Simulation analytique de la focalisation sur échantillon de la ligne FAME à haute énergie

Documents pareils
Chapitre 2 : Caractéristiques du mouvement d un solide

- I - Fonctionnement d'un détecteur γ de scintillation

Quantité de mouvement et moment cinétique

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

Sujet. calculatrice: autorisée durée: 4 heures

REPRESENTER LA TERRE Cartographie et navigation

TS Physique Satellite à la recherche de sa planète Exercice résolu

Calcul intégral élémentaire en plusieurs variables

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Chapitre 0 Introduction à la cinématique

Repérage d un point - Vitesse et

Chapitre 4: Dérivée d'une fonction et règles de calcul

Superstrat tout Dielectrique Pour le Contrôle de l Ouverture Angulaire d'une Antenne à Double Polarisation

Deux disques dans un carré

Interactions des rayonnements avec la matière

Manuel d'utilisation de la maquette

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

Faculté de physique LICENCE SNV EXERCICES PHYSIQUE Par MS. MAALEM et A. BOUHENNA Année universitaire

Chapitre 1: Facteurs d'échelle

Mathématiques et petites voitures

Fonctions de deux variables. Mai 2011

RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3

CHAPITRE IX : Les appareils de mesures électriques

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Cours IV Mise en orbite

DYNAMIQUE DE FORMATION DES ÉTOILES

Comment sélectionner des sommets, des arêtes et des faces avec Blender?

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Les mesures à l'inclinomètre

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Salle de technologie

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

VOS PREMIERS PAS AVEC TRACENPOCHE

Rapport du projet CFD 2010

DIFFRACTion des ondes

Résonance Magnétique Nucléaire : RMN

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

Analyse statique d une pièce

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

PRINCIPE MICROSCOPIE CONFOCALE

TD 9 Problème à deux corps

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Sujet. calculatrice: autorisée durée: 4 heures

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Cours de D.A.O. Mécanique

Exposition. VLR plongée e commission photo

Université Bordeaux 1 MIS 103 OPTIQUE GÉOMÉTRIQUE

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Contrôle non destructif Magnétoscopie

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Chapitre 7 - Relativité du mouvement

1 Problème 1 : L avion solaire autonome (durée 1h)

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Exemple d application en CFD : Coefficient de traînée d un cylindre

Les rayons X. Olivier Ernst

C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.

Fonctions de plusieurs variables

PROBLEME(12) Première partie : Peinture des murs et du plafond.

FUSION PAR CONFINEMENT MAGNÉTIQUE

Cercle trigonométrique et mesures d angles

Simulation d'un examen anthropomorphique en imagerie TEMP à l iode 131 par simulation Monte Carlo GATE

OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS

INSTALLATION POUR LA MESURE EN CELLULE BLINDÉE DU VOLUME DES AIGUILLES COMBUSTIBLES PROKUDANOV D.L., TROITSKII S.V.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Comme chaque ligne de cache a 1024 bits. Le nombre de lignes de cache contenu dans chaque ensemble est:

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Conseiller relation client à distance - Titre Professionnel Agrément JS n Sommaire

1. Introduction 2. Localiser un séisme 3. Déterminer la force d un séisme 4. Caractériser le mécanisme de rupture d un séisme

1 Création d une pièce. 2 Travail complémentaire. 1-1 Réglage des barres d outils. 1-2 Exemples de réalisation de pièces à l aide d un modeleur 3D

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Champ électromagnétique?

OM 1 Outils mathématiques : fonction de plusieurs variables

Trier les ventes (sales order) avec Vtiger CRM

Microscopie de fluorescence Etat de l art

FctsAffines.nb 1. Mathématiques, 1-ère année Edition Fonctions affines

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

1 Mise en application

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

F411 - Courbes Paramétrées, Polaires

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Adaptation d'un véhicule au revêtement de la piste

Quelleestlavaleurdel intensitéiaupointm?

DOCM Solutions officielles = n 2 10.

Collimateur universel de réglage laser

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

Chapitre 2 : Vecteurs

ROULER EN AVANT ROULER EN AVANT ROULER EN AVANT

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Transcription:

Simulation analytique de la focalisation sur échantillon de la ligne FAME à haute énergie 1. Hypothèses On décrit analytiquement les trajectoires des rayons lumineux émis par une source X ponctuelle à travers notre système optique. Celui-ci s'articule autour d'un système de deux cristaux parfaits : un premier plan et un second courbé assurant la focalisation sagitalle du faisceau. Le cristal courbé est parfaitement circulaire. 2. Notations et caractéristiques 1. Soit l'angle d'incidence des deux cristaux par rapport à l'horizontale. On aura deux gammes de valeurs pour selon que la diffraction du cristal 1 a lieu à basse énergie (4 à 22 kev) avec un cristal de Si(1,1,1), ou à haute énergie (22 à 40 kev) avec un cristal de Si(3,1,1) (ce qu nous concerne plus particulièrement ici). L'angle varie alors de 5.1 à 29.6 degrés à basse énergie et de 5.5 à 9.9 à haute énergie comme illustré sur la figure 1. Figure 1: Variation de l'angle de Bragg avec l'énergie sélectionnée, pour les types de cristaux employés. 2. Soit S la distance horizontale entre la source et le 1 er cristal. On prendra. 3. Soit expe la distance horizontale entre source et point de focalisation. On prendra 4. Soit g la distance entre les deux plans des cristaux. On prendra. 5. Soit dh la divergence angulaire horizontale considérée (2 mrad) et l'angle courant associé. 6. Soit dv la divergence angulaire verticale considérée et l'angle courant associé. Pour les calculs,

on prendra comme valeur moyenne de la divergence verticale 0.11 mrad. En réalité, l'émission de l'aimant de courbure à 0.8 T vérifie :. 3. Repères de calcul Pour déterminer les formules analytiques des trajectoires de rayons lumineux, il est commode de travailler dans deux repères différents 1. Un premier dit ``naturel'' où la source est le point d'origine, les axes x et y sont dans le plan horizontal avec un axe x orienté selon la direction de propagation des rayons, l'axe z étant vertical vers le haut. 2. Un second mieux adapté aux calculs et lié au 1 er cristal où l'origine devient S', image de la source par le premier cristal, les axes x et y étant orienté dans le plan du 1 er cristal. Le second repère nous servira à traiter la réflexion sur les deux cristaux et ce n'est qu'à la fin des calculs qu'on se replacera dans le repère naturel. Ce repère est illustré sur la figure 2 Figure 2: Notations utilisées dans le repère lié au 1 er cristal 4. De la source au 1 er cristal 4.1 Angle d'incidence On se place dans le repère naturel et on prend comme vecteur directeur normé du rayon lumineux et comme vecteur perpendiculaire à la surface plane du 1 er cristal. L'angle d'incidence du rayon lumineux est alors tel que. Ce qui donne

4.2 Variations de l'angle d'incidence Les variations possibles de et étant faibles devant 1, on peut faire un développement limité à l'ordre 2 de. On a alors. On constate donc au premier ordre que pour des angles pas trop proche de (ce qui est le cas ici), les variations de ne sont dues qu'à la divergence verticale du faisceau. On a alors 4.3 Surface du 1 er cristal Tous les points de la surface du cristal vérifient le système d'équations :, où C 1 est le centre du cristal et 1 quelconque. Il suffit alors de déterminer, et l'on trouve. 4.4 Condition de Bragg sur le 1 er cristal Exprimons la condition de Bragg sur le 1 er cristal : on a. Ceci se traduit par et le plan du cristal.. Aussi, la zone de Bragg est l'intersection entre une sphère de rayon Dans le plan du 1 er cristal, la zone de Bragg est donc un cercle de rayon, ayant pour centre la projection du point source sur le cristal. 4.5 Conclusion Le faisceau diffracté par le 1 er cristal est donc un ensemble de cônes de centre S' et d'axe S ' S, de demi-angle au sommet variable avec, chaque valeur de correspondant à différentes énergies diffractées,. Voilà pourquoi nous effectuerons désormais nos calculs dans le second repère. On prendra comme équation pour les points des différents cônes :, avec L quelconque.

5. Le second cristal 5.1 Hypothèses Rappelons que le second cristal sera considéré comme parfaitement cylindrique selon un cylindre d'axe (A,x) le long de l'axe x du second repère et de rayon R. Il est donc d'équation y 2 +(z-z A ) 2 =R 2 avec où z A représente l'absisse en z de l'axe du cylindre, c'est à dire par définition de g. On déduit de cette équation, la valeur pour tous les points situés à l'intersection entre le faisceau diffractés par le 1 er cristal et le second. On a comme vecteur normal intérieur à la surface du deuxième cristal. 5.2 Philosophies de focalisation L'intérêt primaire qu'il y a à utiliser un second cristal courbé, c'est d'assurer la focalisation sagittale du faisceau de rayons X, et par la même d'augmenter considérablement le flux de photons au niveau de l'échantillon à analyser. Le choix du rayon de courbure de ce cristal est donc tout particulièrement important. On choisi de focaliser à distance fixe pour éviter d'avoir à trop bouger l'échantillon lorsque l'on fait varier l'énergie incidente sur celui-ci. 6. Focalisation à distance horizontale fixe On a choisi ici une distance de focalisation horizontale fixe expe=50.5m, très proche de. 6.1 Rayon de courbure du second cristal On prend, où F 1 et F 2 représentent respectivement la distance parcourue avant et après impact sur le cristal. En utilisant la condition de focalisation à distance horizontale fixe, on trouve que : En choisissant une telle loi de variation pour le rayon du second cristal, on s'assure de la distance horizontale du point de focalisation. Par contre, la hauteur de focalisation du faisceau est variable ( ), ainsi que la forme de la tache de focalisation dans le plan vertical. 6.2 Angle d'incidence sur le second cristal L'angle d'incidence des rayons diffractés par le 1 er cristal sur le second cristal est donné par. Soit, où L a été calculé

précédemment au 5.1. Ainsi, l'angle d'incidence sur le second cristal n'est pas fixe mais diminue d'autant que l'impact sur le second cristal a lieu plus base. Notons qu'au sommet du cristal courbé, cet angle vaut exactement. 6.3 Effet de la divergence horizontale seule La figure 3 présente alors l'évolution de la tache de focalisation sur l'échantillon lorsque l'on ne prend en compte que la divergence horizontale (dv=0) du faisceau X (on a ainsi : un seul cone de diffraction par le 1 er crisral). Typiquement, le faisceau est 10 fois plus haut que large, et sa hauteur n'excède pas 0.3 mm : l'effet de la courbure cylindrique sur la focalisation horizontale est clairement mis en évidence. De même, la figure 4 présente cette évolution en ce qui concerne l'angle d'incidence sur le second cristal. On voit que cette variation d'angle reste négligeable comparé aux valeurs typiques de la largeur de Darwin pour le Si(3,1,1), à savoir 0.5 à 1 arcsec. Figure 3: Évolution de la tache de focalisation des rayons X sur l'échantillon en fonction de l'énergie sélectionnée en ne tenant compte que de la divergence horizontale du faisceau X Figure: Variation de l'angle d'impact fait de la seule divergence horizontale (arcsec) entre les rayons diffractés par le 1 er cristal et le second du

6.4 Effet de la divergence verticale seule Pour la divergence verticale, la situation est beaucoup plus catastrophique! En effet, notre système de cristaux n'est pas du tout refocalisant dans le plan vertical et la faisceau incident continu de diverger verticalement comme si de rien était! Ce qui nous donne une extension verticale de la tache due à la divergence verticale égale à!! Pire, il est à noter aussi que cette divergence verticale correspond aussi à différentes énergies diffractées comme illustré sur la figure 5. Par contre, comme on retrouve l'angle de diffraction du 1 er cristal en haut du second cristal, la seule divergence verticale du faisceau n'induit pas de variation d'angle d'impact sur le second cristal. On peut donc considérer que la réflection sur le second cristal est parfaite puisque ni la divergence horizontale, ni la divergence verticale n'influence suffisamment l'angle d'impact sur ce cristal : ce qui est diffracté par le premier cristal, le sera par le second. Figure 5: Variations de la résolution en énergie du fait de la divergence verticale du faisceau X

6.5 Effet combiné : forme de la tache de focalisation La figure 6 présente l'effet combiné des divergences verticale et horizontale précédemment étudiées pour une énergie moyenne sélectionnée de 30 kev sur toute la gamme de variation de :. On constate que le faisceau traversant le système de cristaux présente une grande divergence en énergie de 24 ev à laquelle correspond une focalisation des rayons X sur l'échantillon à différentes hauteurs sur près de 6 mm. Figure 6: Effet combiné des divergences horizontale et verticale du faisceau incident sur la tache de focalisation sur l'échantillon, pour une énergie sélectionnée de 30 kev

7. Énergie du faisceau Au cours d'une manip, on est amené à faire varier continuement l'énergie du rayonnement tombant sur l'échantillon. 7.1 Scan en énergie Durant un tel scan en énergie (qui couvre typiquement ), il nous faudra donc déformer le cristal 2 tout en inclinant au fur et à mesure l'ensemble des deux cristaux. La figure 7 donne les valeurs correspondantes. Il est à noter quand même que si la distance entre l'échantillon et la source ne varie pas au cours d'un scan, la hauteur à laquelle se trouve focalisée le faisceau varie. Figure 7: Variations du rayon de courbure du second cristal en fonction de l'énergie choisie 7.2 Résolution en énergie En EXAFS, lorsque l'on réalise un scan en énergie, il est indispensable de réussir à décrire correctement la transition de seuil (seuils de type K en général, mais aussi L I,II,III ) de l'élément que l'on a choisi de regarder dans l'échantillon. Il faut donc que la résolution en énergie de la ligne optique soit suffisamment bonne pour cet élément. Cette résolution comporte deux composantes : une première composante réglable en jouant sur l'acceptance angulaire dv du faisceau blanc, et une seconde intrinséque aux cristaux et non-réglable liée à la largeur de Darwin du Si(3,1,1). Si l'on se réfère à la figure 5, on y voit clairement que la variation d'énergie induite par la largeur de Darwin est négligeable devant celle induite par l'acceptance de la ligne, et que cette variation

minimale d'énergie est petite ( 1 ev) par rapport aux largeurs des seuils ( 4 ev pour seuil K et 9 ev pour seuil L). C'est d'ailleurs ce qui a motivé notre choix du Si(3,1,1) pour les faisceaux à haute-énergie. Aussi, cela signifie qu'il nous faut diminuer l'acceptance verticale de notre ligne (et donc le flux de photons) afin d'améliorer la résolution de la ligne et donc permettre une exploration correcte des seuils K et L : la figure 8 en donne les acceptances. Figure 8: Acceptances verticales de la ligne en fonction du seuil considéré 8. Vue d'ensemble Pour finir, la figure 9 présente une vue d'ensemble 3D de la trajectoire des rayons ainsi que les surfaces des cristaux utilisés. Les paramètres de simulation sont des paramètres ad-hoc pour permettre de bien voir les trajectoires des rayons lumineux. Figure 9: Illustration de la trajectoire global des rayons lumineux. Les paramètres de simulation sont ad-hoc