I.P.S.A. 5 / 9 rue Maurice Grandcoing 94200 Ivry Sur Seine Tél. : 01.56.20.60.71 Date de l'epreuve : 19 février 2016 Classe : AERO-2 A à G Devoir Surveillé Thermodynamique Ph21 Professeur : BOUGUECHAL Durée : 1h30 1 h 00 3 h 00 Notes de Cours Avec (1) Sans (1) sans (1) Calculatrice (1) Rayer la mention inutile NOM : Prénom : N de Table : Exo 1 : Exo 2 : Exo 3 : Exo 4 : / 4 / 7 / 7 / 4 /20 DEVOIR SURVEILLE DE THERMODYNAMIQUE : Si au cours de l épreuve, vous repérez ce qui vous parait être une erreur ou un oubli dans l énoncé, vous le signalez clairement dans votre copie et vous poursuivez l examen en proposant une solution. Le barème est donné à titre indicatif. Si l épreuve comporte des QCM, chaque question peut avoir une ou plusieurs réponses. Lorsque l étudiant ne répond pas à une question ou si la réponse est fausse, il n a pas de point de pénalité. Rédigez directement sur la copie. Inscrivez vos nom, prénom et classe. Justifiez vos affirmations si nécessaire. Il sera tenu compte du soin apporté à la rédaction. NOM : PRENOM : : T.S.V.P. 1/8
Exercice 1 : Propriétés différentielles de l entropie ( 4 points ) A. La pression est liée à l entropie par : 4. 5. aucune réponse ne convient B. La température est liée à l entropie par : 4. 5. aucune réponse ne convient C. La relation qui lie la variation de l entropie est : D. La relation qui lie l entropie et les autres variables d état est : E. La relation qui lie l entropie et les autres variables d état est : F. La relation qui lie l entropie et les autres variables d état est : G. La relation qui lie l entropie et les autres variables d état est : H. La relation qui lie l entropie et les autres variables d état est : 1. 2. 3. 4. 5. aucune réponse ne convient 2/8
Cochez la ou les bonne(s) case(s). Aucune case cochée note = 0. EXERCICE 1 1 2 3 4 5 A B C D E F G H Ne pas remplir avec un crayon à papier. 3/8
Exercice 2 : Transformations thermodynamiques dans le diagramme T-S ( 7 points) 1. Représenter dans le diagramme T-S les transformations suivantes : Une isotherme. Une isentrope. Une isochore. Une isobare. On pourra répondre à cette question après avoir répondu aux questions 2 et 3. Utiliser des couleurs différentes si possible. 2. Donner les coefficients directeur de chaque transformation et comparer les deux dernières du tableau. 3. Donner l équation d une isochore et d une isobare dans le diagramme T-S, on posera qu à T=T 0 alors S = S 0. Réponse : 1. 2. Transformations isotherme Coefficients directeur isentrope isochore isobare < 4/8
3. Equation d une isobare : Equation d une isochore : 5/8
Exercice 3 : Cycle moteur de Stirling (7 points) Le cycle de Stirling moteur ABCD comporte les transformations suivantes : AB ; CD : deux transformations isothermes, de températures respectives T c et T f ( T f < T c ). T c : température de la source chaude ; T f : température de la source froide. BC ; DA : deux transformations isochores ; On appellera V min : le volume minimal et V max : le volume maximal. 1. Représenter avec les coordonnées de tous les points le cycle : En coordonnées de Clapeyron (P,V) ; En coordonnées isentropiques (T,S). 2. Le système est un gaz parfait avec C v constante qui parcourt le cycle moteur de Stirling dans le sens ABCD. Construire un tableau donnant ΔU, ΔS, W et Q pour chacune des quatre étapes du cycle et faire le bilan sur la dernière ligne. 3. En déduire en fonction de T f et T c : Le rendement d un cycle de Stirling moteur. Solution : 1. 6/8
2. Grandeurs ΔU ΔS W Q Transformations Transformation A B Transformation B C Transformation C D Transformation D A Cycle 4. Rendement 7/8
Exercice 4: Transformations élémentaires réversibles d un gaz parfait (4 points) On considère une mole de gaz parfait subissant une transformation élémentaire réversible. Donner l expression de du, dh, δq, δw, ds en fonction uniquement des variations élémentaires dt, dp, dv de la température, de la pression et du volume et des constantes caractéristiques : R la constante des gaz parfaits et γ la constante adiabatique qu on supposera constants. U, H, Q, W, S étant respectivement l énergie interne, l enthalpie, la quantité de chaleur, le travail et l entropie. Remplir uniquement le tableau. On pourra justifier éventuellement à la suite du tableau. Définition du γ Relation de Mayer 0.25 0.25 Expressions en fonction de γ C V C p du dh δw δq ds Expressions générales 8/8