Champ électrostatique créé par un condensateur plan. Force électrostatique.

Documents pareils
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

CHAPITRE IX : Les appareils de mesures électriques

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Fonctions de plusieurs variables

Calcul intégral élémentaire en plusieurs variables

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

AUTOPORTE III Notice de pose

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

Références pour la commande

Cours 9. Régimes du transistor MOS

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

TP 7 : oscillateur de torsion

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

Fonctions de deux variables. Mai 2011

Laboratoires de Physique générale

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

RELAIS STATIQUE. Tension commutée

Mesure de Salinité Réalisation d'un conductimètre

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Instruments de mesure

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Lecture recommandée (en anglais) Activité d écriture facultative. Références

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Précision d un résultat et calculs d incertitudes

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Chapitre 02. La lumière des étoiles. Exercices :

Méthodes de Caractérisation des Matériaux. Cours, annales

CH IV) Courant alternatif Oscilloscope.

Vis à billes de précision à filets rectifiés

ELEC2753 Electrotechnique examen du 11/06/2012

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

ARDUINO DOSSIER RESSOURCE POUR LA CLASSE

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Charges électriques - Courant électrique

Electrocinétique Livret élève

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Oscilloscope actif de précision CONCEPT 4000M

1 Savoirs fondamentaux

Essais de charge sur plaque

Opérations de base sur ImageJ

JUPITER /20/27/61m. Contact NF, 50mA à 24v max. avec R50 Ohms en série

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Chapitre 1 Cinématique du point matériel

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

PASSAGE A NIVEAU HO/N

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Chapitre 1 Régime transitoire dans les systèmes physiques

MATIE RE DU COURS DE PHYSIQUE

Gestion et entretien des Installations Electriques BT

Électricité. 1 Interaction électrique et modèle de l atome

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Exercice 1. Exercice n 1 : Déséquilibre mécanique

GS301-A Notice d installation et d utilisation.

Electricité Générale

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

P17- REACTIONS NUCLEAIRES

TP : Suivi d'une réaction par spectrophotométrie

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Chapitre 2 : Caractéristiques du mouvement d un solide

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Circuits RL et RC. Chapitre Inductance

GENERALITES SUR LA MESURE DE TEMPERATURE

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

Mesures d antennes en TNT

Cours de Mécanique du point matériel

Chapitre 0 Introduction à la cinématique

CH 11: PUIssance et Énergie électrique

Electricité : caractéristiques et point de fonctionnement d un circuit

SpeechiTablet Notice d utilisation

Barrières infrarouge actif double faisceaux Multi fréquences SBT 30F-60F-80F-100F-150F Notice d installation. Logo

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

500 W sur 13cm avec les modules PowerWave

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Cours Fonctions de deux variables

Sommaire Table des matières

SEANCE 1 : Ecole L OMNIPRESENCE DE L ELECTRICITE DANS NOTRE VIE.

DETECTION DE NIVEAU LA GAMME

Les Conditions aux limites

Module 3 : L électricité

Collimateur universel de réglage laser

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

Transcription:

Champ électrostatique créé par un condensateur plan. Force électrostatique. I - BUT DE L MNIPULTION Dans une première partie, on étudiera expérimentalement, dans un plan, les lignes équipotentielles et les lignes de champ d un condensateur plan. La mesure du champ et du potentiel en un point étant cependant difficile à réaliser en pratique, on utilisera dans ce T.P, un montage électrocinétique menant à une répartition dans l espace de champs électriques et de différences de potentiel similaires à celle du condensateur plan. Dans une deuxième partie, on s intéressera à la force exercée par un champ électrostatique sur des charges électriques. On étudiera ainsi la déviation d un faisceau d électrons par un condensateur plan. II - ETUDE EXPERIMENTLE DU CHMP ELECTROSTTIQUE D UN CONDENSTEUR PLN II.1 Principe L idée est de substituer aux charges électriques statiques un montage électrocinétique comportant une source de tension U appliquée à deux électrodes fixées sur une feuille de papier graphité. Ce papier étant un conducteur ohmique, la tension y induira une répartition spatiale de potentiels électriques que l on mesurera. Suivant la forme des électrodes, on obtient l équivalent électrocinétique de différents systèmes électrostatiques. Pour un condensateur plan, par exemple, les électrodes seront des barrettes métalliques parallèles (fig. 1a) et deux vis métalliques pour un dipôle (fig.1b). Papier conducteur B B + - U Fig.1a + - U Fig.1b Mécanique TP4 1

La manipulation consistera à tracer les lignes équipotentielles à l intérieur et à l extérieur d un condensateur plan puis à en déduire les lignes de champ électrique. Pour tracer les lignes équipotentielles, il suffira de repérer avec la sonde (électrode en laiton) l ensemble des points M du papier graphité ayant le même potentiel V M ou, plus précisément, présentant la même différence de potentiel V M - V B par rapport à l électrode B dont le potentiel V B sera choisi arbitrairement égal à zéro. Le potentiel V M sera simplement donné par la tension U MB mesurée avec un multimètre. Les points M seront reportés mécaniquement sur une feuille de papier millimétré, à l aide d un pantographe dont on déterminera le grandissement γ (figure 2). électrode métallique O (point fixe) Pantographe U M Sonde B Papier conducteur Repère de position Stylet Papier millimétré Fig.2 : Dispositif expérimental. II.2 Tracé des lignes équipotentielles. Régler le générateur de tension : 12V, continu. limenter le condensateur plan avec ce générateur : l électrode au pôle «+», l électrode B (la référence) au pôle «-». Mesurer à l aide du multimètre la différence de potentiels U entre les deux électrodes : U =... Disposer la feuille de papier millimétré entre les repères en scotch rouge (figure 2) de manière à explorer au mieux le papier graphité avec la sonde (à l intérieur et à l extérieur du condensateur plan). Mécanique TP4 2

Reproduire, à l aide du stylet du pantographe, les deux électrodes du plateau sur le papier millimétré. En déduire le grandissement γ du pantographe : γ = (tenir compte du diamètre de la sonde en laiton) Tracé des lignes équipotentielles à l intérieur et à l extérieur du condensateur plan : On souhaite repérer l ensemble des points M de la feuille de papier graphité se trouvant à un même potentiel V M par rapport à l électrode B de référence. On a choisi V B = 0 V, on a donc V M = U MB tension mesurée au multimètre (la borne «Com» reliée à l électrode B et la borne V à la sonde en laiton). On tracera 4 lignes équipotentielles correspondant aux potentiels : V M = 0.4U, 0.5U, 0.6U, 0.7U. Calculer ces valeurs de V M au centième de volt et tracer les lignes équipotentielles. Conseils : - repérer la position d un point M à V M ± 0.02 V. - maintenir un doigt appuyé sur la sonde pour avoir un bon contact électrique. - déplacer la sonde d environ 1 cm entre deux points de mesure. II-3 Calcul du champ électrique et tracé des lignes de champ. Calcul du champ électrique E : Dans un repère orthonormé (O, u x, u y, u z ), le champ électrique E en un point M de coordonnées (x,y,z) est défini à partir des variations de potentiel V par unité de longueur dans les trois directions de l espace : E (M) = - grad V = - V x. u x - V y. u y - V z. u z partir de cette définition, nous allons déterminer les coordonnées du vecteur champ électrique E en différents points du graphe donnant les lignes équipotentielles du condensateur plan. Mécanique TP4 3

Soit (O, u x, u y ) le repère affecté à ce graphe comme indiqué à la figure 3. Nous ne nous intéresserons qu aux coordonnées E x et E y du champ électrique et nous ferons l approximation suivante : E - V. u x - x V. u y y Dans cette expression, la composante E x = - V x est remplacée par - V, x où V représente la variation de potentiel correspondant à une variation de longueur x ( y restant constant ), alors que x représente une variation infiniment petite. Electrode du condensateur + u y 0,7 U B 0,6 U O u x 0,5 U 0,4 U - Figure 3 Calcul du champ en un point à l extérieur du condensateur : (figure 3) E x () = - E y () = - V = - x V = - y V(') V() x x ' '' V('') V() y y =. =. Norme du champ en : E () =. ( Ne pas oublier le grandissement du pantographe. E x et E y sont des valeurs algébriques ) Mécanique TP4 4

Connaissant les coordonnées E x et E y, représenter le vecteur champ électrique E () sur votre graphe (échelle : 1 cm pour 10V/m ). Vérifier que ce vecteur est bien orienté vers les potentiels décroissants et qu il est perpendiculaire à la ligne d équipotentielle en (ou proche de la normale aux incertitudes près). Calcul du champ en un point B à l intérieur du condensateur : (figure 3) E x (B) =..... E y (B) =. Norme du champ en B : E (B) =. Représenter le vecteur E (B) sur votre graphe. Conclure sur le champ électrique à l intérieur du condensateur? Mécanique TP4 5

Tracé des lignes de champ : Vous allez dessiner 2 lignes de champ, l une à l intérieur, l autre à l extérieur du condensateur. Pour cela, vous utiliserez la propriété que vous venez de vérifier : les lignes de champ sont orthogonales aux lignes équipotentielles en tout point. Sur la figure 4 ci-dessous, le point est un point de la ligne équipotentielle V M = 0,5U par lequel on désire faire passer la ligne de champ. Tracer en la normale à l équipotentielle V M = 0,5U jusqu à sa rencontre, en, avec l équipotentielle V M = 0,6U. Du milieu de, mener la normale à l équipotentielle V M = 0,6U. Celle-ci coupe les équipotentielles V M = 0,6U en B et V M = 0,7U en B. Du milieu B de BB, recommencer alors la même opération et ainsi de suite. La ligne de champ recherchée est inscrite dans la ligne polygonale (,, B, B, C). 0,7 U 0,6 U 0,5 U + lignes de champ C B B B - lignes équipotentielles Fig 4 : Méthode pour tracer les lignes de champ. Mécanique TP4 6

III- ETUDE DE L DEVITION D UN FISCEU D ELECTRONS PR UN CONDENSTEUR PLN. Dans cette deuxième partie, on va s intéresser à la force exercée par un champ électrostatique sur des charges électriques. Pour cela on va utiliser le montage représenté ci-dessous. ampoule sous vide Ud (HT) x d E xo 0 C F 6V y Figure 5 Ua (HT) déflexion des électrons canon à électrons III-1 Description du montage. Le montage (figure 5) se compose d une ampoule de verre dans laquelle règne un vide poussé. l intérieur de cette ampoule, on trouve : un canon à électrons, placé dans le culot et permettant d obtenir à sa sortie des électrons de vitesse v horizontale ( vo = voxux. ). o Ce canon est constitué d une cathode métallique C qui, chauffée par un filament F, émet des électrons avec une vitesse considérée comme négligeable. Ces électrons sont accélérés par le champ électrique créé par une tension U a appliquée entre la cathode C et une anode trouée en son centre. On peut montrer que la vitesse v ox des électrons au niveau du trou de l anode est égale à : 2eUa vox= (2) avec m e : charge de l électron m : masse de l électron Mécanique TP4 7

deux plaques métalliques parallèles distantes de d et aux bornes desquelles est appliquée une tension U d créant un champ électrostatique uniforme canon à électron. Ud E = perpendiculaire à l axe Ox du d (en fait, comme nous l avons observé dans la première partie, le champ électrostatique créé par un condensateur plan n'est pas rigoureusement uniforme. La longueur des plaques de déflexion est en effet trop courte par rapport à leur écartement ce qui crée des effets de bords importants). Un écran vertical quadrillé (en cm) tangent à la trajectoire des électrons et recouvert d une substance fluorescente permettant de visualiser leur trajectoire. III-2 Calcul de l équation de la trajectoire d un électron. On travaillera dans le système d axes Oxy de la figure 5 (associé à un repère orthonormé (O, u x, u y ) ). la sortie du canon, un électron a une vitesse vo = voxux. Il n est soumis à aucune force le long de l axe Ox. En revanche, le long de Oy, il est soumis à la force électrostatique E U d F= e. E exercée par le champ = d uy créé par le condensateur plan (on négligera le poids de l électron). En appliquant le principe fondamental de la dynamique, montrer que la trajectoire de l électron est une parabole d équation : 1 U d 2 y = ( x xo ) (3) 4d U a On prendra comme conditions initiales à t=0 : la position M o (x o,0) lorsque l électron est situé à l entrée du condensateur où il commence à subir l influence du champ (voir figure 5) la vitesse v o (v ox, 0) au point M o. Mécanique TP4 8

III-3 Manipulation III.3.1 Montage électrique Figure 6 TTENTION : vous allez manipuler des alimentations hautes tensions (H.T.). Le montage électrique a été préalablement réalisé mais avant de manipuler demander à un enseignant de mettre sous tension le circuit après vérification. Eteindre les alimentations après avoir manipuler sans retirer les cables électriques. (Remarque : lorsque l'on éteint une alimentation H.T., la tension ne s annule pas instantanément. Les fortes capacités de l alimentation se déchargent lentement. insi la tension ne s annule qu au bout de quelques dizaines de secondes). Pour le canon à électrons, on utilise une alimentation double qui fournit d'une part la HUTE TENSION réglable U a entre 0 et 5 kv pour accélérer les électrons et d'autre part la BSSE TENSION pour le filament. Pour la déflexion des électrons on dispose d'une alimentation du même type, mais on utilise uniquement la partie HUTE TENSION. La tension affichée (en kv) est la tension entre la borne (+) et la borne (-). Mécanique TP4 9

III.3.2 spect qualitatif. Pour des tensions U a et U d fixées (par exemple U a = 2500 V, U d = 2800 V), vérifier que compte tenu du sens du champ électrique, le sens de la déflexion obtenue est celui attendu. Pour U a = 2500 V, faire varier U d : comment varie la déflexion? Même question pour U d = 2800 V et U a variable. Les variations observées de la déflexion sont-elles en accord avec la formule (3)? III.3.3 Mesures. III.3.3.1 Variation de U d en fonction de U a pour une déflexion constante. Choisir un couple de valeur (U a, U d ) pour obtenir une parabole passant, par exemple, par le point x = 8 cm, y = 2 cm. Faire varier U a et noter la nouvelle valeur de U d à appliquer pour garder la même déflexion. Recommencer et remplir le tableau ci-dessous. U a U d (volts) (volts) Mécanique TP4 10

Tracer la courbe U d = f (U a ) sur papier millimétré. Comparer à l allure de la courbe théoriquement attendue (formule 3). Si vous souhaitez comparer quantitativement expérience et théorie, notez que x o = 1.5 cm et d = 5.4cm. III.3.3.2 Etude de la déflexion pour U a et U d constants Choisir par exemple, U a = 2500 Volts et U d = 2800 Volts. Relever les coordonnées (x,y) de quelques points de la trajectoire Remplir le tableau ci-dessous : x (cm) y (cm) (x-x o ) 2 (cm 2 ) Tracer la courbe y = f( (x-x o ) 2 ). Conclusion : Mécanique TP4 11

Mécanique TP4 12