ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m



Documents pareils
MATIE RE DU COURS DE PHYSIQUE

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

TD 9 Problème à deux corps

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

TP 7 : oscillateur de torsion

Chapitre 2 : Caractéristiques du mouvement d un solide

CHAPITRE IX : Les appareils de mesures électriques

Champ électromagnétique?

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

DISQUE DUR. Figure 1 Disque dur ouvert

À propos d ITER. 1- Principe de la fusion thermonucléaire

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Fonctions de deux variables. Mai 2011

Précision d un résultat et calculs d incertitudes

I - Quelques propriétés des étoiles à neutrons

Fonctions de plusieurs variables

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

Repérage d un point - Vitesse et

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Charges électriques - Courant électrique

DIFFRACTion des ondes

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Travaux dirigés de magnétisme

L électricité et le magnétisme

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

FUSION PAR CONFINEMENT MAGNÉTIQUE

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

MESURE DE LA TEMPERATURE

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Plan du chapitre «Milieux diélectriques»

PHYSIQUE Discipline fondamentale

Exercice 1. Exercice n 1 : Déséquilibre mécanique

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

Physique, chapitre 8 : La tension alternative

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Les rayons X. Olivier Ernst

Résonance Magnétique Nucléaire : RMN

Caractéristiques des ondes

1 Mise en application

Chapitre 1 Cinématique du point matériel

Contrôle non destructif Magnétoscopie

Cours de Mécanique du point matériel

Mesures et incertitudes

Recommandations pour la définition des appareils de mesures utilisés en protection cathodique

CH IV) Courant alternatif Oscilloscope.

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

TS Physique Satellite à la recherche de sa planète Exercice résolu

Module 3 : L électricité


Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Test : principe fondamental de la dynamique et aspect énergétique

Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique

Chapitre 5. Le ressort. F ext. F ressort

1 Systèmes triphasés symétriques

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Chapitre 02. La lumière des étoiles. Exercices :

CONCOURS COMMUN 2010 PHYSIQUE

Chapitre 0 Introduction à la cinématique

Cours 1. Bases physiques de l électronique

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Quantité de mouvement et moment cinétique

M HAMED EL GADDAB & MONGI SLIM

Les Conditions aux limites

Équivalence masse-énergie

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Cours IV Mise en orbite

Premier principe de la thermodynamique - conservation de l énergie

Chapitre 1 Régime transitoire dans les systèmes physiques

Calcul intégral élémentaire en plusieurs variables

NOTICE DOUBLE DIPLÔME

La notion de temps. par Jean Kovalevsky, membre de l'institut *

Michel Henry Nicolas Delorme

Électricité. 1 Interaction électrique et modèle de l atome

EXERCICES DE REVISIONS MATHEMATIQUES CM2

DYNAMIQUE DE FORMATION DES ÉTOILES

Chapitre 7: Dynamique des fluides

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

Oscillations libres des systèmes à deux degrés de liberté

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Comprendre l Univers grâce aux messages de la lumière

Le second nuage : questions autour de la lumière

Élan d ouverture. 30 fois plus rapide qu un battement de cil : ABB simule l extrême dans un disjoncteur CCHT

Mesure de la dépense énergétique

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Classe : 1 ère STL Enseignement : Mesure et Instrumentation. d une mesure. Titre : mesure de concentration par spectrophotométrie

Transcription:

EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une particule de charge q subit la force F = qe. (1) Si E est uniforme et indépendant du temps, la particule est uniformément accélérée. Une particule chargée placée dans un champ électrique possède une énergie potentielle à cause de son interaction avec le champ. Le potentiel électrique U(r ) en un point r est défini comme l énergie potentielle électrique E potel (r ) par unité de charge placée en ce point: U(r ) = E potel (r ) q. (2) L énergie totale d une particule de masse m se déplaçant à la vitesse v dans un champ électrique est alors donnée par: E tot (r, v ) = E cin (v ) +E potel (r ) = 1 2 m v 2 + qu( r ).(3) Lorsque la particule se déplace d un point P 1 où le potentiel vaut U 1 en un point P 2 de potentiel U 2, le principe de conservation de l énergie totale permet d écrire à partir de (3) : 1 2 mv 1 2 +qu 1 = 1 2 mv 2 2 +qu 2. (4) Si la vitesse au point P 1 est nulle, et si on appelle U = U 2 U 1 la différence de potentiel entre P 1 et P 2, la vitesse en P 2 vaut: v 2 = 2q U m 1/2. (5)

EEl 2 1.2. Effet d un champ d induction magnétique sur une particule chargée en mouvement Dans un champ d induction magnétique uniforme B, une particule de charge électrique q et de vitesse v subit une force appelée force de Lorentz, donnée par F em = qv B. (6) Soulignons que F em est perpendiculaire à B et à v. Cette dernière particularité implique que la force électromagnétique ne fournit aucun travail. L énergie cinétique d une particule chargée dans un champ d induction magnétique ne change donc pas et sa vitesse est constante en grandeur, mais généralement pas en direction. Lorsque la vitesse v est beaucoup plus petite que la vitesse de la lumière, la masse de la particule peut être considérée comme constante et on utilise la deuxième loi de Newton pour écrire l équation du mouvement: ma = q v B. (7) Si la vitesse v est perpendiculaire à B, on peut montrer, en résolvant (7) que la particule se meut dans le plan perpendiculaire B en suivant une trajectoire circulaire de rayon R (fig. 1). La force de Lorentz est, dans ce cas, une force centripète (toujours dirigée radialement vers le centre du cercle) d intensité: F em = qvb (8) où v et B sont les normes des vecteurs v et B. On sait que pour un mouvement circulaire uniforme, existent les relations suivantes entre la vitesse tangentielle v, la vitesse angulaire ω et l accélération centripète a: v = ω R, (9) a = ω 2 R = v2 R. (10) En combinant les équations (7), (8) et (10), on obtient: m v2 R = qvb. (11) Si l on connait v et B et que l on mesure R, le rapport q/m est déterminé:

EEl 3 q m = v RB. (12) F em B v Figure 1: lorsque la vitesse de l électron est perpendiculaire au champ d induction, sa trajectoire est circulaire. Figure 2: trajectoire hélicoïdale d un électron dont la vitesse n est pas perpendiculaire au champ d induction. Lorsque la vitesse v de la particule chargée n est pas perpendiculaire au champ d induction magnétique B, la trajectoire de la particule est une hélice (fig. 2). En effet, la force de Lorentz ne modifiant pas la composante de v parallèle à B, une translation à vitesse constante dans la direction du champ d induction s ajoute au mouvement circulaire uniforme, engendrant une trajectoire hélicoïdale. 1.3 Création d un champ d induction magnétique. Bobines de Helmholtz Le champ d induction magnétique B est créé par un courant électrique. Afin d obtenir un champ relativement intense, on utilise des bobines ou solénoïdes formés d un grand nombre de spires de fil parcourues par un même courant. O i i ξ C 1 C 2 ξ Figure 3: bobines de Helmholtz. On appelle bobine de Helmholtz l ensemble de 2 solénoïdes circulaires plats montés en série et disposés de sorte que leurs axes soient confondus et que la distance entre leurs

EEl 4 centres respectifs C 1 et C 2 soit égale au rayon des bobines (fig. 3). Cette disposition a l avantage d assurer une bonne homogénéité du champ B au voisinage du point O situé à mi-distance entre C 1 et C 2. Lorsque les spires sont parcourues par un courant d intensité i, le champ magnétique db mesuré en un point O et produit par un élément dx de bobine est donné par la relation de Biot et Savart: db = µ 0 4π i dx r r 3. (13) Dans cette expression, r est le vecteur issu de l élément considéré de la bobine et aboutissant en O (fig. 4); r est la norme du vecteur r. Enfin, la constante µ o, appelée constante d induction, vaut µ o = 4π 10 7 VsA 1 m 1. Le champ d induction magnétique total B créé en un point O par les spires s obtient en sommant les inductions partielles db produites par tous les éléments de conducteur dx. db r O dx C 1 Figure 4: champ db créé par un élément dx de spire. Compte tenu du fait que le courant circule dans le même sens dans les deux bobines, l intégrale de (13) étendue à toutes les spires donne: B = 0.715µ o Ni ξ (14)

EEl 5 où N est le nombre de spires par bobine et ξ est le rayon moyen des spires. Au point O situé à mi-distance des centres des spires, le champ d induction B est, pour des raisons de symétrie, parallèle à la droite passant par les centres C 1 et C 2 des bobines. Pour les bobines à disposition: N = 154 et ξ = 0,2 m. 2 MANIPULATION 2.1 Principe Les particules étudiées, des électrons, sont émises et circulent dans un tube en verre de forme sphérique contenant un gaz inerte à pression réduite. Le tube est placé au centre des bobines de Helmholtz; il est orientable par rapport au champ d induction magnétique. Grâce à leur vitesse, les électrons ionisent le gaz sur leur parcours et le rendent ainsi luminescent, ce qui visualise leur trajectoire. Selon l orientation du tube, il est possible d obtenir des trajectoires circulaires ou hélicoïdales. Des repères luminescents placés dans le tube permettent de déterminer le rayon de la trajectoire des électrons. B anode 2 grille 1 cathode R Figure 5 Au voisinage de la cathode, la vitesse des électrons est négligeable vis à vis de la vitesse finale acquise. Si le potentiel de la cathode est égal à zéro (la cathode est mise à la terre), la différence de potentiel U entre cathode et anode vaudra U o, potentiel d anode. En appelant -e la charge de l électron, on peut appliquer la relation (5) pour trouver la vitesse v 2 après la traversée de l anode: v 2 = 2( e)u o m 1/2 = 2U o e m 1/2. (15)

EEl 6 Bobine 1 Bobine 2 A + - Figure 6: schéma de l alimentation des bobines de Helmholz. Un ampèremètre mesure le courant. Les bobines sont en séries. V 0 + 50 V + 300 V Anode + + grille cathode Chauffage Figure 7: schéma de l alimentation du tube. Les différences de potentiel cathodegrille et cathode-anode sont réglables séparément. Un voltmètre mesure U o. Au sortir du canon à électrons, les électrons sont soumis au champ magnétique B. Si la trajectoire est circulaire, la valeur du rapport e/m est obtenue à partir de l expression (12) en remplaçant v par (15) et en simplifiant: e m = 2U o R 2 B 2. (16) Les électrons sont produits par un canon à électrons composé de trois électrodes, la cathode, la grille et l anode. La cathode chauffée par un filament émet les électrons, qui sont ensuite accélérés par la différence de potentiel régnant entre cathode et anode. Le potentiel appliqué sur la grille sert à focaliser le faisceau électronique. 2.2 Montage expérimental Un bloc d alimentation permet de produire le courant circulant dans les bobines de Helmholtz et les tensions nécessaires au fonctionnement du tube à rayons cathodiques.

EEl 7 Le courant et la tension d accélération sont mesurés par deux instruments à affichage numérique. Les schémas électriques sont donnés par les figures 6 et 7. 2.3 Mise en marche et mesures Commencez par vous assurer que chaque potentiomètre du bloc d alimentation indique bien la valeur minimale, ceci afin d éviter une détérioration de la cathode. Enclenchez le bloc d alimentation et attendez environ 3 minutes avant de monter la tension. (1) Observations qualitatives Augmentez la tension U o et le courant i et observez dans l obscurité la formation du faisceau. Réglez la tension de grille pour obtenir le maximum de luminosité et de netteté du faisceau. Observez attentivement les variations de la trajectoire des électrons en faisant varier i et U o. Observez et expliquez les trajectoires hélicoïdales obtenues en faisant tourner le tube. (2) Mesures Placez le tube de manière à obtenir une trajectoire circulaire. Pour une dizaine de valeurs de U o réparties entre 100 V et 300 V, mesurez le courant i permettant d obtenir une trajectoire circulaire de rayon R = 2 cm, 3 cm, 4 cm et 5 cm. Pour chaque rayon, représentez le graphe de U o en fonction de B 2. A partir de la pente de chacune des droites obtenues, déterminez le rapport e/m et son incertitude. Comparez vos résultats avec la valeur des tables. Remarque: Aussi souvent que possible, supprimez le faisceau en ramenant U o à zéro, afin d augmenter la durée de vie du tube.

EEl 8 3 PLAN DE TRAVAIL 3.1 Etudiez le bloc d alimentation et le principe de fonctionnement du tube. Effectuez le montage électrique. 3.2 Effectuez les observations qualitatives. Déterminez e/m et son incertitude. Discutez les sources d erreur. 3.3 Etablissez la relation (14). Bibliographie - Resnick et Halliday, 2, Electricité et magnétisme, chap. 8 - Rossel, Physique générale, page 406 - Sears, Zemansky et Young, University Physics, 30-4