Etude statique et dynamique d une pale pour éolienne à axe horizontal Static and dynamic study of a blade for wind mill with horizontal axis

Documents pareils
DISQUE DUR. Figure 1 Disque dur ouvert

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Chapitre 0 Introduction à la cinématique

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Analyse statique d une pièce

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

Chapitre 2 : Caractéristiques du mouvement d un solide

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Département de Génie Civil

Estimation de potentiel éolien

Exemples de dynamique sur base modale

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

Oscillations libres des systèmes à deux degrés de liberté

Vis à billes de précision à filets rectifiés

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

I - Quelques propriétés des étoiles à neutrons

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS

1 Problème 1 : L avion solaire autonome (durée 1h)

Cours de Résistance des Matériaux (RDM)

TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux

Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers

Rupture et plasticité

Premier principe de la thermodynamique - conservation de l énergie

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

STRUCTURE D UN AVION

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Essais de charge sur plaque

Le point de vue du contrôleur technique

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Système multicouche raccords à sertir et tubes

STANDARD DE CONSTRUCTION CONDUITS, ATTACHES ET RACCORDS DE

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Cours de résistance des matériaux

Problèmes sur le chapitre 5

1 Mise en application

Calcul intégral élémentaire en plusieurs variables

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Exemple d application du EN : Poutre fléchie avec section tubulaire reconstituée

Prise en compte de la flexibilité des cas de charges dimensionnants en optimisation de structure

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

TP 7 : oscillateur de torsion

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

RELAIS STATIQUE. Tension commutée

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70

Guide de conception. Sécurité incendie des halls industriels

Le transistor bipolaire

Cours de Mécanique du point matériel

Yves Debard. Université du Mans Master Modélisation Numérique et Réalité Virtuelle.

Le turbo met les gaz. Les turbines en équation

Réalisation et modélisation de rubans déployables pour application spatiale

ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

SSLS116 - Chargement membranaire d une plaque excentrée

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

Test : principe fondamental de la dynamique et aspect énergétique

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

MESURE DE LA TEMPERATURE

Echafaudages Caractéristiques générales

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Systèmes multicouches Alpex-duo - Turatec

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Version default Titre : Opérateur MECA_STATIQUE Date : 17/10/2012 Page : 1/5 Responsable : Jacques PELLET Clé : U4.51.

Commande et gestion décentralisées de l énergie d un parc éolien à base d aérogénérateurs asynchrones à double alimentation

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Michel Henry Nicolas Delorme

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 11 Bilans thermiques

FLUIDES EN ÉCOULEMENT Méthodes et modèles

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Guide Technique Pour la Charpente de Mur. LSL et LVL SolidStart LP

Guide pour l analyse de l existant technique. Partie 3

INSTRUCTIONS POSE ET FINITION DES PANNEAUX DE GYPSE GA

Les très grandes souffleries de l ONERA 2014

Fiche technique Ligne de vie SECURIFIL industrie

DYNAMIQUE DE FORMATION DES ÉTOILES

É L É M E N T S D O S S A T U R E L É G E R S EN ACIER

SEO 200. Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF APPLICATIONS PEDAGOGIQUES

GEV MP C 200 kw 225 kw 250 kw 275 kw. L éolien visionnaire

Voyez la réponse à cette question dans ce chapitre.

FICHE TECHNIQUE. Domaines d applications. Stockage / Mise en oeuvre. Caractéristiques physiques et techniques STOCKAGE MISE EN OEUVRE

RELEVE D ETAT DU PONT DES GRANDS-CRÊTS. On a procédé une auscultation visuelle entre le 23 et le 29 mars 2007.

Une approche statique quasi-périodique de la capacité portante des groupes de micropieux

Sommaire Table des matières

Transcription:

Corrections Etude statique et dynamique d une pale pour éolienne à axe horizontal Static and dynamic study of a blade for wind mill with horizontal axis HAMDI H. 1*, MRAD C. *, NASRI R. 3* 1 : Institut Supérieur des Etudes Technologiques de Radès, 3 : Ecole Nationale d Ingénieurs de Tunis * : Unité de Recherche Génie des Matériaux Mail : Hedi.Hamdi@isetr.rnu.tn RESUME : Dans ce travail on présente une démarche de calcul des pales pour éolienne à axe horizontal. Une pale doit fournir le rendement maximal et résister aux efforts aérodynamiques répartis sur sa longueur, qui sont fonctions de ses caractéristiques géométriques et de la vitesse du vent. Pour cela on a écrit les relations qui déterminent ces efforts en fonction de la vitesse d écoulement du vent puis on les a intégrées dans les lois de mécanique de la structure pour aboutir aux équations de mouvement de la pale. On a appliqué cette démarche à une pale vrillée de longueur 1,9 mètre, construite par une seule couche en tôle d aluminium emboutie et de profil de type NACA 441. Ce profil donne le meilleur rendement aérodynamique et la pale est un élément d une hélice tripale pour éolienne de puissance maximale 5 kw. Enfin on a visualisé ses déformations puis vérifié sa tenue en service. MOTS CLES : éolienne, hélice, pale, vent, rendement, efforts, déformations. I- INTRODUCTION : L énergie renouvelable des éoliennes devient aujourd hui non négligeable avec l augmentation du débit du vent dans les régions terrestres ou offshore notamment au Cap Bon de la Tunisie où l énergie moyenne annuelle est comprise entre 1,8 et 3,4 GJ/m de la surface éolienne installée [1]. Les éoliennes à axe vertical Darrieus et Savonius ou à axe horizontal sont des systèmes de conversion d énergie aérodynamique en énergie électrique. L énergie aérodynamique est récupérée en plaçant contre le sens d écoulement du vent une hélice, à pales multiples, montée sur un rotor à l entrée d un multiplicateur de vitesse qui entraine à son tour un générateur de courant branché, par l intermédiaire d un circuit électrique avec des accumulateurs. Un système de freinage asservi, sert à ralentir la rotation du rotor pour protéger le générateur électrique en cas d une rafale de vent. L ensemble est monté dans la nacelle pivotante, autour de la matrice implantée verticalement au sol, par un système de gouvernail. II- EFFORTS AERODYNAMIQUES SUR LA PALE : Selon la théorie de Betz [], une pale ne peut avoir un rendement aérodynamique supérieur à 59% qui est appelé : limite de Betz. Aujourd'hui dans la pratique on arrive tout juste à avoir un rendement de 50% pour les dernières éoliennes et donnant le minimum d interférence d écoulement à travers les pales. La puissance mécanique récoltée par l hélice croit surtout avec le diamètre de la surface balayée par les pales comme le montre la figure 1. Choix du profil de la pale donnant le rendement maximal Conception de la pale et choix des matériaux Vérification de sa résistance aux efforts aérodynamiques Essai pratique de la pale Fig. 1 : Relation entre le diamètre de l hélice et sa puissance [3]. 1/7 Pale validée Fig. : Démarche de validation d une pale.

L organigramme de la figure montre la démarche adoptée pour valider une pale d éolienne et par conséquence garantir le meilleur rendement en assurant sa résistance aux efforts aérodynamiques. Les caractéristiques géométriques d un profil de pale sont: la corde c, les hauteurs d extrados et de l intrados (voir exemple sur la figure 7) et l angle de vrillage θ. Le choix des profils, leur répartition, l évolution de la corde et l angle de vrillage en fonction de l envergure doivent être soigneusement étudiés afin d optimiser la conversion d énergie. Les efforts aérodynamiques de poussée P et de trainée T, exercés au centre de poussée C, dépendent des caractéristiques géométriques du profil de la pale et de la vitesse du vent V [4]. y dp dr U W V 1 i z0 c G x C dt Fig. 3 : Hélice d éolienne [5]. Fig. 4 : Vitesses et efforts aérodynamiques. G est le centre d inertie de la section de la pale et (O, x 0, y 0, z 0 ) le repère fixe lié à la nacelle supposée immobile par rapport à la matrice de l éolienne. La relation entre la vitesse d impact V 1 et du vent V en 1 a amont de l hélice est donnée par [6] comme suit : V1 V, (1) où a est le coefficient d interférence axial compris entre 0 et 1. La vitesse induite U de l air par rotation de la pale est donnée par : U (1 a') r, () où a est le coefficient d interférence radial compris entre 0 et1 et r le rayon de l élément de pale (voir figure 3). Ils en résultent par sommation la vitesse relative W d écoulement de l air par rapport à la pale (voir figure 4). On calcule l angle d incidence i en fonction de θ et des deux vitesses V 1 et U à partir de la même figure par : i arctg( U V1 ). (3) En négligeant les effets de sillage (a =0), la théorie d élément de pale [6] donne la variation de la force de trainée dt, exercée sur un élément infinitésimal de la pale d épaisseur dr et situé à une distance 1 nc V r de l axe du rotor, par : dt a, 4 dr (1 a ) r (4) où n est le nombre des pales dans l hélice et ρ a la masse volumique de l air supposé incompressible. En supposant que la résultante des efforts aérodynamiques R est perpendiculaire à la corde c de la section, on écrit : dp dt tg( ). (5) Le coefficient de puissance C p d une hélice d éolienne, en cas d écoulement permanent et isotherme Puissance récoltée 1 de l air, est définit par : C p (1 a) (1- a). (6) Puissance disponible Le rapport de vitesse λ est définit par : R, (7) V où R est la longueur de la pale et Ω sa vitesse de rotation angulaire. Ce rapport dépend essentiellement du coefficient de puissance C p de l éolienne selon le tableau 1 issue de l expérimentation [7]. Ce tableau permet d estimer la valeur de la vitesse de rotation angulaire de l hélice à une vitesse donnée d écoulement du vent. Tableau 1 : Valeurs des coefficients λ et Cp pour une éolienne rapide [7]. λ 0 1.3.1.7 3.4 5 5.8 6.3 C p 0 0.1 0. 0.3 0.4 0.3 0. 0.1 /7

III- EQUATIONS DE MOUVEMENT DE LA PALE : On a utilisé la méthode des éléments finis pour aboutir aux équations de mouvement de la pale. Pour cela on l assimile à une poutre rectiligne de section droite variable, de poids négligeable, soumise aux efforts aérodynamiques répartis sur sa longueur et encastrée à son extrémité sur le moyeu du rotor. Cette pale est décomposée en dix éléments de sections différentes comme le montre la figure 6 : y0 y x 8 9 10 3 4 5 6 7 Ωt O z 1 x0 Fig. 5 : Pale fractionnée en dix éléments. Fig. 6 : Pale discrétisée par éléments finis. Le vecteur de déplacements nodaux q e est exprimé dans le repère lié à la pale (O, x, y, z) par : q e T ( u, v, w,,,, u, v, w,,, ). i i i i i i j j j j j j Les indices i et j sont liés respectivement à l origine et l extrémité de chaque élément fini. On note les déplacements du centre d inertie G relatifs aux axes respectifs x, y et z : u, v et w et les angles de rotation de la section autour des axes respectifs x, y et z : α, β et γ. Les deux fonctions d interpolation utilisées, dans l application des lois de comportement, sont linéaires isoparamétriques centrées [8] : N 1 =(1-s)/ et N =(1+s)/ (8) s : variable comprise entre -1 et 1. i-1 i j M -1 0 M 1 Fig. 7 : Maillage de la poutre. On suppose que le matériau de la pale est élastique linéaire homogène et isotrope de masse volumique ρ, de module d Young E, et de module de cisaillement G, chaque élément fini est de section S constante (voir figure 6), de longueur l et de moments quadratiques relatifs aux axes respectifs Gx, Gy et Gz : Ix, Iy et Iz. En tenant compte du cisaillement transverse (poutre épaisse), en cas de petites déformations à température constante et en négligeant l effet de gauchissement des sections, on a déterminé la matrice élémentaire de rigidité K e relatif à l élément fini numéro e : K e ES / l 0 0 0 0 0 ES / l 0 0 0 0 0 0 GS / l 0 0 0 GS / 0 GS / l 0 0 0 GS / 0 0 GS / l 0 GS / 0 0 0 GS / l 0 GS / 0 0 0 0 GIx / l 0 0 0 0 0 GIx / l 0 0 0 0 GS / 0 EIy / l lgs /3 0 0 0 GS / 0 lgs /6 EIy / l 0 0 GS / 0 0 0 EIz / l lgs /3 0 GS / 0 0 0 lgs /6 EIz / l ES / l 0 0 0 0 0 ES / l 0 0 0 0 0 0 GS / l 0 0 0 GS / 0 GS / l 0 0 0 GS / 0 0 GS / l 0 GS / 0 0 0 GS / l 0 GS / 0 0 0 0 GIx / l 0 0 0 0 0 GIx / l 0 0 0 0 GS / 0 lgs /6 EIy / l 0 0 0 GS / 0 EIy / l lgs /3 0 0 GS / 0 0 0 lgs /6 EIz / l 0 GS / 0 0 0 EIz / l lgs /3 s x 3/7

L étude dynamique d un élément fini de la poutre donne la matrice élémentaire de masse M e : M e S/3 0 0 0 0 0 S/6 0 0 0 0 0 0 S/3 0 0 0 0 0 S/6 0 0 0 0 0 0 S/3 0 0 0 0 0 S/6 0 0 0 0 0 0 Ix /3 0 0 0 0 0 Ix /6 0 0 0 0 0 0 Iy /3 Iyz /3 0 0 0 0 Iy /6 Iyz /6 0 0 0 0 Iyz /3 Iz /3 0 0 0 0 Iyz /6 Iz /6 l, S/6 0 0 0 0 0 S/3 0 0 0 0 0 0 S/6 0 0 0 0 0 S/3 0 0 0 0 0 0 S/6 0 0 0 0 0 S/3 0 0 0 0 0 0 Ix /6 0 0 0 0 0 Ix /3 0 0 0 0 0 0 Iy / 6 Iyz /6 0 0 0 0 Iy /3 Iyz /3 0 0 0 0 Iyz /6 Iz /6 0 0 0 0 Iyz /3 Iz /3 la matrice élémentaire de couplage gyroscopique C e : C e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I /3 Iyz /3 0 0 0 0 I /6 Iyz /3 0 0 0 I/3 0 0 0 0 0 I/6 0 0 0 0 0 Iyz /3 0 0 0 0 0 Iyz /3 0 0 l, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I /6 Iyz /3 0 0 0 0 I /3 Iyz /3 0 0 0 I/6 0 0 0 0 0 I/3 0 0 0 0 0 Iyz /3 0 0 0 0 0 Iyz /3 0 0 Ixy, Ixz et Iyz sont des produits d inertie et I est définit comme suit : I Ix Iy Iz. (9) En négligeant le moment de torsion induit par les efforts aérodynamiques autour de la pale ceci en supposant que les contres G et C(voir figure 4) sont confondus, le vecteur force généralisée F e en phase de rotation uniforme de la pale est donné ci-dessous. Ce vecteur est composé de la force centrifuge de l élément fini de direction Ox et de module : xi xj F c ls. (10) Les deux constantes de force T 0 et P 0 se calculent par : 1 nc V T0, (11) a 4 (1 a ) 0 P0 T (1) tg( ) où x i et x j sont respectivement les abscisses des nœuds consécutifs numéro i et j (voir figure 7). ls ( xi xj) 6 xj xj P0 ( ln( ) 1) l xi xj xj T0 (1 ln( )) l xi 0 0 0 Fe ls ( xi xj) 6 xi xj P0 (1 ln( )) l xi xi xj T0 ( ln( ) 1) l xi 0 0 0 4/7

Après assemblage et construction des matrices K, M et C en tenant compte des conditions aux limites, d encastrement de la pale sur le moyeu du rotor et en supposant que le vecteur force F n est pas influé par la variation des caractéristiques géométriques des sections au cours de ses déformations, on obtient les... équations de mouvement de la pale sous cette forme : M q C q Kq F. (13) L équation aux pulsations est exprimée dans le plan complexe par : K M jc 0, (14) ses solutions en ω ne sont autres que les vitesses critiques qui peuvent être la cause d une résonance de la pale en cas où sa vitesse de rotation les atteint. IV- APPLICATION A UNE PALE VRILLEE : On s intéresse à l étude du comportement d une pale pour hélice de rayon deux mètre capable de produire une puissance maximale d environ 5kW. Il existe plusieurs profils de pale tels que NREL, NASA, etc mais le meilleur rendement correspond au profil NACA 441 [9]. Fig. 8 : Géométrie du profil NACA441 [9]. La pale à étudier est vrillée d angle de vrillage maximal égal 4 à 10% d envergure, le rotor de l hélice est de rayon 0,1m. Cette pale est construite en tôle d aluminium EN AW 5754, emboutie et d épaisseur,5 mm ce métal convient mieux pour fabriquer une pale de petite taille. On a conçue cette pale par le logiciel SolidWorks (voir figure 5) qui a donné les caractéristiques géométriques suivantes : Tableau : Caractéristiques géométriques de chaque élément fini de la pale. e θ ( ) c (mm) l (m) S (mm ) Ix (mm 4 ) Iy (mm 4 ) Iz (mm 4 ) Iyz (mm 4 ) 1 4 18 0.1 91 649631. 1459543.66 1190087.56 14657.14 40.9 165 0. 838 1995919.04 114456.86 87146.18 9888.37 3 40. 147 0. 750 14311.46 8701.5 605199.1 658067.03 4 39.3 130 0. 665 993371.59 5911.3 401160.59 448934.34 5 38.5 11 0. 577 654064.6 403634.7 50430.35 86367.48 6 36.3 95 0. 488 39908.3 58165.08 140863.15 16837.6 7 33.7 78 0. 40 519.8 1550.85 69971.97 88137.3 8 9. 61 0. 319 113613.46 85599.1 8014.5 38447.38 9 17 46 0. 43 5061.09 4667.54 7944.55 11664.74 10 10 36 0. 180 1111.81 19885.31 16.5 10.13 Tableau 3 : Propriétés de l aluminium 5754 et de l air en conditions ambiantes de température (5 C) et pression (1atm). ρ (Kg/m 3 ) ρ a (Kg/m 3 ) E (N/mm ) G (N/mm ) 750 1.5 71110 7350 5/7

Cette pale pèse 3,03 Kg ce qui vérifie l hypothèse du poids négligeable devant les autres efforts aérodynamiques. On a étudié le comportement de cette pale élément d une hélice tripale (n=3) en rotation uniforme et soumise à un vent de vitesse 7 Km/h. Le coefficient de puissance Cp est choisie 30% correspondant à un rapport de vitesse égal à 5 (voir tableau1) et par suite la vitesse de rotation de l éolienne est estimée à 50 rad/s qui est jugée rapide. Les figures suivantes montrent les déplacements statiques de la ligne moyenne de la pale par rapport au repère (O, x, y, z) en rotation autour de son rotor. Ces résultats sont obtenus par simulation numérique à l aide du logiciel MATLAB. Flèche de la pale en mm 0,00 0,015 0,010 0,005 0,000-0,005-0,010 v : suivant Oy w: suivant Oz -0,015 0,0 0,5 1,0 1,5,0 x(m) Fig. 9a : Flèches de la pale. Angle de déformation en 10-3 deg 1,0 0,8 0,6 0,4 0, : suivant Oy : suivant Oz 0,0 0,0 0,5 1,0 1,5,0 x (m) Fig. 9b : Angles de rotation de la pale. Allongement u de la pale en mm 0,1 0,10 0,08 0,06 0,04 0,0 0,00 0,0 0,5 1,0 1,5,0 x(m) Fig. 9c : Allongement de la pale. On signale que l angle de torsion α est nul le long de la pale. La configuration statique montrée par les figures 9a, 9b et 9c est la position autour da la quelle la pale se met à vibrer sous l action d une éventuelle excitation due à une variation brusque de la vitesse du vent, de sa vitesse de rotation ou d une déviation de la nacelle. On a commencé l étude dynamique de la pale par la résolution de l équation aux pulsations (14) et on a obtenu douze vitesses critiques à ne pas atteindre pour éviter la résonance pendant le fonctionnement et elles sont élevées. Tableau 4 : Vitesses critiques de la pale en rad/s. 867,86 870,51 3970,6 4000 4569, 841,9 11051 11110 1901 151460 9710 594580 6/7

V- CONCLUSION : Les résultats obtenus montrent que les déplacements sont faibles malgré une vitesse rapide du vent subi par la pale par conséquence elles n ont pas d influence importante sur ses caractéristiques géométriques supposées inchangées au cours du mouvement. Cela prouve que la pale résiste en toute sécurité aux efforts aérodynamiques d un tel vent et que la proposition de sa fabrication en tôle d aluminium emboutie est acceptable. L obtention des matrices de rigidité, de masse et de couplage gyroscopique a permis de trouver les vitesses critiques à éviter par la pale, elles sont élevées et donc hors de portée d une telle hélice tripale. Pour continuer cette étude on peut aussi étudier sa réponse à une excitation rapide due à une turbulence ou à une variation brusque de sa vitesse de rotation etc. On a remarqué, pendant la simulation numérique, que les valeurs de la matrice du couplage gyroscopique sont faible et on peut les négliger. Enfin on souhaite toujours maximiser la production d électricité alors il est intéressant d utiliser des pales plus longues construites par des matériaux composites multicouches afin d avoir le bon compromis légèreté et rigidité de la structure de la pale. REFERENCES [1] A. Helali, H. Garrach, B. Kamoun, M.J. Safi et D. Afungchui; Amélioration des rendements des éoliennes de Sidi Daoud par modification des géométries de leurs pales, CERE (005) Sousse Tunisie, pp4-6. [] D. Le Gourières; Les éoliennes : théorie, conception et calcul pratique, Editions du Moulin Cadiou (008), pp7-9. [3] D. Keiflin; Les énergies renouvelables : Les éoliennes, document PowerPoint, lycée Louis Armand Mulhouse, p11. [4] M. Jureczko, M. Pawlak and A. Mezyk; Optimization of wind turbine blades, Journal of materials processing technology 167 (005) pp463 471. [5] I. Dubrav; Modèle hybride de surface active pour l analyse du comportement aérodynamique des rotors éoliens à pale rigides ou déformables, Thèse de doctorat à l ENSAM (009) pp4. [6] Z.L. Mahri *, M.S. Rouabah et S. Zid; Calcul des efforts aérodynamiques agissant sur les pales d une petite éolienne, Revue des Energies Renouvelables Vol. 10, N (007), pp41-56. [7] H. Semmache, A. Bounoua, R. Bausière et N. Benramdane; Développement des performances des systèmes énergétiques dans la production d énergie éolienne, Revue des Energies Renouvelables Valorisation (1999), pp61-66. [8] J. L. Batoz; Modélisation des structures par éléments finis, Editions Hermès (1990) Vol. : Poutres et plaques, pp83-86. [9] M. Nadjah, M. Khechana, L. Laiche, T. Ouksel et C. Mahfoudi; Etude de l hélice d une éolienne 5kW, Revue des Energies Renouvelables, CISM (008), pp57-64. 7/7