LE TRANSISTOR Symboles. Collecteur. Collecteur. Base. Base Principe de connexion. Rc Sortie. Collecteur

Documents pareils
Le transistor bipolaire

Université Mohammed Khidher Biskra A.U.: 2014/2015

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

La polarisation des transistors

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Cours 9. Régimes du transistor MOS

Donner les limites de validité de la relation obtenue.

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Institut Supérieur des Etudes Technologiques de Nabeul

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Convertisseurs statiques d'énergie électrique

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

ELECTRONIQUE ANALOGIQUE

Projet de synthèse de l'électronique analogique : réalisation d'une balance à jauges de contrainte

Circuits RL et RC. Chapitre Inductance

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

Le transistor bipolaire. Page N 6 Tranlin

CHAPITRE IX : Les appareils de mesures électriques

Objet : Alimentation pour ordinateur portable et autre. Alimentation Schéma 1

Les transistors à effet de champ.

Mesure de Salinité Réalisation d'un conductimètre

SOMMAIRE. B5.1 Première approche

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

CHAPITRE VIII : Les circuits avec résistances ohmiques

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

LES MONTAGES D AMPLIFICATION: ANALYSE ET SYNTHESE

Mesure. Multimètre écologique J2. Réf : Français p 1. Version : 0110

Chapitre 1 Régime transitoire dans les systèmes physiques

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

Chapitre 4 : Le transistor Bipolaire

I- Définitions des signaux.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Les transistors à effet de champ

1 Systèmes triphasés symétriques

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Études et Réalisation Génie Électrique

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

2.1 Le point mémoire statique Le point mémoire statique est fondé sur le bistable, dessiné de manière différente en Figure 1.

CONVERTISSEURS NA ET AN

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

Recopieur de position Type 4748

Traitement de texte : Quelques rappels de quelques notions de base

ELEC2753 Electrotechnique examen du 11/06/2012

Conception. de systèmes électroniques. analogiques

Vous avez dit... LED??? DOCLED V2 Page 1 / 14

Projet Electronique Serrure Codée GROUPE PROJET : PUAGNOL Jean Paul AITOUAKLI Yazid HU Shiqi CHANVOEDOU Nathanaël

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Dossier Logique câblée pneumatique

I GENERALITES SUR LES MESURES

AP1.1 : Montages électroniques élémentaires. Électricité et électronique

Génie Industriel et Maintenance

M HAMED EL GADDAB & MONGI SLIM

- I - Fonctionnement d'un détecteur γ de scintillation

Jouve, 18, rue Saint-Denis, PARIS

MESURE DE LA PUISSANCE

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

Notice d'utilisation Afficheur multifonctions et système d'évaluation FX 360. Mode/Enter

Manipulation N 6 : La Transposition de fréquence : Mélangeur micro-ondes

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Références pour la commande

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Numéro de publication: Al. Int. CIA H03K 17/12, H03K 17/08. Demandeur: FERRAZ Societe Anonyme

LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

Entraînement, consolidation, structuration... Que mettre derrière ces expressions?

Export vers le format WAV dans ArtemiS SUITE

Driver de moteurs pas-à-pas DM432C

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

Electrotechnique. Fabrice Sincère ; version

UGVL : HOMOLOGATION PS ZAC du bois Chaland 6 rue des Pyrénées LISES EVRY Cedex FRANCE Tel Fax

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Electrocinétique Livret élève

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (43) Date de publication: Bulletin 2011/26

Manuel SAFE-O-TRONIC access Identification électronique et système de verrouillage par NIP Item No

Support Technique : -Fax: (32) Site Web:

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Nos félicitations, Vous avez choisi pour un produit de qualité et nous sommes convaincus que vous avez faites le choix le plus sûr.

Décharge électrostatique

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Activités pour la maternelle PS MS GS

INDEX Fonctionnement Schéma de câblage... 24

Vannes PN16 progressives avec corps en acier inox et

Semi-conducteurs. 1 Montage expérimental. Expérience n 29

TD1 Signaux, énergie et puissance, signaux aléatoires

Uniformiser la mise en forme du document. Accélère les mises à jour. Permets de générer des tables de matières automatiquement.

Mesures et incertitudes

modélisation solide et dessin technique

1. PRESENTATION DU PROJET

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

MANUEL TBI - STARBOARD

Oscilloscope actif de précision CONCEPT 4000M

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

Série D65/D75/D72 Afficheurs digitaux modulaires

Transcription:

L TRANSISTOR 1. Introduction. Le transistor est né en 1948, ses auteurs ont reçu le prix Nobel. On comprend donc quelle révolution il a représenté en électronique. n effet c'est le premier composant électronique réalisé à l'aide d'un semi-conducteur. Leurs prédécesseurs, les tubes à vide, encombrants et mal commodes étaient désormais remplacés par un petit objet à trois pattes. La taille et le poids des appareils ont considérablement diminué, ils devenaient portables. Les progrès de la technique ont permis de procéder à l'intégration de plusieurs centaines de transistors sur un même support. On arrive à l'électronique que l'on connaît actuellement. Le transistor est le point de départ de toute l'électronique moderne. 2. Présentation. Le transistor est un composant à semi-conducteur qui comporte trois électrodes : la base, le collecteur, l'émetteur. Le collecteur et l'émetteur constituent le circuit principal, la base et l'émetteur constituent le circuit de commande. Il existe deux sortes de transistors : le transistor PNP et le transistor NPN. es deux types de transistors fonctionnent de façon similaire, seules les polarités des courants et des tensions diffèrent. 2.1. Symboles ollecteur ollecteur ase ase metteur metteur Transistor NPN Transistor PNP 2.2. Principe de connexion Vb ollecteur ase ntrée Sortie metteur Le transistor est toujours alimenté par deux sources. est toujours un générateur de tension continue, Vb peut être une tension continue, une tension sinusoïdale avec valeur moyenne non nulle etc. ircuit de base ircuit de collecteur Le Transistor Page 1 sur 7 12/03/04

3. Étude simplifiée du fonctionnement. 3.1. Le robinet de courant. ase ommande ollecteur Robinet metteur On peut considérer le transistor comme un robinet 1 capable de régler un courant. e réglage est commandé par un courant. Grâce à cette modélisation, nous pouvons expliquer, de manière simplifiée, le fonctionnement des divers montages utilisant des transistors. 3.2. Le robinet est complètement ouvert ou complètement fermé ette utilisation porte le nom d'interface. Le transistor est employé dans son mode de commutation 5 V Relais Porte logique 12 V e schéma montre une utilisation classique d'un transistor. Le problème à résoudre est le suivant : La porte logique 2 doit commander un relais mais elle n'en est pas capable. n effet le relais a besoin d'une tension de 12 V pour fonctionner. La porte, elle, ne peut délivrer que 5V. asse-tête. La solution est d'employer un transistor utilisé comme un robinet complètement ouvert ou complètement fermé. La porte logique commande l'ouverture ou la fermeture du robinet. Dans ce cas le transistor peut être modélisé par un simple interrupteur commandé par un courant. L'interrupteur équivalent prend place entre le collecteur et l'émetteur. La commande est dissociée de l'interrupteur, il faut consulter le paragraphe "alcul de la résistance 3.3. Qu'est-ce qui fait fermer l'interrupteur équivalent? La présence d'un courant d'intensité suffisante ferme l'interrupteur équivalent. Tout le problème consiste à savoir quelle est la valeur suffisante de l'intensité. 3.4. alcul de la résistance Le gros intérêt du transistor est que le courant de base,, est beaucoup plus petit que le courant de collecteur. Le rapport entre les deux intensités est compris entre 100 et 300 pour les transistors que nous utilisons. Pour simplifier nous prendrons la valeur 150 dans tous les cas. Nous allons considérer que la portion de transistor comprise entre la base et l'émetteur est équivalente à un fil pour l'instant. 1 e modèle est utilisé par l'école Sup. lec 2 La sortie de la porte logique est assimilé à un générateur Le Transistor Page 2 sur 7 12/03/04

3.5. Premier modèle du transistor utilisé comme interface Voici le plus simple des modèles, il peut être utilisé pour analyser un montage existant ou pour concevoir rapidement un montage de TP. = 0 > /150 Le modèle est volontairement très simplifié. La seule chose sûre dans le calcul du courant c'est qu'il doit être supérieur à /150. Le concepteur doit faire intervenir son expérience. 3.6. Deuxième modèle du transistor utilisé comme interface > /150 = 0 vd pour un transistor PNP ce modèle, qui peut être utilisé dans la plupart des cas, fait intervenir un générateur de tension dans le circuit entre la base et l'émetteur. e générateur de tension n'existe que lorsque le courant de base est présent. Le calcul du courant de base se fait de la même manière que précédemment. La tension vd est égale à 0,7 V pour un transistor NPN et égale à 0,7 V 3.7. Troisième modèle du transistor utilisé comme interface = 0 > /150 vd vce cette fois on voit apparaître une tension entre le collecteur et l'émetteur. ette tension est à peu près constante tant que le transistor est équivalent à un interrupteur. Dans ce cas on parle de vce sat c'est à dire valeur de saturation 3.8. Vocabulaire Lorsque le transistor est assimilable à un interrupteur on dit qu'il fonctionne en commutation. Si l'interrupteur est fermé, on dit que le transistor est saturé. Lorsque l'interrupteur ouvert on dit que le transistor est bloqué. e vocabulaire est consacré par l'usage mais il est maladroit. n effet, on peut penser que le caractère saturé est intrinsèque au transistor sans que n'intervienne le reste du circuit. Le TP suivant essaie de remettre de l'ordre dans le vocabulaire. 3.8.1. TP Pour réaliser la manipulation ci-après, vous emploierez les valeurs suivantes qui "marchent" bien. Le schéma est celui du paragraphe 2.2. Résistance de collecteur = 1 kω puis 500 Ω, = 33 kω. La tension d'alimentation 15 V, la tension de base 5 V. Vérifiez qu on peut assimiler le transistor, entre le collecteur et l émetteur, à un interrupteur 3 ouvert ou fermé. Si ce n'est pas le cas, il faut me le signaler Mesurez l'intensité du courant qui traverse. Avec = 1 kω, le transistor est équivalent à un interrupteur. Que se passe-t-il avec = 500 Ω? On peut l'expliquer en employant la modélisation par le robinet de courant. Faites-le. Vérifiez que le modèle, un conducteur, utilisé pour le calcul de est bon. Vous devez vous demander comment vérifier ce modèle, trouver le nouveau modèle. 3 Voir les feuilles sur la modélisation Le Transistor Page 3 sur 7 12/03/04

3.9. Le régime de commutation (ou régime tout ou rien) 'est le fonctionnement décrit dans les paragraphes précédents. Il conduit à un modèle équivalent très simple. La difficulté étant de reconnaître, dans un montage, un tel régime de fonctionnement du transistor. Les composants qui entourent le transistor peuvent donner une indication. Le transistor associé à un relais ou à une LD fonctionne en tout ou rien. 'est également le cas d'un transistor destiné à produire un niveau logique. Si les calculs sont possibles, la présence d'une tension nulle 4 aux bornes d'un transistor traversé par un courant indique de façon indéniable le fonctionnement tout ou rien. 4. Le régime linéaire 4.1. Le transistor : un robinet de courant unidirectionnel Nous avons vu que le transistor peut être assimilé par un robinet de courant. Il faut ajouter que ce robinet est unidirectionnel. ela amène une difficulté lorsqu'il s'agit de réaliser un amplificateur de signaux alternatifs. Nous allons voir les modélisations et les montages classiques. 4.2. Étude qualitative par le modèle du robinet ib Les courants et ont même allure car ils sont proportionnels. Nous allons considérer des courants et de forme sinusoïdale sans être négatifs. Questions : Donnez la relation exprimant la valeur instantanée de en fonction de, et. Tracez, dans un repère (, t), l'allure de Tracez, dans repère (, t), l'allure de Que se passerait-il si était négatif par instants? 4.3. La polarisation L'exercice précédent montre que le transistor peut travailler avec des grandeurs variables à conditions qu'elles ne soient pas négatives. onsidérons une grandeur sinusoïdale toujours positive. L'équation d'une telle grandeur est de la forme : y = Y0 + a.sin( ω.t) avec Y0 > a y La grandeur Y 0 porte le nom de valeur moyenne ou de composante continue. Y0 le courant est de même forme t Questions : Pour comprendre le rôle de la valeur moyenne dans le fonctionnement du transistor, nous allons faire en sorte que le courant soit de la forme : = o + i sin(ω.t) Avec le schéma précédent, donnez l'expression de en mettant en lumière les deux composantes, celle due à la partie sinusoïdale et celle due à la valeur moyenne. La partie due à la valeur moyenne porte le nom de polarisation. Quel inconvénient majeur la polarisation évite-t-elle? n calculant la puissance dissipée par le transistor à cause de la valeur moyenne, exprimez le revers de la médaille de la polarisation. 4 ou très faible Le Transistor Page 4 sur 7 12/03/04

4.4. Les condensateurs de découplage ic 0 2 1 vce fig. 1 fig. 2 Remarquez la convention d'écriture : la polarisation est marquée par l'indice 0 et le signal à traiter par une minuscule. La réunion des deux parties est indiquée par une majuscule. La figure 1 montre le circuit que nous avons étudié dans les paragraphes précédents. Le courant est constitué de deux composantes, la polarisation et le signal à traiter. De même pour le courant. On remarque que le signal ic doit traverser le générateur de tension continue. Or ce signal est plus faible que la polarisation, il serait annihilé par le générateur. Il faut offrir, à ic, un chemin qui évite le générateur. 'est le rôle du condensateur 2. Dans l'exercice du paragraphe 4.2 vous avez pu voir que la tension est sinusoïdale mais pas alternative. Le condensateur 1 en association avec le circuit aval, non représenté ici, constitue un filtre qui élimine la composante continue. Nous aurons l'occasion de parler de la génération du courant. i, au contraire, il faut mélanger le signal à la polarisation. 5. Les modèles équivalents habituels Rappelons-nous qu'un modèle équivalent ne traduit jamais la réalité mais est limité à un domaine de validité. Nous trouverons donc de nombreux modèles selon le degré de fidélité que nous souhaitons. Voyons le modèle habituel. 5.1. Le modèle pour le transistor NPN ase ollecteur Vb = β. metteur Vbe rb Transistor NPN Vb = 0,7 V On remarque que l'espace ase Émetteur est équivalent à une diode, la résistance rb est souvent négligée. ntre le collecteur et l'émetteur on trouve un générateur de courant commandé par un courant. Le courant est considéré comme proportionnel au courant. ien entendu cette proportionnalité est limitée au domaine de validité. J'attire votre attention sur le fait que la tension est fixée par le reste du circuit et non pas par le transistor. On trouve l'origine de terme linéaire pour qualifier ce régime de fonctionnement. Le transistor est régit par des équations linéaires. Le Transistor Page 5 sur 7 12/03/04

5.2. Domaine de validité e modèle est invalide en régime tout ou rien. De plus, le passage du régime tout ou rien au régime linéaire ne se fait pas franchement. e modèle devient valable lorsque dépasse quelques dixièmes de volts. Malheureusement le coefficient β n'est pas constant, il évolue en fonction de. n toute rigueur il faudrait limiter le domaine de validité à une plage déterminée de. Si on trouve une différence entre des calculs et une expérimentation, il faut penser à incriminer le modèle. 5.3. Le générateur commandé Nous venons de voir que le transistor, en régime linéaire, est équivalent à un générateur de courant commandé par un courant. On peut inventer d'autres types de générateurs commandés : Générateur de tension commandé par une tension Générateur de tension commandé par un courant Générateur de courant commandé par une tension es générateurs sont utilisés pour la modélisation de divers composants électroniques. Les générateurs commandés bénéficient d'un traitement spécial dans l'application des théorèmes généraux de l'électricité. Il ne faut pas éteindre un tel générateur lors de l'application du théorème de Thévenin ou du théorème de Norton. 5.4. xercice d'application Dans cet exercice, vous allez voir le travail avec le générateur commandé, l'incidence de la polarisation et l'amplification en tension du signal alternatif. l'équation du signal à traiter est : R Ve = Ve0 + v.sin(ω.t) Nous cherchons l'expression de la tension en faisant apparaître ses deux composantes. Ve Questions : Par quel moyen réalise-t-on la polarisation? À quoi sert le condensateur? Dessinez un schéma dans lequel le transistor est remplacé par son modèle équivalent. (r =0) Retrouvez l'expression de la tension, séparez la polarisation du signal amplifié. Quel est le coefficient d'amplification de l'amplificateur ainsi réalisé? Interprétez le caractère négatif de ce coefficient. Dessinez l'allure du signal à traiter et, en correspondance, le signal alternatif de sortie. Aide : Le point de départ = R. β. Le Transistor Page 6 sur 7 12/03/04

R R b Le point d'arrivée = Vbe β Ve0 β.v.sin( ω.t ) 5.5. Le modèle pour le transistor PNP ase ollecteur metteur Vbe Vb rb = β. Vous pouvez constater que ce modèle est identique 5 à celui du transistor NPN. La seule différence visible est le signe de Vb. Il suffit de se rappeler un seul modèle pour les deux types de transistors et le signe de Vb pour chacun d'eux. Transistor PNP Vb = - 0,7 V 5.6. Application Ra Re Montrez que ce montage est un générateur de courant constant. Le résistor R, quelle que soit sa résistance, est traversé par un courant d'intensité constante. On peut négliger rb devant les autres résistances Y a-t-il une limite supérieure à la résistance R? Aide : cet exercice peut se résoudre de deux façons R n appliquant le théorème de Thévenin au diviseur de potentiel formé par, Ra,, c'est la méthode rigoureuse n négligeant le courant devant le courant qui passe dans, c'est la méthode pratique. e montage est classique, parfois Ra est remplacée par une diode Zéner ce qui apporte une plus grande stabilité au courant. 5 vous connaissez peut-être un autre modèle dans lequel les flèches sont inversées. Je préfère celui-ci. ien sûr les deux modèles conduisent au même résultat. Le Transistor Page 7 sur 7 12/03/04