Algebra for Digital Communication. Test 2



Documents pareils
Arithmetical properties of idempotents in group algebras

Application Form/ Formulaire de demande

Instructions Mozilla Thunderbird Page 1

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

APPENDIX 6 BONUS RING FORMAT

MELTING POTES, LA SECTION INTERNATIONALE DU BELLASSO (Association étudiante de lʼensaparis-belleville) PRESENTE :

Exemple PLS avec SAS

1.The pronouns me, te, nous, and vous are object pronouns.

Lesson Plan Physical Descriptions. belle vieille grande petite grosse laide mignonne jolie. beau vieux grand petit gros laid mignon

Utiliser une WebCam. Micro-ordinateurs, informations, idées, trucs et astuces

Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00

If you understand the roles nouns (and their accompanying baggage) play in a sentence...

The new consumables catalogue from Medisoft is now updated. Please discover this full overview of all our consumables available to you.

CEST POUR MIEUX PLACER MES PDF

MANUEL MARKETING ET SURVIE PDF

WEB page builder and server for SCADA applications usable from a WEB navigator

Dans une agence de location immobilière...

I>~I.J 4j1.bJ1UlJ ~..;W:i 1U

Get Instant Access to ebook Cest Maintenant PDF at Our Huge Library CEST MAINTENANT PDF. ==> Download: CEST MAINTENANT PDF

Gestion des prestations Volontaire

EXISTENCE OF ALGEBRAIC HECKE CHARACTERS ( C. R. ACAD. SCI. PARIS SER. I MATH, 332(2001) ) Tonghai Yang

Tammy: Something exceptional happened today. I met somebody legendary. Tex: Qui as-tu rencontré? Tex: Who did you meet?

Contents Windows

CETTE FOIS CEST DIFFERENT PDF

MEMORANDUM POUR UNE DEMANDE DE BOURSE DE RECHERCHE DOCTORALE DE LA FONDATION MARTINE AUBLET

3615 SELFIE. HOW-TO / GUIDE D'UTILISATION

Deadline(s): Assignment: in week 8 of block C Exam: in week 7 (oral exam) and in the exam week (written exam) of block D

Démonstration de la conjecture de Dumont

DOCUMENTATION MODULE BLOCKCATEGORIESCUSTOM Module crée par Prestacrea - Version : 2.0

THE SUBJUNCTIVE MOOD. Twenty-nineth lesson Vingt-neuvième leçon

How to Login to Career Page

I. COORDONNÉES PERSONNELLES / PERSONAL DATA

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

calls.paris-neuroscience.fr Tutoriel pour Candidatures en ligne *** Online Applications Tutorial

Bill 69 Projet de loi 69

Guide d'installation rapide TFM-560X YO.13

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on

SERVEUR DÉDIÉ DOCUMENTATION

Compléter le formulaire «Demande de participation» et l envoyer aux bureaux de SGC* à l adresse suivante :

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

DOCUMENTATION - FRANCAIS... 2

DOCUMENTATION - FRANCAIS... 2

MEMORANDUM POUR UNE DEMANDE DE BOURSE DE RECHERCHE DOCTORALE DE LA FONDATION MARTINE AUBLET

ONTARIO Court File Number. Form 17E: Trial Management Conference Brief. Date of trial management conference. Name of party filing this brief

Règlement sur le télémarketing et les centres d'appel. Call Centres Telemarketing Sales Regulation

SCHOLARSHIP ANSTO FRENCH EMBASSY (SAFE) PROGRAM APPLICATION FORM

UNIVERSITE DE YAOUNDE II

Improving the breakdown of the Central Credit Register data by category of enterprises

Contrôle d'accès Access control. Notice technique / Technical Manual

accidents and repairs:

COPYRIGHT Danish Standards. NOT FOR COMMERCIAL USE OR REPRODUCTION. DS/EN 61303:1997

ETABLISSEMENT D ENSEIGNEMENT OU ORGANISME DE FORMATION / UNIVERSITY OR COLLEGE:

Guide d installation Deco Drain inc. DD200

NORME INTERNATIONALE INTERNATIONAL STANDARD. Dispositifs à semiconducteurs Dispositifs discrets. Semiconductor devices Discrete devices

Bourses d excellence pour les masters orientés vers la recherche

Tex: The book of which I'm the author is an historical novel.

Confirmation du titulaire de la carte en cas de contestation de transaction(s) Cardholder s Certification of Disputed Transactions

PARIS ROISSY CHARLES DE GAULLE

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

Practice Direction. Class Proceedings

Paxton. ins Net2 desktop reader USB

L ABC de l acquisition de petites entreprises

Thank you for choosing the Mobile Broadband USB Stick. With your USB Stick, you can access a wireless network at high speed.

Once the installation is complete, you can delete the temporary Zip files..

MODERN LANGUAGES DEPARTMENT

Mon Service Public - Case study and Mapping to SAML/Liberty specifications. Gaël Gourmelen - France Telecom 23/04/2007

Cette Leçon va remplir ces attentes spécifiques du curriculum :

COUNCIL OF THE EUROPEAN UNION. Brussels, 18 September 2008 (19.09) (OR. fr) 13156/08 LIMITE PI 53

Exercices sur SQL server 2000

86 rue Julie, Ormstown, Quebec J0S 1K0

VTP. LAN Switching and Wireless Chapitre 4

CONVENTION DE STAGE TYPE STANDART TRAINING CONTRACT

CLIM/GTP/27/8 ANNEX III/ANNEXE III. Category 1 New indications/ 1 re catégorie Nouvelles indications

Module Title: French 4

Warning: Failure to follow these warnings could result in property damage, or personal injury.

Notice Technique / Technical Manual

IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board

Créé par Goldfing & Pblabla Créé le 02/05/ :49:00. Guide pour la déclaration d impôt

MASSEY COLLEGE & UNIVERSITY OF TORONTO

Discours du Ministre Tassarajen Pillay Chedumbrum. Ministre des Technologies de l'information et de la Communication (TIC) Worshop on Dot.

IDENTITÉ DE L ÉTUDIANT / APPLICANT INFORMATION

OBJECT PRONOUNS. French III

FCM 2015 ANNUAL CONFERENCE AND TRADE SHOW Terms and Conditions for Delegates and Companions Shaw Convention Centre, Edmonton, AB June 5 8, 2015

GAME CONTENTS CONTENU DU JEU OBJECT OF THE GAME BUT DU JEU

Nouveautés printemps 2013

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION

CALCUL DE LA CONTRIBUTION - FONDS VERT Budget 2008/2009

WINTER BOAT STORAGE SYSTEM SYSTÈME DE REMISAGE HIVERNAL POUR BATEAU

AIDE FINANCIÈRE POUR ATHLÈTES FINANCIAL ASSISTANCE FOR ATHLETES

INSTRUCTIONS. Comment compléter le formulaire. How to complete this form. Instructions

Institut français des sciences et technologies des transports, de l aménagement

Plan. Department of Informatics

Eléments de statistique

has brought a motion to change the order of Justice, dated. the agreement between you and (name of party bringing this motion), dated.

Supervision et infrastructure - Accès aux applications JAVA. Document FAQ. Page: 1 / 9 Dernière mise à jour: 15/04/12 16:14

Logitech Tablet Keyboard for Windows 8, Windows RT and Android 3.0+ Setup Guide Guide d installation

PAR RINOX INC BY RINOX INC PROGRAMME D INSTALLATEUR INSTALLER PROGRAM

English Q&A #1 Braille Services Requirement PPTC Q1. Would you like our proposal to be shipped or do you prefer an electronic submission?

Technologies quantiques & information quantique

Transcription:

EPFL - Section de Mathématiques Algebra for Digital Communication Prof. E. Bayer Fluckiger Sections de Systèmes de Communications et Physique Winter semester 2006-2007 Test 2 Thursday, 1st February 2007 13h15-15h00 Nom :....................................................... Prénom :................................................... Section :.................................................... No other documents are to be used during the test. The use of calculators is not allowed. Do not remove the staples from this document. All the calculations and arguments have to be written on the white sheets of paper. The colored sheets are supposed to be used as scratch paper. Solutions and arguments on those sheets will not be considered. Aucun document n est autorisé. Les calculatrices sont interdites. Ne pas dégrafer le document. Utiliser les feuilles de couleurs comme brouillons. Tous les calculs et raisonnements doivent figurer dans le dossier rendu. Exercise 1 Exercise 2 Exercise 3 Exercise 4 /25 points /25 points /25 points /25 points Total / 100

Exercise 1 (english, 25 points) (1) (a) Find all solutions x Z of the system of congruences x 0 (mod 3), x 3 (mod 4), x 1 (mod 5). (b) Why does there exist an isomorphism ϕ : Z/60Z Z/3Z Z/4Z Z/5Z, and how can it be described? Determine ϕ 1 (0, 3, 4). (2) Consider Z/180Z. (a) How many different ways are there to write Z/180Z as a product of cyclic groups Z/180Z = Z/m 1 Z Z/m r Z with m 1 m r? (b) For (Z/180Z) proceed as in (a), i.e. find all r-tuplets (m 1,..., m r ) with m 1 m r such that (Z/180Z) = Z/m1 Z Z/m r Z. Exercice 1 (français, 25 points) (1) (a) Trouver toutes les solutions x Z du système de congruences x 0 (mod 3), x 3 (mod 4), x 1 (mod 5). (b) Pourquoi existe-t-il un isomorphisme ϕ : Z/60Z Z/3Z Z/4Z Z/5Z, et comment le décrire? Déterminer ϕ 1 (0, 3, 4). (2) Considérons le groupe Z/180Z. (a) De combien de manières différentes peut-on écrire Z/180Z comme produit de groupes cycliques? En d autres termes, trouver (avec justification) le nombre de r-uplets (m 1,..., m r ), avec m 1... m r, tels qu on ait un isomorphisme Z/180Z = Z/m 1 Z Z/m r Z.

(b) Même question pour (Z/180Z). Autrement dit, trouver tous les r-uplets (m 1,..., m r ), avec m 1... m r, tels qu il existe un isomorphisme (Z/180Z) = Z/m1 Z Z/m r Z. Solution 1 (1) (a) We employ the first method given in the script of the lecture. Set a 1 := 0, a 2 := 3 and a 3 := 1. Furthermore let m 1 := 3, m 2 := 4 and m 3 := 5. We calculate k 1 := m 2 m 3 = 20, k 2 := m 1 m 3 := 15 and k 3 := m 1 m 2 = 12. Now for i = 1, 2, 3 we need to find r i Z with k i r i 1 (mod m i ). Since k 1 2 (mod m 1 ), k 2 3 (mod m 2 ) and k 3 2 (mod m 3 ), we easily find r 1 := 2, r 2 := 3 and r 3 := 3. Set Hence x 1 := r 1 k 1 = 40, x 2 := r 2 k 2 = 45 and x 3 := r 3 k 3 = 36. x := a 1 x 1 + a 2 x 2 + a 3 x 3 = 0 40 + 3 45 1 36 = 135 36 = 99 is a solution of the given system of congruences. As 3 4 5 = 60 it follows that {99 + 60k k Z} is the set of all solutions (see also part (b)). (b) The isomorphism exists, since gcd(3, 4) = gcd(3, 5) = gcd(4, 5) = 1. This means that we can apply the Chinese remainder theorem (theorem 6.2 from the script) to get the isomorphism Z/60Z Z/3Z Z/4Z Z/5Z, [x] 60 ([x] 3, [x] 4, [x] 5 ). Now by part (a) we have ϕ 1 ([0] 3, [3] 4, [4] 5 ) = ϕ 1 ([0] 3, [3] 4, [ 1] 5 ) = [99] 60. (2) (a) The prime decomposition of 180 is 2 2 3 3 5. By the Chinese remainder theorem we need to find tuples (m 1,..., m r ) with m i 2, gcd(m i, m j ) = 1 for i j, and m 1 m r = 180. In this case we have Z/180Z = Z/m 1 Z Z/m r Z. (i)

Any tuple that does not satisfy the above conditions will not give an isomorphism. For example if m 1 m r 180, then the group on the right side in (i) does not have the right order. If on the other hand m 1 m r = 180 but gcd(m i, m j ) > 1 for some i j, then every element in Z/m i Z Z/m j Z has order < m i m j. Hence every element in the group on the right side in (i) has order < m 1 m r = 180. Without loss of generality we can assume that m 1 m r. But the only such tuples are (180), (9, 20), (5, 36), (4, 45) and (4, 5, 9). (b) From part (a) we see know that Hence Z/180Z = Z/4Z Z/5Z Z/9Z. (Z/180Z) = (Z/4Z) (Z/5Z) (Z/9Z). Now we must have (Z/4Z) = Z/2Z, and since Z/5Z is a field we get (Z/5Z) = Z/4Z. Consider the element [2]9 (Z/9Z). It has neither order 2 nor 3 so it must have order 6. Therefore (Z/9Z) is cyclic and we obtain (Z/9Z) = Z/6Z. Altogether this results in (Z/180Z) = Z/2Z Z/4Z Z/6Z. Since gcd(2, 4) = gcd(2, 6) = gcd(4, 6) = 2 > 1, we see that is is impossible to write (Z/180Z) as a product of less than 3 cyclic factors. We can only use Z/6Z = Z/2Z Z/3Z to obtain (Z/180Z) = Z/2Z Z/2Z Z/3Z Z/4Z. Hence the only possible tuples are (2, 4, 6), (2, 2, 12) and (2, 2, 3, 4).

Exercise 2 (english, 25 points) (1) Consider the polynomials f := X 2 3X + 2, g := X 3 3X 2 + X 3 and q := X 2 7X + 12 in Z[X], and let (a) R 1 := Q[X]/(q), (b) R 2 := F 2 [X]/(q), where q denotes the image of q in F 2 [X]. For i = 1, 2 determine whether the images of f and g in R i lie in the group of units (R i )? (2) Let K be a field, and let n N. Consider the ring R := K[X]/(X n ). (a) Show that R is a K-vector space. (b) Give a basis B = {v 1,..., v m } of R as a K-vector space and prove that B really is a basis. (c) Conclude that the dimension of R as a vector space over K is n. Exercice 2 (français, 25 points) (1) Considérons les polynômes suivants: f := X 2 3X +2, g := X 3 3X 2 +X 3 et q := X 2 7X + 12. Ce sont des éléments de Z[X]. Soient (a) R 1 := Q[X]/(q), (b) R 2 := F 2 [X]/(q), où q désigne l image de q dans F 2 [X]. Pour i = 1, 2, déterminer si les images de f et de g dans R i sont des unités. (2) Soit K un corps, et n N. Considérons l anneau R := K[X]/(X n ). (a) Montrer que R est un K-espace vectoriel. (b) Donner (en justifiant) une base B = {v 1,..., v m } de R en tant que K- espace vectoriel. (c) Conclure que la dimension de R comme K-espace vectoriel est n. Solution 2 (1) It is easy to see that f = (X 1)(X 2) and q = (X 3)(X 4). Furthermore by a bit of trial-and-error we see that g has the root 3, and simple polynomial division gives us g = (X 3)(X 2 + 1). (a) We consider R 1 := Q[X]/(q). Since g (X 4) = (X 2 + 1) q 0 (mod q),

we see that the image of g in R 1 is a zero-divisor and can therefore not be a unit. Now since gcd(f, q) = 1 in Q[X], there exist by Bezout s identity polynomials r, s Q[X] with rf + sq = 1. Hence rf = 1 sq 0 (mod q), which shows that the image of f in R 1 is a unit. (b) Now we consider R 2 := F 2 [X]/(q). We denote the two elements of F 2 by 0 and 1. Denote by f and g are the images of f and g in F 2 [X] respectively. If we take into account that X 2 + 1 = (X 1) 2 in F 2 [X] we obtain This shows that f = X(X 1), g = (X 1) 3 and q = X(X 1). f 0 (mod q), and therefore the image of f in R 2 is not a unit. Furthermore g X = (X 1) 2 q 0 (mod q), which means that the image of g in R 2 is a zero-divisor and hence not a unit. (2) (a) proof. Let m = X n K[X]. Since R is a ring, it is by definition an additive group. So it only remains to show, that K R R, (λ, [f] m ) λ[f] m := [λf] m, (ii) satisfies the properties of a scalar multiplication. f, g K[X]. Then Let λ, µ K and (λµ)[f] m = [λµf] m = λ[µf] m = λ(µ[f] m ), 1[f] m = [1f] m = [f] m, λ([f] m + [g] m ) = λ[f + g] m = [λf + λg] m = [λf] m + [λg] m = λ[f] m + λ[g] m, (λ + µ)[f] m = [(λ + µ)f] m = [λf + µf] m = [λf] m + [µf] m = λ[f] m + µ[f] m, which shows that (ii) actually defines a scalar multiplication. Hence R is a K-vector space. (b) We claim that B := {1, [X] m, [X 2 ] m,..., [X n 1 ] m } is a basis of R as a K-vector space.

proof. Since [X n ] m = 0, and since every polynomial of degree n is congruent modulo m to a polynomial of degree < n, it follows that B generates R as a K-vector space. It remains to show, that the elements of B are linearly independent. Let λ 0,..., λ n 1 K with On other words λ 0 + λ 1 [X] m + λ 2 [X 2 ] m + + λ n 1 [X n 1 ] m = 0. P := λ 0 + λ 1 X + λ 2 X 2 + + λ n 1 X n 1 0 (mod (m)). This means that X n divides P in K[X]. Since deg(p ) < deg(x n ) we must therefore have P = 0, i.e. λ 0 = = λ n 1 = 0. Hence the elements of B are linearly independent and form a K-basis of R. (c) proof. Since the cardinality of the basis B = {1, [X] m,..., [X n 1 ] m } is n, it follows that the dimension of R as a K-vector space is n.

Exercise 3 (english, 25 points) (1) Find a polynomial P F 2 [X] such that K := F 2 [X]/(P ) is a field with 8 elements. Explain why you chose such P. (2) Determine all the roots of P in K. (3) Denote by α the image of X in K, i.e. K = F 2 (α). Let ϕ : K K be an isomorphism of fields. (a) Prove that ϕ(y) = y for all y F 2 K. (b) Show that ϕ(α) is a root of P. (4) Let β be any root of P in K. Show that there exists a unique isomorphism of fields ψ : K K with ψ(α) = β. (5) Conclude that there are exactly three field isomorphisms K K. (6) Does there exist a subfield L K such that L = F 4? Justify your answer. Exercice 3 (français, 25 points) (1) Trouver un polynôme P F 2 [X] tel que K := F 2 [X]/(P ) soit un corps à 8 éléments. Expliquer le choix de P. (2) Déterminer toutes les racines de P dans K. (3) Notons α l image de X dans K. En particulier, K = F 2 (α). Soit ϕ : K K un isomorphisme de corps. (a) Montrer que ϕ(y) = y pour tout y F 2 K. (b) Montrer que ϕ(α) est une racine de P. (4) Soit β une racine quelconque de P dans K. Montrer qu il existe un unique isomorphisme de corps ψ : K K, avec ψ(α) = β. (5) Conclure qu il y a exactement trois isomorphismes de corps K K. (6) Existe-t-il un sous-corps L K tel que L = F 4? Justifier votre réponse. Solution 3 (1) We claim that for P = X 3 + X + 1 F 2 [X] the ring K := F 2 [X]/(P ) is a field with 8 elements. proof. Since the polynomial P does not have any root in F 2, it is irreducible in F 2 [X]. Hence K is a field, and by proposition 8.1 from the script of the lecture K has 8 elements.

(2) If α is the image of X in K, then all elements of K are given by {0, 1, α, α + 1, α 2, α 2 + 1, α 2 + α, α 2 + α + 1}. Now either by testing all the elements of K, or by looking at the multiplication table of K, we find that the set of roots of P in K is given by {α, α 2, α 2 + α}. (3) (a) proof. Since ϕ is a field isomorphism it is in particular a homomorphism of rings. Hence ϕ(0) = 0 and ϕ(1) = 1 by definition. The claim follows from the fact that F 2 = {0, 1}. (b) proof. By the properties of a ring homomorphism we obtain (ϕ(α)) 3 +ϕ(α)+1 = ϕ(α 3 )+ϕ(α)+ϕ(1) = ϕ(α 3 +α+1) = ϕ(0) = 0. Hence ϕ(α) is also a root of P. (4) proof. Every element of K can be written as λ 2 α 2 + λ 1 α 1 + λ 0 with unique λ 0, λ 1, λ 2 F 2. Hence we can define a map ψ : K K, λ 2 α 2 + λ 1 α 1 + λ 0 λ 2 β 2 + λ 1 β 1 + λ 0. Obviously ψ(0) = 0 and ψ(1) = 1. Let µ 0, µ 1, µ 2 F 2, and set x := λ 2 α 2 + λ 1 α + λ 0 and y := µ 2 α 2 + µ 1 α + µ 0. Then ψ(x + y) = ψ ( (λ 2 + µ 2 )α 2 + (λ 1 + µ 1 )α + (λ 0 + µ 0 ) ) = (λ 2 + µ 2 )β 2 + (λ 1 + µ 1 )β + (λ 0 + µ 0 ) = (λ 2 β 2 + λ 1 β + λ 0 ) + (µ 2 β 2 + µ 1 β + µ 0 ) = ψ(x) + ψ(y), ψ(xy) = ψ ( (λ 2 µ 2 + λ 2 µ 0 + λ 1 µ 1 + λ 0 µ 2 )α 2 +(λ 2 µ 2 + λ 2 µ 1 + λ 1 µ 2 + λ 1 µ + λ 1 µ 1 )α +(λ 2 µ 1 + λ 1 µ 2 + λ 0 µ 0 ) ) = (λ 2 µ 2 + λ 2 µ 0 + λ 1 µ 1 + λ 0 µ 2 )β 2 +(λ 2 µ 2 + λ 2 µ 1 + λ 1 µ 2 + λ 1 µ + λ 1 µ 1 )β +(λ 2 µ 1 + λ 1 µ 2 + λ 0 µ 0 ) = (λ 2 β 2 + λ 1 β + λ 0 0(µ 2 β 2 + µ 1 β + µ 0 ) = ψ(x)ψ(y), where the equality ψ(xy) = ψ(x)ψ(y) follows from the fact that β is a root of P. Hence ψ is a ring homomorphism. Since ψ is a homomorphism of fields, it must be injective. Furthermore since K is finite, ψ must also be surjective.

It remains to show that ψ is unique. So let ψ : K K be another isomorphism of fields with ψ (α) = β = ψ(α). Then also ψ (α 2 ) = β 2 = ψ(α 2 ). Naturally ψ (1) = 1 = ψ(1). Since K is a vector space of dimension 3 over F 2 with basis {1, α, α 2 }, and since ψ and ψ can also be considered as vector space homomorphism, it follows that ψ (x) = ψ(x) for all x K. Hence ψ = ψ. (5) proof. Every isomorphism of fields K K sends α to a root of P, and there are exactly three roots of P in K. By part (4) there exists for every root β of P a unique field isomorphism ψ : K K with ψ(α) = β. Thus there are exactly three isomorphism of fields K K. (6) We claim that there does not exist a subfield L K with L = F 4. proof. Since the multiplicative group of a subfield L K must be a subgroup of the multiplicative group of K, and since the order of K is 7, the subfield L either has the multiplicative group K or {1}. Hence we must have L = K or L = F 2.

Exercise 4 (english, 25 points) (1) Consider the polynomial ring Z[X]. (a) Let P (X), Q(X) Z[X] be polynomials. Prove: If P (X) divides Q(X), Then P (X d ) divides Q(X d ) for all d N. Hint: Write Q(X) = P (X)R(X) with some R(X) Z[X]. (b) Show that X 1 divides X m 1 for all m N. (c) Let m, n N with m n. Deduce from (a) and (b) that X m 1 divides X n 1 if m divides n. (2) Let p be a prime number, and let m, n N with m n. (a) Use (1).(c) to show that p m 1 divides p n 1 if m divides n. (b) Prove that X pm 1 1 divides X pn 1 1 in Z[X] if m divides n by using (2).(a) and (1).(c). (3) For a prime number p and m, n N, we want to show that F p n contains a field with p m elements if and only if m divides n. (a) Let m divide n. Prove that F p n contains a subfield K with p m elements. Hint: Define K to be the set of roots in F p n of the polynomial X pm X. Why do all the roots of this polynomial lie in F p n? (b) Let F p n contain a subfield K with p m elements. Show that m divides n. Hint: Recall that F p n is a vector space over K. Exercice 4 (français, 25 points) (1) Considérons l anneau Z[X]. (a) Soient P (X), Q(X) Z[X] des polynômes. Montrer que, si P (X) divise Q(X), alors P (X d ) divise Q(X d ) pour tout d N. Indication: Ecrire Q(X) = P (X)R(X) avec R(X) Z[X]. (b) Montrer que X 1 divise X m 1 pour tout m N. (c) Soient m, n N avec m n. Déduire de (a) et (b) que X m 1 divise X n 1 si m divise n. (2) Soit p un nombre premier, et m, n N deux entiers tels que m n. (a) Utiliser (1).(c) pour montrer que p m 1 divise p n 1 si m divise n. (b) Montrer que X pm 1 1 divise X pn 1 1 dans Z[X] si m divise n, en utilisant (2).(a) et (1).(c). (3) Soit p premier et m, n N. On veut montrer que F p n contient un corps à p m élements si et seulement si m divise n.

(a) Supposons que m divise n. Montrer que F p n contient un sous-corps K à p m élements. Indication: Définir K comme l ensemble des racines dans F p n du polynôme X pm X. Pourquoi ce polynôme a-t-il toutes ses racines dans F p n? (b) Supposons que F p n contienne un sous-corps K à p m élements. Montrer que m divise n. Indication: F p n est un K-espace vectoriel. Solution 4 (1) (a) proof. As P (X) divides Q(X) there exists an R(X) Z[X] with Q(X) = P (X)R(X). But obviously this equality stays an equality if we replace X by X d, i.e. we have Q(X d ) = P (X d )R(X d ). Hence P (X d ) divides Q(X d ). (b) We show by induction on m that X m 1 = (X 1)(X m 1 + X m 2 + + 1). proof. If m = 1, the claim is trivial. So let m > 1. By Euclidian division we obtain X m 1 = X m 1 (X 1) + (X m 1 1). The induction hypothesis claims (X m 1 1) = (X 1)(X m 2 + + 1). Altogether we obtain X m 1 = (X 1)X m 1 + (X 1)(X m 2 + + 1) = (X 1)(X m 1 + X m 2 + + 1). (c) proof. If m divides n, then there exists a d N with n = dm. We know by (1).(b) that X 1 divides X d 1. It follows from (1).(a) that X m 1 divides X dm 1 = X n 1. (2) (a) proof. By (1).(c) there exists some R(X) Z[X] such that X n 1 = (X m 1)R(X) in Z[X]. This equality still holds if we replace X by p, i.e. p n 1 = (p m 1)R(p). Hence p m 1 divides p n 1. (b) proof. Since p m 1 divides p m 1 by (2).(a), it follows from (1).(c) that X pm 1 1 divides X pn 1 1. (3) (a) proof. From the lecture we know that F p n can be regarded as the set of all roots of the polynomial X pn X = X(X pn 1 1). Since by (2).(b)

X pm 1 1 divides X pn 1 1, it follows that X pm X divides X pn X. Now since X pn X is a product of linear factors in F p n[x], the same must be true for X pm X. This means that F p n contains all the roots of the polynomial X pm X. Let K F p n the subset of all the roots of X pm X. Then the cardinality of K is p m. Obviously 0, 1 K. Now let a, b K. Then (a + b) p = a p + b p, since F p n has characteristic p. Hence by simple induction we obtain (a + b) pm = a pm + b pm = a + b. This shows that also a + b lies in K. Furthermore from a pm = a and b pm = b it follows that (ab) pm = a pm b pm = ab. Hence ab lies in K as well. Let a K. Then a = [p 1] p a. As [p 1] p F p K, and since we have already shown that K contains products of two elements in K, it follows that also a K. Consider again an arbitrary p and an a K with a 0. Then (a 1 ) pm = (a pm ) 1 = a 1, which shows that K contains the multiplicative inverse of all its nonzero elements. We conclude that K is a field. (b) proof. If F p n contains a subfield K with p m elements, then of course F p n is a K-vector space. Let d be the dimension of F p n over K. Then there exists a basis {v 1,..., v d } of F p n over K. This means that for every element x F p n there exists a unique vector (λ 1,..., λ d ) K d such that x = λ 1 v 1 +... λ d v d. Also if (λ 1,..., λ d ) K d is arbitrary then naturally λ 1 x 1 + + λ d v d F p n. In other words we have an isomorphism of K-vector spaces F p n = K d. Now K d has exactly (p m ) d = p md elements. Since F p n and K d are finite they must both have the same cardinality. Hence p n = p md which implies n = md, i.e. m divides n.