Devoir n février - 4 heures

Documents pareils
Equipement d un forage d eau potable

Oscillations libres des systèmes à deux degrés de liberté

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

TP 7 : oscillateur de torsion

Test : principe fondamental de la dynamique et aspect énergétique

3. Artefacts permettant la mesure indirecte du débit

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Projet SETHER Appel à projets Adrien Patenôtre, POWEO

DYNAMIQUE DE FORMATION DES ÉTOILES

Essais de charge sur plaque

Chapitre 2 : Caractéristiques du mouvement d un solide

FORMULAIRE FORMULAIRE

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Prescriptions techniques et de construction pour les locaux à compteurs

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Chapitre 7: Dynamique des fluides

Problèmes sur le chapitre 5

Chapitre 02. La lumière des étoiles. Exercices :

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS

CHROMATOGRAPHE BTEX GC 5000 BTX

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Collecteur de distribution de fluide

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Sujet. calculatrice: autorisée durée: 4 heures

Alfa Laval échangeurs de chaleur spiralés. La solution à tous les besoins de transfert de chaleur

DISQUE DUR. Figure 1 Disque dur ouvert

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

ETUDE COMPARATIVE DES MODELISATIONS NUMERIQUE ET PHYSIQUE DE DIFFERENTS OUVRAGES D EVACUATION DES CRUES

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Mise en application

ASR1 TD7 : Un microprocesseur RISC 16 bits

Filtres pour gaz et air. GF/1: Rp 1/2 - Rp 2 GF/3: DN 40 GF/4: DN 50 - DN 100 GF: DN DN 200

RELAIS STATIQUE. Tension commutée

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Installations de plomberie

TD 9 Problème à deux corps

Détection de fuite hélium Aspect Mesure

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

accessibilité des maisons individuelles neuves

PHYSIQUE Discipline fondamentale

Chauffage à eau chaude sous pression

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Variantes du cycle à compression de vapeur

Texte Agrégation limitée par diffusion interne

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

DeltaCal BGI. Débitmètre étalon

Pour les utilités, le process et l environnement. Les solutions pompes KSB.

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

NOTICE DE MISE EN SERVICE

Le maçon à son poste de travail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

SERIE S Technologie Mouvex

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.

Le turbo met les gaz. Les turbines en équation

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

PROPOSITION TECHNIQUE ET FINANCIERE

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Comparaison de fonctions Développements limités. Chapitre 10

MÉCANIQUE DES FLUIDES TRAVAUX DIRIGÉS

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Plans API pour Garnitures Mécaniques

SCIENCES INDUSTRIELLES (S.I.)

SAUVEGARDE DES PERSONNES ET LUTTE CONTRE L INCENDIE DANS LES BATIMENTS D HABITATION DE LA 3ème FAMILLE INC/HAB COL 3/1986-2

Fonctions de plusieurs variables


Épreuve E5 : Conception détaillée. Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Précision d un résultat et calculs d incertitudes

Chapitre 8. Les capteurs

Les composites thermoplastiques

MATIE RE DU COURS DE PHYSIQUE


Casisa Anthony DOSSIER PERSONNEL

Cours Fonctions de deux variables

Premier principe de la thermodynamique - conservation de l énergie

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Cours IV Mise en orbite

SYTEPOL Syndicat de Transport d Eau Potable de l Ouest de Limoges

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

CARACTÉRISTIQUES COMMUNES À TOUS LES MODÈLES

mesure des débits et des volumes dérivés par les canaux gravitaires

CHAPITRE IX : Les appareils de mesures électriques

Diamètres 3" 4" 6" 8" Type de Bride PN 16 PN 16 PN 16 PN 16. Orangé-rouge (RAL 2002) Agrément CE/APSAD CE/APSAD CE/APSAD CE/APSAD

Exemple d application en CFD : Coefficient de traînée d un cylindre

Ballons et accessoires. Pour toutes les occasions.

Annexe 3 Captation d énergie

Transcription:

Devoir n 17-18 février - 4 heures A Débimètres à orifice déprimogène Les mesures de débits d écoulement par organe déprimogène consistent à accélérer l écoulement par une diminution de la section de passage et à mesurer la variation de pression ainsi provoquée. Ces débitmètres ont été parmi les premiers utilisés, suite à la découverte en 1797 par G. Venturi du tube qui porte son nom. Ils sont largement répandus en secteur industriel et en génie civil (station de pompage, usine de traitement des eaux, centrale hydroélectrique,...) tant pour les liquides que pour les gaz et vapeurs; les organes déprimogènes sont caractérisés par leur rapport de contraction de diamètre et regroupent les tubes de Venturi, les tuyères et les diaphragmes. AI Étude préliminaire d un écoulement Considérons l écoulement stationnaire d un fluide homogène, soumis au champ de pesanteur, dans une conduite horizontale dont la section décroît de façon continue, comme le montre la figure 1. Le fluide est supposé incompressible, de masse volumique et de viscosité négligeable. Les pertes de charge ne sont pas prises en compte. Dans la partie amont (référencée 1 ), de diamètre ½ (section d aire Ë ½ ), la pression sera notée È ½ et la vitesse du fluide Î ½. Les mêmes grandeurs avec l indice 2 seront employées pour la zone d étranglement notée 2. Le rapport des diamètres = ¾ ½ est rapport de contraction. Figure 1 AI-1 L écoulement étant supposé unidimensionnel, que pouvez-vous dire des grandeurs liées à tout point d une section droite de la conduite? AI-2 Schématiser quelques lignes de courant dans la conduite; quelles remarques ce tracé vous inspire-t-il? AI-3 Justifier puis écrire la conservation du débit volumique entre les sections droites d aires Ë ½ et Ë ¾. Dans le cas d un écoulement stationnaire, homogène, incompressible, Bernoulli a établi la relation : Ú ¾ ¾ + ÔÑ+ È = Ø (1) AI-4 AI-5 Que représente cette équation? Appliquer cette relation le long d une ligne de courant judicieusement choisie. Décrire qualitativement les évolutions de la vitesse et de la pression du fluide lors du rétrécissement de la conduite. AI-6 Exprimer la vitesse Î ¾ du fluide au niveau du rétrécissement en fonction de È ½, È ¾, et du rapport de contraction. La variation de pression entre È ½ et È ¾ pourra être notée È. AI-7 Citer des exemples d applications simples et de réalisations illustrant la variation de pression observée au niveau de la zone contractée (ce qui constitue l effet Venturi). 1

AII Tube de Venturi Monté sur une canalisation cylindrique de section Ë ½, ce dispositif comporte successivement un premier tube tronconique dénommé convergent (C) suivi d un tube cylindrique de section réduite Ë ¾, appelé col (T), puis d un second tube tronconique assez long appelé divergent (D), avant de retrouver la section initiale Ë ½, comme l illustre la figure 2. Les angles d ouverture du convergent et du divergent sont normalisés et désignés par «(respectivement «). Figure 2 Dans les sections 1 et 2 sont insérés deux tubes de faible diamètre Æ (Æ< ½ /½¼) reliés à un manomètre rempli de mercure (de masse volumique À ). Ces prises de pressions sont disposées dans une double enveloppe du tube cylindrique au niveau d une chambre annulaire (CA), à ½ /¾ avant (C) pour la zone amont et à ½ /¾ après (C) pour le col. Lorsque le fluide (qui possède les mêmes caractéristiques d écoulement que dans l étude préliminaire) transite dans le tube de Venturi, une dénivellation est relevée entre les surfaces de séparation mercure/fluide dans les deux branches du manomètre. AII-1 AII-2 Expliquer le rôle du convergent (C) dans le tube de Venturi. Justifier la dimension et la localisation des prises de pression. AII-3 Relier la dénivellation à la différence de pression È. AII-4 En utilisant les résultats établis en AI, établir l expression du débit volumique noté É Î sous la forme : ¾ È É Î = Ã (2) Ã étant un terme constant à expliciter en fonction de ¾ et. En déduire que la dénivellation résulte du débit volumique de l écoulement. AII-5 Proposer un mode d étalonnage afin d obtenir la plus grande précision possible sur la mesure du débit. Comment cette précision évolue-t-elle en fonction de la valeur de? AII-6 A l aide des caractéristiques géométriques de ce débitmètre et des paramètres expérimentaux fournis ci-après, calculer le débit volumique théorique É Î du fluide dans cette conduite (exprimé en Ñ / ÙÖ ). Conduite de refoulement d une centrale hydroélectrique 2

Diamètre conduite amont ½ = ¼¼ ÑÑ Type de fluide Eau Température d écoulement Ø=½¼ Pression amont È ½ = Ö Viscosité du fluide =½¼ È Masse volumique du fluide = Ñ Diamètre du col ¾ = ¼ ÑÑ Longueur du convergent Ä = ÑÑ Longueur du col Ä Ì = ¼¼ ÑÑ Longueur du divergent Ä = ½ ÑÑ Dénivelée manométrique =¾½ Ñ(À ) Masse volumique du mercure À = ½ Ñ Accélération de la pesanteur = ½ Ñ ¾ AII-7 Dans le cas où l écoulement faiblit, le débit volumique n étant plus que le dixième du débit maximal autorisé É Ú(Ñ Ü), que devient la variation de pression È mesurée en fonction de sa valeur maximale È Ñ Ü? En déduire qualitativement l ordre de grandeur de la plage d utilisation potentielle de ce tube de Venturi. AIII Diaphragmes Les débitmètres à diaphragmes, quoique plus rudimentaires et moins précis que les tubes de Venturi, sont appréciés pour leur faible encombrement et l interchangeabilité de leur dispositif de mesure. Ils sont constitués d une plaque introduite perpendiculairement à la conduite et percée d un orifice circulaire (DPH) présentant un double biseau calibré (diamètre ¾ ), comme le montre la figure 3. La conduite amont possède toujours le diamètre ½. Les prises de pression manométriques sont localisées de part et d autre de la plaque, dans les angles morts. Figure 3 Les relations théoriques reliant la différence de pression È au débit volumique É Î, établies précédemment pour le tube de Venturi, demeurent valables. Dans le cas précis de l écoulement d un gaz, de masse volumique, il est classique d exprimer le débit massique comme suit : É Ñ = É Ë ½ ¾ ¾ È (3) ½ Le coefficient de décharge noté É prend en compte l ensemble des pertes et des frottements dans le débitmètre. Le É coefficient de débit «est défini comme : «=. Le coefficient de détente est une grandeur expérimentale ½ qui traduit le fait que la masse volumique du gaz ne reste pas constante sous l effet des variations de vitesse. Pour un diaphragme donné, É dépend du rapport et du nombre de Reynolds Ê de l écoulement (évalué dans sa partie amont), comme le précise la relation de Stolz-Gallagher : É ( Ê )=¼ + ¼ ¼ ½¾ ¾ ½ ¼ ½ ¼ + ¼ ¾ ¾ [ ½¼ ¼ ] Ê (4) AIII-1 Retrouver l expression du débit massique. En déduire l écriture du produit «¾ en fonction de È,,, É Ñ et des grandeurs géométriques. 3

Ce type de débitmètre étant particulièrement approprié au mesurage des débits d écoulements gazeux, proposons de déterminer le diamètre d un diaphragme dans le cas d un écoulement de vapeur d eau, dans les conditions suivantes : Débit massique : É Ñ = ½ ¼¼ / ÙÖ Température : Ì= ¾¼¼ Pression amont : È ½ = Ö Pression différentielle : È= ¾ Ñ Ö Diamètre conduite amont : ½ = ½¼¼ ÑÑ Masse volumique du gaz : = ¾ Ñ Viscosité cinématique du gaz : = ½¼ Ñ ¾ ½ Coefficient de détente =¼ AIII-2 Pour vous guider dans votre démarche, commencer par réaliser quelques calculs préliminaires : AIII-2a Vitesse Î ½ dans la conduite amont, AIII-2b Nombre de Reynolds amont Ê ( ½ ), AIII-2c Produit «¾ des coefficients de débit et de contraction. AIII-3 Utiliser l abaque (figure 4) traduisant les variations de «¾ en fonction de ¾ afin d évaluer ¾. En déduire le diamètre ¾ du diaphragme. AIII-4 Calculer le coefficient É à l aide de la relation 4. En déduire la valeur de «puis la loi (numérique) reliant É Ñ à È. Comparer la valeur numérique du débit massique ainsi obtenue à celle fournie dans les données. AIII-5 Dans les mêmes conditions de température et de pression, la valeur limite inférieure du nombre de Reynolds, tel que le stipulent les normes d utilisation du dispositif, est de ½¼. De combien pourrait être divisé le débit massique É Ñ avant de sortir du domaine de normalisation? En déduire les valeurs minimales de la vitesse Î ½ et du débit massique. Figure 4 4

B Mécanique du Yoyo à débrayage Extrait du concours École de l air PC 2002 Ce problème propose l étude d un yo-yo moderne muni d un système d embrayage centrifuge qui permet la roue libre. Le yo-yo utilisé dans ce problème est représenté schématiquement sur la figure 5. Figure 5 Mécanisme du yoyo La ficelle est placée sur l anneau parfaitement ajusté sur le moyeu central du yo-yo. Pour que la ficelle s enroule autour de l anneau, une petite pointe cylindrique rétractable est sortie lorsque le yo-yo ne tourne pas suffisamment rapidement. Le dispositif permettant la roue libre est constitué de quatre ressorts identiques (ressorts de la fig 5). Quand la vitesse de rotation du yo-yo a atteint une valeur limite, les ressorts sont comprimés, et la pointe, sous l effet du ressort se rétracte dans le corps du yo-yo. L anneau sur lequel la ficelle s enroule est alors libre de tourner autour du moyeu sans contrainte : le yo-yo est en roue libre. On notera la vitesse angulaire du yo-yo dans son référentiel barycentrique : Å= ³ Ý On utilisera les grandeurs mécaniques et les notations suivantes : Masse totale du yo-yo : Å= ½ Masse d une bille : Ñ=¾ Distance à l axe de rotation des billes au repos : Ö ¼ = ½¾ ÑÑ Rayon intérieur du yo-yo : Ê=¾ ÑÑ Rayon extérieur du yo-yo : Ê = ¾ ÑÑ Constante de rappel d un ressort : = ÆÑ ½ Longueur à vide d un ressort : Ð ¼ = ½¼ ÑÑ Moment d inertie du yo-yo par rapport à l axe de rotation :  Accélération de la pesanteur : = ½ Ñ ¾ Rayon de l anneau : Ö Ñ = ÑÑ Longueur totale de la ficelle : Ð=½ Ñ BI Mesure du moment d inertie Pour mesurer le moment d inertie  par rapport à l axe de rotation, on fait rouler le yo-yo sans glisser sur un plan incliné (fig. 6). Il roule sur une longueur =½ Ñ et la durée de parcours est = ½. Le yo-yo est abandonné sans vitesse initiale. Ý Ü Figure 6 Roulement sans glissement BI-1 Relier la vitesse angulaire de rotation ³ du yo-yo et la vitesse de son centre Ü. 5

BI-2 Établir, à partir des théorèmes de la résultante cinétique et du moment cinétique, l équation du mouvement vérifiée par Ü. BI-3 BI-4 En déduire l équation horaire du mouvement puis l expression de  en fonction des données. Effectuer l application numérique calculer  BII La chute verticale du yo-yo Ç Ý Le yo-yo est cette fois-ci uniquement soumis à son propre poids. On néglige en particulier le frottement fluide du yo-yo dans l air. La ficelle est initialement totalement enroulée autour de l anneau et on néglige l épaisseur de la ficelle. Le yo-yo est abandonné sans vitesse initiale. L axe vertical est orienté positivement vers le bas et on note Þ la cote du centre d inertie du yo-yo. Le yo-yo se déroule dans le sens trigonométrique. On néglige la masse de la ficelle. On constate au cours de cette expérience que la mise en roue libre n a pas lieu. On note Á le point limite de contact de la ficelle avec le yo-yo et Ì la force exercée par la ficelle en ce point sur le yo-yo. On étudie le yo-yo dans le référentiel du laboratoire. Þ Þ Ì Á BII-1 Conservation de l énergie mécanique BII-1a Exprimer en le justifiant la puissance de la force Ì (on rappelera l expression générale de la puissance d une force exercée en un point d un solide) BII-1b Montrer que l énergie mécanique du yo-yo se conserve. BII-1c Exprimer l énergie cinétique du yo-yo en fonction de Þ, Å,  et ³ puis en fonction de Þ, Ö Ñ, Å et Â. BII-2 Le yo-yo est lâché à la cote Þ= ¼ sans vitesse initiale. Déterminer l expression de Þ en fonction de Å,, Þ,  et Ö Ñ. BII-3 Quelle est la valeur ³ Å Ü de la vitesse angulaire de rotation du yo-yo lorsque toute la ficelle est déroulée? BIII Dispositif de mise en roue libre Dans cette étude, on néglige la translation du yo-yo, on considère donc le yo-yo uniquement en rotation avec une vitesse angulaire Å= ³ Ý. Le dispositif permettant la roue libre, lorsque une vitesse angulaire suffisante est atteinte, peut être modélisé, pour une bille, par le dispositif suivant : On assimile chaque bille à un objet ponctuel de masse Ñ placée à la distance Ö de l axe de rotation (fig. 7). Chaque bille est placée dans un carénage en matière plastique, de masse négligeable, qui écarte d une distance = ÑÑ la bille du point d attache du ressort. Cette distance est constante. On suppose la bille encore en contact avec la butée en È et on note Æ= Æ Ù l action de cette butée sur la bille. On étudie le système bille carennage dans le référentiel lié au yo-yo. BIII-1 BIII-2 BIII-3 BIII-4 Tant que la bille est en contact avec la butée, quelle est l accélération Ö de la bille dans le référentiel d étude? Effectuer le bilan des forces et pseudo-forces et en déduire l expression de Æ en fonction de ³, Ö ¼,, Ð ¼, Ê, Ñ et En déduire la valeur limite ³ ½ pour laquelle le contact butée-bille va être rompu. Effectuer l application numérique. Comparer cette valeur à ³ Ñ Ü et commenter. 6

Figure 7 Dispositif de mise en roue libre 7