)) 17S. EL HAJJI et S. HAKAM SMI &SM y = dy + dx.ɛ(dx) y dy = 1 + ɛ(dx) f (x 0 ) 5
26 si dx 0 y dy 1 y dy. Opération sur les diérentielles : Si la fonction f est derivable dans I, elle admet une diérentielle pour tout x I et df = f (x)dx i) d(u + v) = du + dv ii) d(u.v) = v.du + u.dv iii) d( u) = vdu udv v v Exemple : 1) d(x ) = d(x.x) = x.dx + x.dx = xdx ) d(x arccos x) = arccos x.dx x donc (x arccos x) = arccos x 1 x dx = (arccos x x 1 x x 1 x )dx 4) Théorème de Rolle (variantes) et Application 18 : Théorème de Rolle : Soit f une fonction continue sur un intervalle [a, b] IR dérivable sur l'intervalle ouvert ]a, b[ vériant f(a) = f(b). Alors il existe au moins une valeur c ]a, b[ tel que f (c) = 0. Remarques : i) Si f (c) = 0, la tangente à la courbe au point M(c, f(c)) est horizontale. ii) Le théorème de Rolle arme qu'il existe au moins un point M(c, f(c)) de la courbe distinct des points A(a, f(a)) et B(b, f(b)) en lequel la tangente à la courbe est horizontale. f(x) = sin(x) + 1 dans [π, 3π] iii) La condition f(a) = f(b) est susante mais pas nécessaire. Exemple : Soit f(x) : x [ 1, 1] x 3 IR. On a : f( 1) f(1) mais f (0) = 0 Preuve du théorème i) Si f est une fonction constante alors f (x) = 0 x ]a, b[ alors x ]a, b[, x répond à la question. 18S. EL HAJJI et S. HAKAM SMI &SM 6
27 ii) Si f n'est pas constante sur ]a, b[, f étant continue alors f([a, b]) = [m, m] avec M = sup f(x), m = inf f(x) x [a,b] x [a,b] puisque f(a) = f(b) et m M alors l'une des valeurs m ou M est atteinte sur l'intervalle ouvert ]a, b[, supposons qu'il s'agit de M alors il existe au moins (théorème des valeurs intermidiaires) c ]a, b[ tel que f(c) = M Soit x ]a, b[ considérons le rapport f(x) f(c) x c si x > c si x < c f(x) f(c) x c f(x) f(c) x c 0 lim x c + f(x) f(c) x c 0 lim x c f(x) f(c) x c = f (c + ) 0 = f (c ) 0 f étant dérivable sur ]a, b[ et c ]a, b[ alors f (c + ) = f (c ) = f (c) comme : f (c) 0 f (c) 0 } f (c) = 0 Généralisation : Extension du théorème de Rolle Soit f une fonction continue et dérivable sur l'intervalle ouvert ]a, b[ vériant lim x a + f(a) = lim x b f(b) = + (ou ) Alors il existe au moins une valeur c ]a, b[ tel que : f (c) = 0 Théorème des accroissements nis (on note Th des A.F.) 19 : Soit f une fonction dénie,continue sur un [a, b] et dérivable sur ]a, b[ Alors il existe au moins une valeur c ]a, b[ tel que : f(b) f(a) = (b a)f (c) avec a < c < b C'est la formule des accroissements nis Remarque : 1) Le Théorème des accroissements nis est aussi dit Théorème de Lagrange ou Théorème de la moyenne. ) La formule f(b) f(a) = (b a)f (c) avec a < c < b est appelée Formule des accroissements nis. Interprètation géométrique : 19S. EL HAJJI et S. HAKAM SMI &SM 7
28 Soit A(a, f(a)) et B(b, f(b)) deux points du plan, on a : f (c) = f(b) f(a) b a pente de AB Le théorème des accroissements nis arme l'existence d'au moins un point M(c, f(c)) de la courbe C f distinct de A(a, f(a)) et de B(b, f(b)) en lequel la tangente à la courbe est parralélle à la pente AB. Preuve de la formule des accroissements nis Hypothése : f Continue sur [a, b] et dérivable sur ]a, b[. Soit la fonction ϕ(x) = f(x) f(a) f(b) f(a) x b a ϕ est dénie, continue sur [a, b] et dérivable sur ]a, b[ et ϕ(a) = ϕ(b) = 0 Le Théorème de Rolle appliqué à ϕ c ]a, b[ tel que : ϕ (c) = 0 On a ϕ (x) = f (x) f(b) f(a) donc ϕ (c) = 0 f (c) = f(b) f(a) b a b a f(b) f(a) = (b a)f (c). Autre forme de la formule des accroissements nis On a c ]a, b[ i.e.a < c < b 0 < c a < b a 0 < c a b a < 1 on peut trouver θ ]0, 1[ tel que c a b a = θ c = a + θ(b a) Si on pose b a = h c = a + θh et la formule des accroissements nis s écrit f(a + h) = f(a) + hf (a + θh) avec 0 < θ < 1 Forme générale de la formule des accroissements nis 0 : Soit f et g deux fonction vériant les hypothése du théorème des accroissements nis sur [a, b] et g non nulle sur ]a, b[. Alors il existe au moins une valeur c ]a, b[ tel que : f(b) f(a) g(b) g(a) = f (c) g (c) Remarque : f(b) f(a) g(b) g(a) = f (c) g (c) g (c)[f(b) f(a)] gf (c)[g(b) g(a)] = 0 det 0S. EL HAJJI et S. HAKAM SMI &SM ( f(b) f(a) g(b) g(a) f (c) g (c) ) =0 8
29 Preuve : On a : g(b) g(a) (sinon théorème de Rolle c ]a, b[ tel que : g (c) = 0 contradiction avec g non nulle sur ]a, b[). Soit ϕ(x) = f(x) f(a) f(b) f(a) [g(x) g(a)] g(b) g(a) ϕ est dénie, continue sur [a, b] et dérivable sur ]a, b[ et ϕ(a) = ϕ(b) = 0 Donc d'aprés le théorème de Rolle c ]a, b[ tel que : ϕ (c) = 0. On a : ϕ (x) = f (x) f(b) f(a) g(b) g(a) g (x) donc ϕ (c) = 0 f (c) = f(b) f(a). g (c) g(b) g(a) Exemple : 1) Montrer que si 0 < a < b alors b a < Arctg(b) Arctg(a) < b a 1+b 1+a ) En deduire que : Π + 3 < Arctg( 4) < Π ) On applique le théorème des accroissements nis pour la fonction : f(x) = Arctg(x) dans [a, b] c ]a, b[ tel que f(b) f(a) = (b a)f (c) f (x) = 1 1+x Arctg(b) Arctg(a) = (b a) 1 1+c, c ]a, b[ c ]a, b[ 0 < a < c < b a < c < b 1 + a < 1 + c, 1 + b > 1 + c ) On pose 1 1+a > 1 1+c, 1 1+b < 1 1+c b a 1+b < Arctg(b) Arctg(a) < b a 1+a b = 4, a = 1 Arctg(a) = Π 3 4 Π < Arctg( 4) < Π ( ) 3 4 Π + 3 < Arctg( 4) < Π Corollaire : i) Pour qu'une fonction f soit constante sur un intervalle I, il faut et il sut qu'elle ait une dérivée nulle sur I. ii) Pour qu'une fonction f dérivable sur un intervalle I, soit croissante (resp décroissante) sur I il faut et il sut que f 0 (resp f 0) sur I. iii) Soit f une fonction dénie, continue, dérivable sur un intervalle I si f > 0 (resp f < 0) sur I alors f est strictement croissante (resp décroissante). Remarque : La réciproque de iii) est fausse. En eet soit f : x [ 1, 1] x 3 IR. On a f (x) = 3x, f (0) = 0 f est strictement croissante malgré que f (0) = 0. Preuve i) f = cte f = 0 sur I. 9
30 si f = 0 sur I f cte sur I? (x 1, x ) I, x 1 x f(x 1 ) = f(x )? x 1 < x et on considère [x 1, x ], f dénie, continue sur [x 1, x ] dérivable sur ]x 1, x [ donc d'prés le théorème accroissements nis, au moins une valeur c ]x 1, x [ tel que : f(x ) f(x 1 ) = (x x 1 )f (c) f(x 1 ) = f(x ) ii) f croissante sur I x 1 < x f(x 1 ) f(x ) f(x ) f(x 1 ) x x 1 0 lim x x 1 f(x ) f(x 1 ) x x 1 = f (x 1 ) 0 Réciproque :f 0 f croissante sur I (x 1, x ) I, x 1 x. On prend x 1 < x et on considère [x 1, x ],on a f dénie, continue sur [x 1, x ] dérivable sur ]x 1, x [, donc d'aprés le théorème des accroissements nis, au moins une valeur c ]x 1, x [ tel que : f(x ) f(x 1 ) = (x x 1 )f (c) Or f (c) 0 x x 1 > 0, donc (x x 1 )f (c) 0 f(x 1 ) f(x ) et f est croissante sur I. Théorème de l'hospital (Régle de l'hospital) 1 : Si f et g sont deux fonctions dénies, continues, et dérivables au voisinage d'un point a, sauf peut être a et si f et g n'ont pas de zéro commun au voisinage de a alors lim x a f (x) g (x) lim x a f (x) g (x) = l lim x a f(x) f(a) g(x) g(a) = l lim x a f (x) g (x) = lim x a f(x) f(a) g(x) g(a) = = n'existe pas on ne peut pas conclure Remarque : Le régle de l'hospital est due à Bernoulli. Preuve : On applique le théorème des accroissements nis généralisé sur l'intervalle [a, x], il existe au moins c ]a, x[tel que : f(x) f(a) = f (c) g(x) g(a) g (c) puisque c ]a, x[ si x a alors c a et f(x) f(a) lim x a = lim g(x) g(a) c a f (c) = lim g (c) x a f (x) Exemple : Calculer lim x 0 sin x x x 3. On a une forme indéterminé de la forme 0 0. En eet f(x) = sin x x f(0) = 0 1S. EL HAJJI et S. HAKAM SMI &SM 30 g (x).
31 f (x) = cos x 1 et g (x) = 3x g(x) = x 3 g(0) = 0 f(x) f(0) g(x) g(0) = sin x x x 3 f (x) lim x 0 g (x) = lim cos x 1 x 0 3x Appliquons une deuxiéme fois la régle de l'hospital : f (x) = sin x et g (x) = 6x. On a : f (x) = cos x 1 f (0) = 0 g (x) = 3x g (0) = 0 cos x lim x 0 = 1 lim 6 6 x 0 sin x 6x = 1 6 lim x 0 cos x 1 3x = 1 6 lim x 0 sin x x x 3 = 1 6. Remarque : Dans la mesure du possible, éviter d'écrire : lim x 0 sin x x x 3 = lim x 0 cos x 1 3x = lim x 0 sin x 6x = lim x 0 cos x 6 =
32 Attention : Avant d'appliquer la régle de l'hospital, il faut vérier toujours les hypothéses. On reviendra en détails dans le prochain chapitre sur les avantages et inconvénients de la régle de l'hospital dans du calcul de limites. La régle de l'hospital permet de résoudre un tres grand nombre de Formes Indéterminés (toutes celles de la forme 0, ± et toutes celles qui s'y raménent). 0 ± Mais elle a quelques inconvénients : 1 - Avant de l'appliquer, il faut savoir si l'on est dans des cas d'application de cette régle ou de ses généralisations. - Il faut calculer des dérivées de fonctions 3 - Son utilisation demande parfois des astuces dans la façon d'écrire le quotient et il peut être nécessaire de transformer ce quotient avant de lui appliquer cette régle. 4 - Elle ne marche toujours pas L'étude de limx sin( 1 ) x 0 ne se fait pas par la régle de l'hospital. x Cependant, x IR, 1 sin(x) 1 donc x IR, x x sin( 1) x x limx sin( 1) = 0. x 0 x S. EL HAJJI et S. HAKAM SMI &SM 3
33 EX 1 : Calculer les limites suivantes : 1) Quand x ± de x + 1 x + f(x) = x + 3 ) Quand x ± de g(x) = x + x + 1 a.x a un paramètre réel xé. 3) Quand x 1 de h(x) = x1/3 1 x 1 4) Quand x π 1 de U(x) = cos(x) tg(x) 5) Quand x a de V (x) = (a x )tg( πx.a ) EX : Soit f une fonction dénie sur IR à valeurs dans IR. La dénition de la limite de lim f(x) = L x x 0 est supposée connue dans les 16 cas potentiels;l et x 0 pouvant prendre indépendamment l'un de l'autre une valeur nie, ± ou a) Etablir l'équivalence suivante : lim x x 0 f(x) = L { Pour toute suite {xn } n IN convergente vers x 0, la suite {f(x n )} n IN est convergente vers L On se bornera au cas (x 0, L) IR IR. b) Montrer que la fonction f(x) = sin( 1 ) n'a pas de limite lorsque x 0. x EX 3 : a IR, on considère la fonction de la variable réelle x dénie par : x x si x 0 f : x f(x) = x a si x = 0 Comment choisir a pour que f soit continue sur IR? On suppose a = 0, montrer que f est strictement monotone et déterminer sa fonction réciproque f 1. Ex 4 : Sur le segment [ π, π ], on cosidère la fonction f dénie par 1 cos (x) sin(x) + si x 0 f : x f(x) = sin(x) si x = 0 Cette fonction est-elle continue pour x = 0? Ex 5 : Soit (p, q) IN IN, on cosidère la fonction g dénie sur IR par x p sin( 1 g : x g(x) = x ) si x 0 q 0 si x = 0 33
34 1) Montrer que g est continue sur IR. ) Montrer que pour p, g posséde une dérivée en tout point de IR. en est-il de même pour pour p = 1? 3) Qu'elle relation doit-il y avoir entre p (p > ) et q pour que la dérivée de g soit continue sur IR? Ex 6 : k IR +. Soit f une fonction de la variable réelle à valeurs réelles dénie sur l'intervallle [a, b] tel que 0 < a < b et vériant la propriété : x x (x, x ) [a, b] [a, b] = f(x) f(x ) < k x 3 x 3 1) Montrer que f est continue (même uniformément continue) sur [a, b]. ) Montrer que l'on a f(x) f(x ) < 3kb x x et conclure que f est uniformément continue car 3kb -lipschitzienne sur [a, b]. 3) On dénie la fonction Φ sur [a, b] par Φ(x) = f(x) kx 3. Montrer que Φ est strictement monotone. 4) On suppose que x [a, b], ka 3 f(x) kb 3. a) En déduire qu'il existe un nombre unique θ [a, b] tel que Φ(θ) = 0. ( ) 1/3 b) On prend x 0 = c [a, b]. Vérier que la relation 1 x n+1 = k f(x) dénie une suite de points de [a, b]. Montrer que la suite {U n } n IN dénie par U n = x 3 n θ 3 est décroissante. en déduire qu'elle est convergente. Ex 7 : Soit n un entier naturel n > et f n la fonction polynomiale suivante f n : x [0, 1] f n (x) = x n 5x + 1 IR Montrer que f n admet une racine unique notée a n dans [0, 1]. Etudier la suite {a n } n> (monotonie, convergence, etc...) Dans les deux exercices suivants, se rappelera de la propriété suivante de IR vue dans le cours : Tout intervalle ]a, b[ de IR avec a < b contient une innité de nombres rationnels et une innité de nombres irrationnels. de laquelle, on peut déduire sans diculté que : Tout nomre réel x est limite d'une suite de rationnels {a n } n IN et d'une suite d'irrationnels {b n } n IN Ex 8 : Fonction caractéristique { de IQ 1 Soit f : x IR si x IQ f(x) = 0 si x / IQ. Montrer que f est partout discontinue. 34
35 Ex 9 : Soit f la fonction de la variable réellex à valeur dans IR f : x IR f(x) = 1 q si x = p q 1 si x = 0 0 si x est irrationnel. est non nul irréductible q > 0 Montrer que f est continue en tout point irrationnel et discontinue ailleurs. EX 10 : Soit f : IR IR la fonction dénie par { x cos( π x ) si x 0 f(x) = f est-elle continue? Dérivable? De classe C 1? 0 si x = 0 EX 11 : Soit f une fonction dont la courbe représentative passe par le point (1, 3) et admet une tangente au point d'abssice 1. On suppose que cette tangente passe par le point (, 3). a) Déterminer f (1). b) On suppose que f admet une fonction réciproque f 1 noté g, déterminer alors g( 3). EX 1 : Soit la fonction dénie par : f(x) = x 3 3a x + b où a et b sont des constantes réelles avec a > 0. a) En utilisant le théorème de Rolle et en raisonnant par l'absurde, montrer que f s'annule au plus une fois sur l'intervalle [ a, a]. b) Déterminer les valeurs de b pour lesquelles f s'annule. Ex 13 : a) En appliquant le théorème des accroissements nis à la fonction f(x) = log(x) sur l'intervalle [n, n + 1] où n est un entier naturel vériant n > 0, montrer que 1 n + 1 < log(n + 1) log(n) < 1 n b) On dénie la suite {u n } n IN de nombres réels en posant u n = n log(n) Montrer que la suite {u n } n IN est strictement monotone. En déduire qu'elle est convergente et que si γ = lim u n, on a 0 γ < 1 (γ s'appelle la constante d'euler-mascheroni. n on ignore encore si elle est rationnelle ou non). Ex 14 : Soit f la fonction dénie par f(x) = 35 ( x) x pour x > 1.
36 ( 1) Montrer que f(x) = (x 1) ) c log(1 + c) log(c) 1 c c vériant 1 < c < x. 1 + c pour un certain ) Appliquer le théorème des accroissements nis à la fonction log pour montrer que pour y > 0. En déduire que f(x) pour tout x 1. log(1 + y) log(y) y 3) On dénie la suite {v n } n IN par v n = n! pour n 1. nn a) Utiliser le raisonnement par recurrence pour montrer v n 1 pour tout n 1 n 1 ( On remarquera d'après ) que f(n) pour tout n 1). b) Etudier la monotonie de le suite {v n } n IN et conclure si elle est convergente ou divergente. c) Calculer la limite de cette suite en justiant votre réponse. Ex 15 : Soit f : IR IR, t log (log(k)) et S n = k= En appliquant le théorème des accroissements nis à la fonction f sur l'interval [k, k + 1], où k est un entier strictement superieur à 1, montrer que la suite {S n } n>1 est divergente. n n 1 k log(k). Ex 16 : Soit f : IR IR, t 1 et S n = f( k 1 + t n ) 1. k=1 1) Vérier que f est criossante et continue sur IR +. ) Montrer que n IN : n + 1 n f (0) S n n + 1 n f (1). (indication : On appliquera le théorème des accroissements nis.) 3) En déduire que la suite {S n } n 1 converge et calculer sa limite. Ex 17 : Soit f une fonction réelle dénie sur [a, b]. on dit que f est lipschitzienne s'il existe un réel k tel que : f(x) f(y) k x y où x et y sont des éléments quelconques de [a, b]. Soit f une fonction dérivable et lipschitzienne sur [a, b]. Montrer que f est bornée sur [a, b]. Ex 18 : Soit f : IR + IR l'application dénie de la façon suivante : x sin( π f(x) = x ) sin( π sin( π x )) si x 0 et x 1 n n IN 0 si x = 0 et x = 1 n n IN 1) Déterminer l'ensemble des points x IR + où f est continue. ) Montrer que f est dérivable en 0 et en tout points x 1 n où n IN. 3) Montrer que pour tout n IN : lim h 0, h 0 ( 1 n + h) sin( π 1 n +h) h 36 = ( 1) n+1 π
37 4) En déduire que f n'est pas dérivable aux points x = 1 n où n IN. Saïd EL HAJJI Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Groupe d'analyse Numérique et Optimisation Avenue Ibn Batouta, B.P Rabat, Maroc Tel et fax +(37) [email protected] Page web : http :// 37
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Fonctions de plusieurs variables et changements de variables
Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Axiomatique de N, construction de Z
Axiomatique de N, construction de Z Table des matières 1 Axiomatique de N 2 1.1 Axiomatique ordinale.................................. 2 1.2 Propriété fondamentale : Le principe de récurrence.................
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Calcul différentiel. Chapitre 1. 1.1 Différentiabilité
Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)
Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Développements limités
Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Équations non linéaires
CHAPTER 1 Équations non linéaires On considère une partie U R d et une fonction f : U R d. On cherche à résoudre { x U 1..1) f x) = R d On distinguera les cas d = 1 et d > 1. 1.1. Dichotomie d = 1) 1.1.1.
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Développements limités usuels en 0
Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
F1C1/ Analyse. El Hadji Malick DIA
F1C1/ Analyse Présenté par : El Hadji Malick DIA [email protected] Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire
Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices
Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Construction de l'intégrale de Lebesgue
Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE
4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Compte rendu des TP matlab
Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
