Interaction Fluide Structure : Modélisation et Simulation Numérique. Editeur : M hamed SOULI

Documents pareils
SYLLABUS SEMESTRE 9 Année

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Conseils en Ingénierie mécanique

Le turbo met les gaz. Les turbines en équation

Spécialité Sciences Mécaniques et Ingénierie

Appel à Propositions. Thème : «Couplage CFD / CAA»

SPÉCIALITÉ Sciences Mécaniques et Ingénierie (SMI)

ETUDE COMPARATIVE DES MODELISATIONS NUMERIQUE ET PHYSIQUE DE DIFFERENTS OUVRAGES D EVACUATION DES CRUES

CSMA e Colloque National en Calcul des Structures Mai 2013

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

DISQUE DUR. Figure 1 Disque dur ouvert

SIMULATION DU PROCÉDÉ DE FABRICATION DIRECTE DE PIÈCES THERMOPLASTIQUES PAR FUSION LASER DE POUDRE

Objectifs du cours Modélisation de la Turbulence M2 - EE

Interaction Fluide-Structure pour les corps élancés

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Plan du cours : électricité 1

Théories de champ moyen et convection à grande échelle

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Projet Optiperf : les ressources du calcul parallèle à destination des architectes navals

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

Actions de réduction de bruit sur un moteur poids lourd

Simulation du transport de matière par diffusion surfacique à l aide d une approche Level-Set

T. Gasc 1,2,3, F. De Vuyst 1, R. Motte 3, M. Peybernes 4, R. Poncet 5

MAIDESC - KO 21 Novembre 2013 Etienne Wey Alexandre Boilley

Le Collège de France crée une chaire pérenne d Informatique, Algorithmes, machines et langages, et nomme le Pr Gérard BERRY titulaire

Introduction au maillage pour le calcul scientifique

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

Calcul de la perméabilité à l échelle du VER d un milieu fibreux non saturé par une approche éléments finis monolithique

ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab

I Stabilité, Commandabilité et Observabilité Introduction Un exemple emprunté à la robotique Le plan Problème...

10 REPÈRES «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 POUR LA MISE EN ŒUVRE DU DISPOSITIF

DATE DU CONCOURS: SAMEDI 18 OCTOBRE

Ordonnancement robuste et décision dans l'incertain

Catalogue de formation

10ème Congrès Français d'acoustique Lyon, Avril 2010

FLUIDES EN ÉCOULEMENT Méthodes et modèles

Projet ANR. Bruno Capra - OXAND. 04/06/2015 CEOS.fr - Journée de restitution (Paris) B. CAPRA

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

CHAPITRE 1 : ETAT DE L ART.

Figure 1 : représentation des différents écarts

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Contribution à l étude de l écoulement dans un milieu compressible


Chapitre 2 Caractéristiques des ondes

ETUDE DE COMPATIBILITE DE LA ZONE DE RECOUVREMENT DES MODELES NUMERIQUES APPLICATION AUX ETUDES D IMPACT DES PROJETS D ENERGIES MARINES

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

Écoulements diphasiques DEVELOPPEMENT D UNE METHODE LEVEL SET POUR LE SUIVI D INTERFACES ET APPLICATIONS

EDITION 2009 DOCUMENT DE SOUMISSION B. REaching Petascale for advanced fluid-structure transient DYNamics

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Exemple d application en CFD : Coefficient de traînée d un cylindre

APPORT DE LA CFD DANS LA PREDICTION DE LA DISPERSION D UN POLLUANT DANS UN ECOULEMENT A SURFACE LIBRE

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Métiers d études, recherche & développement dans l industrie

JOURNEES SYSTEMES & LOGICIELS CRITIQUES le 14/11/2000. Mise en Œuvre des techniques synchrones pour des applications industrielles

Comparaisons des premières formulations du Théorème de Bernoulli de l hydrodynamique à un

P.L.U. Plan Local d'urbanisme PRESCRIPTION D'ISOLEMENT ACOUSTIQUE AU VOISINAGE DES INFRASTRUCTURES TERRESTRES DOCUMENT OPPOSABLE

Génie Industriel et Maintenance

Les composites thermoplastiques

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

Figure 3.1- Lancement du Gambit

Les diagrammes de modélisation

NOTE DE POSITIONNEMENT EGF.BTP SUR LA NUMERISATION DE LA FILIERE BATIMENT

Les lières. MSc in Electronics and Information Technology Engineering. Ingénieur civil. en informatique. MSc in Architectural Engineering

COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE

CORAC : Appels à partenariat Propulsion

L équilibre offre-demande d électricité en France pour l été 2015

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

Synthèse «Le Plus Grand Produit»

Cours de Résistance des Matériaux (RDM)

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

STRUCTURE D UN AVION

Realize Your Product Promise. Mechanical Products. Catalogue de Formations 2015 France

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

SIMULATION NUMERIQUE D UN NAVIRE AMARRE NUMERICAL SIMULATION OF A MOORED SHIP

«SERVICES D INGENIERIE»

Des solutions d analyse par éléments finis haut de gamme pour l environnement Windows.

3. Artefacts permettant la mesure indirecte du débit

Présentation du programme. de physique-chimie. de Terminale S. applicable en septembre 2012

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Chapitre 2/ La fonction de consommation et la fonction d épargne

1 Description générale de VISFIELD

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Exemples de dynamique sur base modale

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION

Prédiction des effets des explosions et de réponse des structures pyrotechniques

En face du commanditaire, on met un chef de projet qui connait le domaine (banque, administration, etc.)

Initiation à la simulation numérique. Eléments d analyse numérique.

Filtrage stochastique non linéaire par la théorie de représentation des martingales

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

Programme Pédagogique National du DUT «Génie mécanique et productique» Présentation de la formation

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

FEMAP. Environnement d analyse d ingénierie actuel le plus avancé. Des réponses pour l industrie.

Transcription:

Interaction Fluide Structure : Modélisation et Simulation Numérique Editeur : M hamed SOULI

Interaction Fluide Structure : Modélisation et Simulation Numérique Editeur : M hamed SOULI Co-éditeur : Jean-François SIGRIST

Table des matières Préface......................................... 11 Chapitre 1. Couplage d éléments finis en interaction fluide/structure... 15 Jean-François SIGRIST 1.1. Introduction.................................. 15 1.1.1. Un exemple élémentaire de système couplé fluide-structure... 16 1.1.2. Contenu du chapitre.......................... 19 1.1.3. Pour en savoir plus........................... 19 1.2. Méthode éléments finis pour un problème de dynamique vibratoire d une structure................................ 20 1.2.1. Contexte d étude et hypothèses générales.............. 21 1.2.2. Formulation forte et formulation faible du problème structure.. 22 1.2.3. Discrétisation par la méthode des éléments finis.......... 23 1.2.4. Formulation discrète du problème aux valeurs propres...... 26 1.2.5. Exemple : modes de flexion d une poutre élastique encastrée/libre 27 1.2.5.1. Définition du problème, équations continues et solution analytique............................... 27 1.2.5.2. Discrétisation éléments finis.................. 30 1.2.5.3. Calcul des modes propres et des fréquences propres..... 33 1.3. Méthode éléments finis pour un problème de dynamique vibratoire d un fluide................................... 34 1.3.1. Contexte d étude et hypothèses générales.............. 34 1.3.2. Formulation forte et formulation faible du problème fluide.... 39 1.3.2.1. Problème d acoustique fluide.................. 39 1.3.2.2. Problème de ballottement fluide................ 40 1.3.3. Discrétisation par la méthode des éléments finis.......... 40 1.3.3.1. Problème d acoustique fluide.................. 40 1.3.3.2. Problème de ballottement fluide................ 42 1.3.4. Formulation discrète du problème aux valeurs propres...... 42 9

10 Interaction fluide structure 1.3.4.1. Problème d acoustique fluide.................. 42 1.3.4.2. Problème de ballottement fluide................ 43 1.3.5. Exemple n 2 : modes acoustiques d une cavité fluide cylindrique 44 1.3.5.1. Définition du problème, équations continues et solution analytique............................... 44 1.3.5.2. Discrétisation éléments finis.................. 47 1.3.5.3. Calcul des modes propres et des fréquences propres..... 51 1.3.6. Exemple n 3 : modes de ballottement d un réservoir cylindrique. 52 1.3.6.1. Définition du problème, équations continues et solution analytique............................... 53 1.3.6.2. Discrétisation éléments finis.................. 54 1.3.6.3. Calcul des modes propres et des fréquences propres..... 56 1.4. Méthode éléments finis pour l analyse vibratoire d une structure couplée avec un fluide incompressible..................... 57 1.4.1. Contexte d étude et hypothèses générales.............. 58 1.4.2. Formulation forte et formulation faible du problème fluide/structure 59 1.4.3. Discrétisation par la méthode des éléments finis.......... 60 1.4.4. Formulation discrète du problème aux valeurs propres fluide/structure 62 1.4.5. Exemple n 4 : poutre élastique couplée avec un fluide contenu dans une cavité cylindrique...................... 63 1.4.5.1. Définition du problème et équations continues........ 63 1.4.5.2. Solution analytique....................... 64 1.4.5.3. Discrétisation éléments finis.................. 67 1.4.5.4. Calcul des modes propres et des fréquences propres..... 70 1.5. Couplage éléments finis-éléments finis pour l étude vibratoire d un système couplé fluide-structure....................... 73 1.5.1. Contexte d étude et hypothèses générales.............. 73 1.5.2. Formulation couplée fluide/structure non symétrique....... 74 1.5.2.1. Couplage élasto-acoustique................... 74 1.5.2.2. Couplage hydro-élastique.................... 75 1.5.3. Formulation couplée fluide/structure symétrique.......... 76 1.5.3.1. Couplage élasto-acoustique................... 77 1.5.3.2. Couplage hydro-élastique.................... 79 1.5.4. Exemple n 5 : poutre élastique couplée avec un fluide compressible contenu dans une cavité cylindrique sans surface libre.... 82 1.5.5. Exemple n 6 : poutre élastique couplée avec un fluide incompressible contenu dans une cavité cylindrique avec surface libre.... 84 1.6. Bibliographie................................. 90 Chapitre 2. Traitement numérique des interfaces............... 93 Elisabeth LONGATTE et Michaël SCHAEFER 2.1. Introduction.................................. 93 2.2. Méthodes numériques en mécanique des fluides............. 94

Table des matières 11 2.2.1. Equations fondamentales....................... 94 2.2.1.1. Lois de conservation....................... 94 2.2.1.2. Ecoulements de fluides incompressibles........... 95 2.2.1.3. Ecoulements de fluides non visqueux............. 97 2.2.2. Formulation volumes finis...................... 98 2.2.2.1. Discrétisation.......................... 98 2.2.2.2. Schémas numériques...................... 99 2.3. Méthodes numériques en mécanique des structures........... 102 2.3.1. Equations fondamentales....................... 102 2.3.1.1. Elasticité............................. 103 2.3.1.2. Problèmes en état de contraintes planes............ 105 2.3.1.3. Hyper-élasticité......................... 107 2.3.2. Formulation éléments finis...................... 108 2.4. Méthodes numériques en interaction fluide structure........... 112 2.4.1. Gestion d interfaces mobiles..................... 112 2.4.1.1. Principe.............................. 112 2.4.1.2. Formulation mixte lagrangienne eulérienne.......... 114 2.4.1.3. Cadre de la méthode des volumes finis............ 119 2.4.2. Dynamique de maillage........................ 119 2.4.2.1. Approches algébriques..................... 120 2.4.2.2. Approches elliptiques...................... 121 2.4.3. Procédures de couplages....................... 126 2.4.3.1. Stratégies de couplages..................... 126 2.4.3.2. Conservation de l énergie à l interface............ 127 2.4.3.3. Couplage partitionné explicite synchrone........... 128 2.4.3.4. Couplage partitionné explicite asynchrone.......... 129 2.4.3.5. Couplage partitionné semi-implicite.............. 130 2.4.4. Projection de données......................... 133 2.4.4.1. Données à l interface...................... 133 2.4.4.2. Interpolation de données.................... 133 2.4.4.3. Forme des interfaces....................... 135 2.4.4.4. Algorithme............................ 137 2.5. Exemples d applications.......................... 138 2.5.1. Lame flexible soumise à un écoulement............... 138 2.5.1.1. Configuration.......................... 138 2.5.1.2. Résultats............................. 138 2.5.2. Lame flexible avec contrepoids soumise à un écoulement..... 139 2.5.2.1. Configuration.......................... 139 2.5.2.2. Résultats............................. 141 2.5.3. Conduit souple bi-encastré parcouru par un écoulement...... 142 2.5.3.1. Configuration.......................... 142 2.5.3.2. Résultats numériques...................... 143 2.5.4. Ecoulement autour d un obstacle................... 145

12 Interaction fluide structure 2.5.4.1. Configuration.......................... 145 2.5.4.2. Résultats numériques...................... 145 2.5.5. Conduit souple encastré-libre parcouru par un écoulement.... 147 2.5.5.1. Description de la configuration................. 147 2.5.5.2. Résultats numériques...................... 149 2.5.6. Faisceau de tubes soumis à un écoulement transverse....... 151 2.5.6.1. Description de la configuration................. 151 2.5.6.2. Résultats numériques...................... 156 2.6. Bibliographie................................. 160 Chapitre 3. Calculs éléments finis multidomaines............... 165 Thierry COUPEZ, Hugues DIGONNET, Patrice LAURE, Luisa SILVA, Rudy VALETTE 3.1. Introduction.................................. 165 3.1.1. Une classification des approches multidomaines.......... 166 3.1.2. Notations................................ 167 3.2. Caractérisation des différentes phases................... 168 3.2.1. La fonction distance signée ou level set............... 169 3.2.2. Raffinement du maillage....................... 170 3.2.3. Le déplacement de la level set.................... 172 3.2.3.1. La réinitialisation........................ 173 3.2.3.2. La réinitialisation convective.................. 174 3.2.3.3. Le limiteur et la troncature................... 174 3.2.3.4. Les paramètres de l équation de transport tronquée et régularisée............................... 175 3.3. La résolution éléments finis......................... 177 3.3.1. Les équations en vitesse-pression.................. 177 3.3.2. Formulation variationnelle pour les équations de Navier-Stokes. 178 3.3.3. La méthode RFB pour l équation de transport........... 179 3.3.4. La méthode RFB pour les équations de Navier-Stokes....... 180 3.4. Interface fluide-air ou fluide-fluide..................... 181 3.4.1. L écoulement gravitationnaire.................... 182 3.4.2. La prise en compte de la tension de surface............. 183 3.5. L immersion de corps solides dans un fluide............... 187 3.5.1. L immersion d objet dans un maillage................ 188 3.5.2. Formulation en vitesse-pression pour les corps solides dans un fluide................................... 190 3.5.3. Formulation variationnelle du système fluide solide........ 191 3.5.4. Formulation discrète et algorithme d Uzawa............ 192 3.5.5. Déplacement lagrangien des particules............... 193 3.5.6. Une sphère dans un champ de cisaillement............. 194 3.5.7. Deux sphères rigides dans un écoulement de Stokes........ 195 3.5.7.1. Influence du maillage...................... 195

Table des matières 13 3.5.7.2. Déplacements des sphères................... 197 3.6. Conclusion.................................. 200 3.7. Bibliographie................................. 201 Chapitre 4. Réduction de modèle en IFS par POD............... 205 Aziz Hamdouni, Francisco Chinesta et Erwan Liberge 4.1. Introduction.................................. 205 4.2. Présentation générale de la POD...................... 206 4.2.1. Introduction.............................. 206 4.2.2. Formulation de la POD continue................... 207 4.2.3. Formulation discrète du problème.................. 210 4.2.4. La snapshot POD........................... 212 4.2.5. Ecriture matricielle du modèle réduit ( a postériori)........ 213 4.2.6. Systèmes dynamiques pour l équation de Navier-Stokes obtenus à partir de la formulation continue.................. 214 4.2.6.1. Système dynamique basé sur le champ de vitesse instantané 214 4.2.6.2. Sytème dynamique basé sur le champ de vitesse fluctuant. 215 4.2.6.3. Traitement du terme de pression................ 217 4.2.6.4. Stabilisation correction du système dynamique....... 218 4.3. Quelques exemples............................. 220 4.3.1. Illustration sur une équation linéarisée............... 220 4.3.2. Illustration de l approche sur des problèmes non linéaires.... 224 4.3.2.1. Test sur une configuration monodimensionnelle....... 224 4.3.2.2. Ecoulement autour d un cylindre............... 227 4.3.3. Conclusion............................... 231 4.4. Vers une stratégie adaptative : enrichissement de la base........ 232 4.4.1. A partir de la formulation matricielle................ 232 4.4.2. Illustration de la méthode d enrichissement de la base....... 234 4.5. Application de la POD en interaction fluide structure.......... 241 4.5.1. Etat de l art de l utilisation de la POD en interaction fluide structure 241 4.5.2. Application de la réduction de modèle à l interaction fluide structure................................... 243 4.5.2.1. Illustration de la problématique................ 243 4.5.2.2. Solution proposée........................ 247 4.5.3. Système dynamique POD....................... 249 4.5.3.1. Méthode des domaines fictifs................. 249 4.5.3.2. Système dynamique POD.................... 257 4.5.3.3. Principe de l algorithme de résolution............. 258 4.5.4. Application............................... 259 4.5.4.1. Cas monodimensionnel..................... 259 4.5.4.2. Cavité annulaire......................... 262 4.5.4.3. Cylindre en oscillation forcée dans un canal......... 265 4.5.4.4. Cylindre en oscillation libre.................. 270

14 Interaction fluide structure 4.5.5. Système dynamique sur champ fluctuant.............. 274 4.6. Bibliographie................................. 275 Chapitre 5. Interaction fluide-structure pour les problèmes de dynamique rapide......................................... 281 Nicolas AQUELET et Mhamed SOULI 5.1. Introduction.................................. 281 5.2. Formulation ALE multiphases....................... 284 5.2.1. Forme forte............................... 286 5.2.2. Forme faible.............................. 288 5.2.3. Discrétisation en éléments finis.................... 291 5.2.4. Viscosité de choc........................... 293 5.2.5. Calcul de l énergie interne et de la pression............. 294 5.2.6. Méthodes d advection......................... 296 5.2.6.1. Schéma décentré......................... 297 5.2.6.2. Algorithme de Van Leer..................... 297 5.2.6.3. Advection de la quantité de mouvement............ 299 5.2.6.4. Calcul de l interface dans des problèmes multiphasiques.. 300 5.2.7. Conclusion............................... 301 5.3. Couplage Euler/Lagrange.......................... 301 5.3.1. Conditions d interaction fluide/structure.............. 302 5.3.2. Couplage par pénalité et multiplicateurs de Lagrange....... 303 5.3.3. Conclusion............................... 307 5.4. Applications numériques.......................... 307 5.4.1. Etude du piston............................. 307 5.4.1.1. Origine des oscillations..................... 308 5.4.1.2. Amortissement numérique................... 309 5.4.2. Entrée dans l eau d un dièdre à vitesse constante.......... 313 5.4.2.1. Théorie asymptotique...................... 313 5.4.2.2. Effet de l amortissement numérique.............. 316 5.4.2.3. Ajustement de la pénalité.................... 318 5.5. Conclusion.................................. 319 5.6. Bibliographie................................. 322

Préface La simulation numérique de problèmes multiphysiques a connu un essor constant ces dernières années. Ce développement est dû à la fois à l accroissement permanent des moyens informatiques et aux progrès considérables réalisés dans la modélisation, l analyse mathématique et numérique de nombreux problèmes en mécanique des fluides et en mécanique des solides. Ces progrès ont permis à leur tour de réaliser des simulations numériques convaincantes dans de multiples domaines autrefois inaccessibles. On pourrait presque dire que les développements numériques en mécanique des fluides et en mécanique des solides ont déjà atteint un haut niveau permettant de résoudre les problèmes posés par différentes applications industrielles, ce qui est loin d être le cas pour les méthodes numériques en interaction fluide/structure, où de nombreux problèmes restent encore ouverts, essentiellement par manque de méthodes numériques fiables et robustes pour la résolution de ces problèmes. Ces méthodes doivent être validées par confrontation avec des solutions analytiques ou avec des tests expérimentaux ; dans ce second cas, la simulation numérique permet d alléger le plan d expérience en ciblant les essais les plus pertinents et en identifiant les données primordiales à analyser. Depuis quelque temps, on voit apparaître un certain nombre de problèmes en mécanique des structures, qui se démarquent assez nettement des simulations habituelles où le chargement de la structure dû au fluide pouvait être approché par des modèles empiriques. Dans ces situations nouvelles, la prise en compte de l effet du fluide nécessite la résolution des équations de conservation dans le fluide (équations de Navier-Stokes), ce qui permet de déterminer le chargement hydrodynamique sur la structure. Actuellement de multiples problèmes de couplage fluide/structure nouveaux se posent par exemple en génie environnemental dans le cas du transport de produits toxiques fluides dans le cas de l écoulement autour des pales d éolienne ; dans l industrie automobile, on pourrait également citer les problèmes posés par la dynamique de 15

16 Interaction fluide structure gonflement des airbags, de ballottement de fluide dans les réservoirs ; dans le domaine aéronautique, le phénomène du flottement des ailes d avion implique un couplage entre la dynamique vibratoire d une structure avec l écoulement d une fluide. De façon plus générale dans l industrie de transport, les études de réduction de bruit à l intérieur des véhicules (automobiles, trains, avions, hélicoptères, etc.), nécessitent des analyses vibro-acoustiques; ceci a engendré des recherches spécifiques sur le comportement à moyennes et hautes fréquences dans les structures. Dans l industrie nucélaire, la rupture de tubes de générateurs de vapeur par vibration induite par les écoulements diphasiques eau/vapeur, ou par écoulements monophasiques à grand nombre de Reynolds, pose un nouveau problème de couplage fluide/structure. Des problèmes impliquant le couplage entre un écoulement de fluide et les déformations d une structure élastique se posent également dans le domaine de la recherche en biomécanique, par exemple dans le cas des déformations des vaisseaux sanguins en liaison avec le battement cardiaque. En industrie navale, l étude de la réponse des structures sous sollicitations hydrodynamiques reste un sujet délicat et encore peu maîtrisé : les questions de la pertinence du couplage et de des échelles de temps et d espaces caractéristiques de la dynamique couplée se posent de façon cruciale. Cet ouvrage ce propose de faire un état de l art relatif à différentes techniques numériques qu il est possible de mettre en œuvre pour réaliser des études industrielles de problèmes impliquant la prise en compte des effets de couplage fluide/structure. Certaines techniques (par exemple les méthodes de couplage éléments finis/éléments finis) sont maintenant bien maîtrisées et sont implémentées dans des codes de calcul à vocation industrielle ; dans ce cas, l exposé proposé permettra de donner des bases pour l ingénieur désireux de prendre en main un code de calcul. D autres techniques (par exemple les méthodes multidomaines ou les méthodes d ordre réduit) sont encore en cours de développement et restent d utilisation assez rare dans l industrie ; dans ce cas, l exposé proposé sera plus centré sur les principes de la méthode et sur l identification des difficultés qu il reste à surmonter avant d envisager une généralisation à l échelle industrielle. L ouvrage est ainsi structuré en cinq chapitres. Dans le chapitre 1, on s intéresse aux problèmes de l interaction dynamique entre une structure et un fluide au repos, en se limitant dans ce type de problème à une description du mouvement du fluide et de la structure basée sur la théorie des vibrations ; on considère ainsi les petites vibrations de la structure, et les fluctuations de la pression du fluide autour d un état d équilibre stable. La formalisation des équations est conduite dans un cadre linéaire, pour lequel les notions de modes propres de la structure, du fluide ou de l ensemble fluide structure permettent de décrire la dynamique du système considéré. L objet de ce chapitre est donc d exposer la technique éléments finis structure, éléments finis fluide permettant de calculer les modes propres du système couplé fluide structure.

Préface 17 Dans le chapitre 2, les principales méthodes numériques utilisées en couplage fluide structure sont exposées, méthode des volumes finis, méthodes des éléments finis. Un état d art des avancées numériques récentes pour le traitement des problèmes IFS est dressé. Après une revue des principes fondamentaux de la mécanique des fluides et des structures et des méthodes numériques associées, les différents algorithmes et schémas de couplages, méthodes ALE, traitement numérique des interfaces et couplage de codes fluide et structure sont abordés. Un certain nombre de problèmes physiques restent difficiles à comprendre à cause de couplages du comportement du fluide et de la structure. L énergie se transfère de manière complexe d un système à l autre. Ces échanges d énergie entre les systèmes peuvent parfois conduire à des instabilités qu il convient de comprendre puis de maîtriser. La modélisation de ces échanges et transformations d énergie se fait soit par des approches «modales», soit par des approches éléments finis détaillés. Dans ce chapitre, les schémas numériques tenant compte de la minimisation des erreurs sur les échanges d énergie entre le fluide et la structure sont décrits et appliqués pour des cas académiques et industriels. Dans le chapitre 3, l approche monolithique pour les problèmes multiphysiques et multi-échelles est adoptée. Cette méthode est utilisée pour étudier les écoulements de fluide complexes, faisant intervenir les couplages forts entre les différents matériaux et composantes du problème, ainsi que les différentes interactions liquide-solide, gaz-solide, et liquide-liquide. On retrouve l application de ces méthodes dans les problèmes de remplissage de moules par des fluides complexes en prenant compte des mouvements et orientation des charges fibres longues et des changements de phase. Le principe est de travailler sur un maillage eulerien fixe qui englobe toutes les composantes et les sous-domaines du problème. En utilisant une formulation eulerienne, pour un problème multimateriaux, les interfaces entre les différents matériaux sont transportées ou advectés par une équation de transport type level-set, et ne sont connus qu implicitement à travers les valeurs de la fonction caractéristique définie sur tout le domaine. Il est envisageable de construire des modèles d ordre réduit pour les problèmes d interaction fluide/structure en s appuyant sur les techniques de réduction développées dans chacun des deux domaines (vibration des structures et écoulement du fluide). La construction de ces modèles réduits permettra d envisager le développement du calcul en temps réel. Il permet aussi l étude des phénomènes physiques des instabilités de couplage qui sont souvent difficiles à prédire. Le chapitre 4 traite la réduction de modèles en interaction fluide structure via la décomposition orthogonale aux valeurs propres, connu sous le nom de POD (Proper Orthogonal Decomposition). L intérêt pour la réduction de modèles s est accru ces dernières années, dû essentiellement au fait que ces modèles sont plus simples à utiliser pour des études paramétriques ou le contrôle actif, voire pour le calcul en temps réel. La procédure consiste à remplacer le modèle continu initial, impliquant un problème aux dérivées partielles, par un modèle discret, basé sur système d équations différentielles ordinaires.

18 Interaction fluide structure Le chapitre 5 porte sur les problèmes d interaction fluide/structure en dynamique rapide. Le phénomène de dynamique rapide regroupe des phénomènes physiques en grandes déformations et de courte durée. Ces problèmes sont généralement résolus par des méthodes explicites. Le déploiement d un airbag, le tossage d un navire sont autant d exemples d interaction fluide structure dont la durée est de l ordre de quelques millisecondes. La première partie de ce chapitre présente les équations mathématiques décrivant les lois de conservation (masse, quantité de mouvement et énergie), ainsi que les méthodes explicites pour la résolution temporelle, d un point de vue spatial une méthode éléments finis est décrite pour les équations Lagrangiennes, et une méthode de volumes finis (méthodes de flux) pour les équations de transport. Dans la deuxième partie, la méthode de couplage, méthode de pénalité, est décrite. La précision de la méthode dépend du choix de la raideur de pénalité. Pour pallier les effets d oscillations générés par des phénomènes numériques de grande fréquence, un amortissement est alors ajouté à la formulation numérique du couplage. Cet ouvrage est le fruit d une collaboration entre les différents membres du Groupe de Recherche «Interactions Fluide-Structure» (GdR IFS), qu ils soient issus du monde académique ou du monde industriel, et des travaux qui ont été présentés lors de rencontres scientifiques, de journées thématiques et de l école d été du GdR IFS. Les éditeurs et les auteurs remercient l ensemble des participants du GdR IFS, qui sont donc les contributeurs directs ou indirects de cet ouvrage. Jean-François SIGRIST M hamed SOULI