, car la tension dans une corde est partout la même. P F



Documents pareils
Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Mesure de la dépense énergétique

ÉNERGIE : DÉFINITIONS ET PRINCIPES

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

1 Problème 1 : L avion solaire autonome (durée 1h)

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

L énergie sous toutes ses formes : définitions

Test : principe fondamental de la dynamique et aspect énergétique

ÉCONOMIES D ÉNERGIE, ÉNERGIES RENOUVELABLES ET PRATIQUES ÉCOLOGIQUES

Chapitre 5. Le ressort. F ext. F ressort

PHYSIQUE Discipline fondamentale

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

Problèmes sur le chapitre 5

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

Mesures et incertitudes

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

association adilca LE COUPLE MOTEUR

TD 9 Problème à deux corps

véhicule hybride (première

Chapitre 11 Bilans thermiques

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

L ÉNERGIE C EST QUOI?

LES COLLISIONS FRONTALES ENTRE VÉHICULES

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Thermodynamique (Échange thermique)

Voyez la réponse à cette question dans ce chapitre.

Chapitre 5 : Le travail d une force :

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

8/10/10. Les réactions nucléaires

Atelier : L énergie nucléaire en Astrophysique

Les tensions 3 CHAPITRE

Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2

VOITURE A REACTION. Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson)

Rencontre des savoirs. L énergie électrique est-elle bien adaptée à une mobilité durable?

Comprendre l Univers grâce aux messages de la lumière

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

1 Mise en application

Stage : "Développer les compétences de la 5ème à la Terminale"

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Premier principe de la thermodynamique - conservation de l énergie

SCIENCES TECHNOLOGIES

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

Interactions des rayonnements avec la matière

Équivalence masse-énergie

La physique nucléaire et ses applications

P17- REACTIONS NUCLEAIRES

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

L énergie. un parcours. J.-E. Buchter

- MANIP 2 - APPLICATION À LA MESURE DE LA VITESSE DE LA LUMIÈRE

Equipement d un forage d eau potable

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

PLAN D ATHLETISATION PROTOCOLES D EVALUATION DES QUALITES PHYSIQUES DES JOUEURS INTERNATIONAUX

Energie nucléaire. Quelques éléments de physique

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

Chapitre 5 : Noyaux, masse et énergie

DIFFRACTion des ondes

Physique: 1 er Bachelier en Medecine. 1er juin Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:

Oscillations libres des systèmes à deux degrés de liberté

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

La charge électrique C6. La charge électrique

L ADHÉRENCE ET LE GLISSEMENT DES PNEUMATIQUES

Un accueil de qualité :

À propos d ITER. 1- Principe de la fusion thermonucléaire

Transformations nucléaires

Cours de Physique 2011/2012. LJBM Département de Physique. Classe de 3 e BC

Toujours pionnier, Opel fait progresser la mobilité électrique

TP 03 B : Mesure d une vitesse par effet Doppler

Chap 8 - TEMPS & RELATIVITE RESTREINTE

1 Savoirs fondamentaux

Manuel d'utilisation de la maquette

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

DISQUE DUR. Figure 1 Disque dur ouvert

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

FUSION PAR CONFINEMENT MAGNÉTIQUE

L ÉLECTRICITÉ C EST QUOI?

C3. Produire de l électricité

U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E 719 Les voitures électriques

Premier principe : bilans d énergie

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

3 Charges électriques

Les engins roulants, Ecole Paul Salomon 1 / Hélène LEBON ET Madeleine RIVIERE, MS

TP 7 : oscillateur de torsion

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Quelques chiffres clés de l énergie et de l environnement

Origine du courant électrique Constitution d un atome

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

TPE : La voiture solaire. Présentation de Matthys Frédéric, Soraya Himour et Sandra Thorez.

L ENERGIE CORRECTION

Chapitre 02. La lumière des étoiles. Exercices :

Transcription:

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 1 A. Mécanique A1. Machines simples Définition : On appelle machine simple un système mécanique (sans moteur) qui permet de réduire la force pour effectuer une certaine manœuvre. p.ex : levier (Hebel) plan incliné (schiefe Ebene) poulies (Rollen) / palan (Flaschenzug) A1.1 Cordes et poulies On distingue entre poulies fixes et poulies mobiles. Les poulies fixes sont fixées à un support (mur, plafond, sol, ) Si on soulève un objet à l aide d une poulie fixe, à vitesse constante (ou au repos), alors la tension est la même dans toute la corde. Comme l objet se trouve alors en équilibre, on a : T=P. Comme d autre part, le bout de la corde est en équilibre, on a aussi : F=T. Finalement : F=P T P F Une poulie fixe ne modifie donc pas la norme d une force, mais uniquement sa direction et / ou son sens. Sur la figure, la force ne change pas de direction (qui reste verticale), mais de sens (pour soulever directement l objet, il faudrait appliquer une force vers le haut, à l aide de la poulie fixe, la force est appliquée vers le bas). De plus, on constate que pour soulever le corps d une hauteur h, il faut déplacer le point d application de la force F r d une distance x=h. F2 Les poulies mobiles se déplacent avec la charge à soulever. r r r r Si la charge est en équilibre, on a que F 1 + F2 + P = 0. r r En plus, F 1 = F2, car la tension dans une corde est partout la même. r r r r r P P On a donc : 2F 2 + P = 0 F2 = F2 = 2 2 Le corps a soulever est supporté par 2 brins de corde (tragende Seilstücke). Une poulie mobile modifie donc l intensité d une force. F1 P

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 2 Pour soulever la charge d une hauteur h, il faut déplacer le point d application de la force de x=2 h A1.2 Palans Un palan est une association de plusieurs poulies fixes et mobiles. Exemples : F1 La poulie mobile réduit la force de moitié, la poulie fixe change la direction et le sens de la force : F 2 =P/2 Ici encore, la charge est supportée par 2 brins de corde. x=2 h F2 P La charge est supportée par 4 brins de corde. On a donc : F 1 =P/4 Et x=4 h. F1 F2 F3 F4 P

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 3 La charge est répartie sur 4 brins de corde (elle n est pas directement suspendue au premier brin de corde!), donc : F 0 =P/4 et x=4 h F0 F1 F2 F3 F4 P F Et encore un palan où la charge est répartie sur 4 brins de corde. P Conclusion : Un palan sert à réduire l intensité d une force, à changer sa direction et son sens. La force est divisée par le nombre n de brins de corde. En revanche, le chemin que doit parcourir le point d application de la force est multipliée par le même nombre n :

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 4 F1 F2 = x2 = n x1 n De plus, on a : F 2 x 2 =F 1 x 1 (le produit de la force avec le chemin est constant!) (F 1 / x 1 : chemin/force à appliquer sans palan ; F 2 / x 2 : chemin/force avec palan) A1.3 Plan incliné On appelle plan incliné un plan qui fait un certain angle avec l horizontale. Expérience : Pour soulever directement (et à vitesse constante) un corps de masse m= g d une hauteur h=, il faut une force F 1 =. Soulevons le même corps d une même hauteur h en le glissant sur un plan incliné. F1 F2 d h m α plan incliné P Mesurons le chemin parcouru d et la force F 2 pour plusieurs inclinaisons α. α ( ) d (m) F 2 (N) F 2 d Calculons en plus le produit F 1 h : F 1 h= On constate : Le produit F 2 d est constant (aux erreurs expérimentales près). De plus : F 1 h=f 2 d Conclusion : Un plan incliné sert à réduire l intensité d une force lorsqu on veut soulever un corps. En revanche, le chemin que doit parcourir le point d application de la force devient plus long. Le produit de la force par le chemin parcouru est constant!

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 5 A1.3 Régle d or de la mécanique Toutes les machines simples permettent de réduire l intensité d une force. En revanche, le chemin parcouru par son point d application devient d autant plus long. Ceci est la règle d or de la mécanique : Pour économiser des forces, il faut parcourir un chemin plus long. Réciproquement : pour réduire le chemin sur lequel une force s applique, il faut augmenter l intensité de la force. A2. Travail Il ne faut pas confondre le travail au sens physique du terme avec ce que le langage courant qualifie de travail. Ainsi, le travail au sens physique n englobe pas le travail intellectuel, ni certaines activités exigeant de grands efforts physiques. Dans le chapitre précédent, on a vu que les machines simples réduisent une force tout en rallongeant le chemin. Le produit de la force par le chemin reste donc constant. Ce produit a une grande importance en mécanique. On effectue un travail lorsqu on applique une force sur un corps parallèlement à son déplacement. Définition : On appelle travail et on note W (work) le produit de la composante tangentielle F T d une force constante par le chemin parcouru x. W=F T x Unité SI : F T : (composante d une) force en Newton (N) x : distance en mètres (m) } W : travail en N m On définit : 1 N m = 1 J (Joule) Souvent, on utilise aussi des multiples du Joule, p.ex. le kilojoule (kj) : 1 kj=1000 J Exemple : On soulève un corps d une masse de 102g d une hauteur de 1m (à vitesse constante). Il faut donc appliquer la force F=m g=0,102 kg 9,81 N/kg = 1 N. Comme cette force est parallèle à son déplacement, on a que F=F T. De plus : x = 1m. Finalement, le travail effectué vaut : W=F x=1 N 1 m = 1 N m = 1 J. En soulevant un corps de masse 102g de 1 m, on effectue donc un travail de 1 J.

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 6 Cas où la force n est pas parallèle à son déplacement : Une force n effectue un travail que si elle agit dans la direction du déplacement. Une force perpendiculaire au déplacement ne travaille pas. Toute force inclinée par rapport au déplacement peut être décomposée en une composante parallèle au déplacement (composante tangentielle) F T et une composante perpendiculaire au déplacement (composante normale) F N. Seulement la composante tangentielle entre en ligne de compte pour le travail. D après la définition du travail : W=F T x Or, cos α=f T /F F T =F cos α. Donc : formule finale du travail : W= F cos α x Remarque : cette formule reste valable dans les cas particuliers : - force parallèle au déplacement : α=0 : W=F cos 0 x=f x - force perpendiculaire au déplacement : α=90 : W=F cos 90 x=0 Finalement, on peut dire : A3. Puissance Les machines simples réduisent les forces, mais conservent le travail. A3.1 Exemple d introduction : Deux fournisseurs de boissons montent deux caisses d eau (m=13 kg) au 3 ème étage (hauteur : 12 m). Le premier effectue le travail en 5 minutes, le deuxième a besoin de 8 minutes. Il est clair que les deux hommes effectuent le même travail, à savoir : W=F x=p x=m g x=13 kg 9,81 N/kg 12 m = 1530 J Or, le client sera plus content du premier fournisseur, comme il effectue le même travail plus rapidement que l autre. On dit qu il est plus puissant.

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 7 A3.2 Définition : On appelle puissance et on note P (power) le travail effectué par unité de temps : W P = t Unité SI : W : travail en Joule (J) t : temps en secondes (s) } P : puissance en s J J On définit : 1 = 1W (Watt), en l honneur de l inventeur de la machine à vapeur, James Watt. s Souvent, on utilise aussi des multiples du Watt, p.ex. le Kilowatt (kw) ou le Megawatt (MW) 1 kw=1000 W / 1 MW = 1000 kw = 10 6 W Dans l exemple précédent, le premier fournisseur effectue le travail en un temps t=5 min=300s. W 1530 J Sa puissance moyenne vaut donc : P = = = 5, 1W t 300 s W 1530 J L autre fournisseur a besoin du temps t=8 min=480 s. P = = = 3, 2 W t 480 s A3.3 Ancienne unité pour la puissance : le cheval vapeur (ch) / Pferdestärke (PS) Watt a mesuré la puissance d un cheval. Il a trouvé qu un cheval peut soulever d un mètre une charge de 75 kg en une seconde. On a donc : m=75 kg W=F x=m g h=75 kg 9,81 N/kg 1 m = 735,75 J W 735,75 J Et la puissance vaut : P = = = 735,75W = 0, 736 kw t 1 s 1 ch = 0,736 kw 1 kw = 1/0,736 ch Cette unite n est plus admise dans les sciences. Cependant, elle est encore souvent utilisée dans la vie de tous les jours (puissance des voitures, )

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 8 A3.4 Expérience : Mesure de la puissance d un moteur électrique On soulève une masse m= d une hauteur h= à l aide d un moteur électrique. En même temps, on mesure le temps nécessaire. On répète la mesure 3 fois : t 1 = s t 2 = s t 3 = s Moyenne : t = s Calcul de la puissance du moteur : W P = t = mgh t = A4. Énergie A4.1 Introduction Pour effectuer un travail, il faut de l énergie. Ceci est vrai pour les hommes et pour les êtres vivants. Mais les machines aussi nécessitent de l énergie pour effectuer un travail. A4.2 Différentes formes d énergie L énergie nous apparaît sous différentes formes :

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 9 L énergie thermique (chaleur / én. Calorifique) est liée aux mouvement des particules (atomes / molécules) d un corps. Elle se manifeste lors de l élévation de la température, de la dilatation d un corps L énergie électrique est liée aux différences de charge électrique entre deux corps. Elle est particulièrement commode à transformer et à transporter, mais difficile à stocker. L énergie chimique est liée à la structure de la matière, aux liaisons entre atomes ou entres molécules. L énergie nucléaire est liée à la cohésion entre particules constituant le noyau de l atome. Elle se manifeste lorsque des noyaux lourds se cassent (fission nucléaire) ou lorsque des noyaux légers s assemblent (fusion nucléaire). La radioactivité est liée à ce type d énergie. L énergie rayonnée est liée aux radiations (photons) émises par des corps chauds. Celle du soleil est la plus connue, cas indispensable à la vie sur Terre. L énergie mécanique est présente sous 3 formes : - l énergie potentielle de pesanteur est liée à l altitude d un objet - l énergie potentielle élastique est liée à la déformation d un objet - l énergie cinétique est liée au mouvement des objets Dans la suite, l énergie mécanique sera étudiée plus en détail. A4.3. Energie mécanique 3a) Energie potentielle de pesanteur Un objet placé à une certaine hauteur est susceptible de tomber. Dans la bibliothèque, le livre posé sur le rayonnage supérieur possède plus d énergie potentielle de pesanteur que celui placé en bas de la bibliothèque. L énergie potentielle du livre est égale au travail qu il a fallu fournir pour le placer sur le rayon de la bibliothèque. Pour mettre cela en évidence, il suffit de faire tomber les livres sur la tête du lecteur.

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 10 En résumé, l énergie potentielle de pesanteur (E pot.pes. ) d un corps dépend de sa position par rapport à un niveau de référence (que l on peut fixer arbitrairement). On a : E pot.pes. ~P=m g (le poids du corps) E pot.pes. ~h (l altitude du corps par rapport au niveau de référence) Finalement, on a : E pot.pes. =m g h (m en kg, g en N/kg et h en m) On constate que cette énergie est exactement égale au travail de levage qu il a fallu pour soulever le corps à partir du niveau de référence à la hauteur h (W= m g h). 3b) Energie potentielle élastique Cette énergie est celle que possède un corps lorsqu il est déformé de manière élastique. Elle est égale au travail de déformation qu il a fallu pour déformer le corps. Cette énergie est restituée lorsque le corps reprend sa forme initiale. Exemples : - un arc tendu - un ressort comprimé - une balle qui rebondit 3c) Energie cinétique Cette énergie est celle que possède un corps qui se déplace. Un skieur, une voiture, un vélo ou tout corps lancé a une vitesse v. L énergie cinétique est égale au travail accélérateur qu il a fallu fournir pour accélérer le corps de l arrêt jusqu á sa vitesse actuelle. Cette énergie est proportionnelle à la masse du corps qui se déplace et au carré de sa vitesse : A4.4 Unités de l énergie et exemples : E cin.. =½ m v 2 (m en kg et v en m/s) Pour obtenir une certaine forme d énergie mécanique, il faut toujours effectuer un travail. La quantité d énergie qui apparaît sous cette forme est alors égal au travail qui l a fournie. L unité de l énergie est donc la même que celle du travail : Exemples : L unité SI de l énergie est le Joule (J) * Calculer l énergie potentielle de pesanteur acquise par 8 kg de pommes de terre montées à une hauteur de 4,5 m au dessus du niveau de référence :

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 11 E pot.pes =m g h=8 kg 9,81 N/kg 4,5 m = 353 N m = 353 J * Calculer l énergie cinétique d un camion de masse 18,6 t, roulant à une vitesse de 52 km/h. v=52 km/h=14,44 m/s E cin.. =½ m v 2 =½ 18600 kg (14,44 m/s) 2 2 m =1.939.176 kg 2 s (=1,94 MJ) =1.939.176 J Remarque : Une ancienne unité de l énergie (qui n est plus admise en sciences) est la calorie. C est l énergie nécessaire pour élever la température de 1 g d eau de 1 C. On a : 1 cal = 4,186 J A4.5 Transfert et transformation d énergie On travaillant, on transfère de l énergie. Ainsi, si on lance une flèche à l aide d un arc tendu, l énergie potentielle élastique initialement stockée dans l arc tendu est utilisée pour effecteur un travail accélérateur sur la flèche, qui ainsi, acquiert de l énergie cinétique. Il en est de même pour d autres formes de travail : en travaillant, on transfert de l énergie. Le travail est un mode de transfert d énergie. L énergie peut aussi changer de forme, on parle alors de transformation d énergie. Dans l exemple ci-dessus, l énergie est transférée de l arc à la flèche, et elle a été transformée d énergie pot. Elastique en énergie cinétique. A4.6 Principe de conservation de l énergie L énergie peut être transférée et/ou transformée de façons très variées, mais pour toute transformation / tout transfert, on peut dire. L énergie totale reste conservée. Aucune énergie n est créée, aucune énergie ne pourra disparaître. C est le principe de conservation de l énergie. Autrement dit : l énergie totale de l univers reste toujours constante. Sur terre cependant, la grande majorité des travaux sont accompagnés de frottement. Une partie de l énergie initialement disponible servira donc à effectuer un travail de frottement, créant de l énergie calorifique en échauffant l entourage. Cette énergie se répartit généralement sur un grand volume et ne peut plus servir à effectuer un travail (on ne peut pratiquement pas la stocker). Voilà pourquoi on parle souvent de «pertes d énergie». Mais l énergie n a pas disparu : elle est plutôt «cachée» dans les corps réchauffés. Cette énergie a pour nous moins de valeur que l énergie mécanique initiale.

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 12 On peut facilement représenter les transformations d énergie avec les travaux en question sur un schéma. Exemple :

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 13 A5. Exercices 1. Quelle force faut-il appliquer pour garder la charge de 10 kg en équilibre (fig. 7-10). 2. Tracer 2 palans avec 3 brins de corde, puis 2 palans avec 5 brins de corde. 3. Dans un atelier de réparation, on soulève de 2 m un moteur de 90 kg à l aide d un palan. Ce palan est constitué de deux poulies mobiles et de deux poulies fixes. Chaque poulie a une masse de 2 kg. a) Il y a deux manières d enrouler la corde : soit on fixe une extrémité au plafond, soit on la fixe aux poulies mobiles. Fais un schéma pour chaque cas. b) Lequel des deux dispositifs est le plus pratique? c) Sur combien de brins de corde la charge de répartit-elle? d) Quelle force doit-on appliquer pour soulever le moteur? (on néglige les frottements) e) Quelle longueur de corde doit-on tirer pour soulever le moteur de 2 m? 4. On soulève une caisse à l aide de différents palans. La charge, y compris les poulies mobiles, a une masse de 120 kg. On mesure les forces de traction : 1) 600 N, 2) 400 N, 3) 300 N, 4) 200 N. a) Sur combien de brins de corde la charge se répartit-elle dans chaque cas? Dessine les quatre palans. b) On fait descendre la caisse de 1 m. Combien de mètres de corde doit-on lâcher? 5. Détermine les forces à appliquer pour garder les dispositifs des figures 4 à 9 en équilibre (on néglige les poids des poulies et le frottement). 6. On veut soulever une masse de 3 kg d une hauteur de 5 m. a) On soulève la masse directement vers le haut. Calculer le travail nécessaire.

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 14 b) Maintenant, on utilise un plan incliné de 35 pour faciliter l affaire. Tracer ce plan à l échelle 1cm=^1m. c) Mesurer le chemin nécessaire pour atteindre la hauteur de 5m. d) Quel est le travail nécessaire? e) En déduire la valeur de la force qu il faut appliquer pour tirer le corps le long du plan incliné. 7. Jeff et Ben prennent des chemins différents pour monter (v. fig.). Sous quelles conditions les travaux qu ils effectuent sont-ils égaux? 8. Pour vider une cave inondée, les pompiers doivent pomper l eau vers une bouche d égout située 2,70 m plus haut. La pompe effectue un travail de 54000 J. Calcule, en litres, la quantité d eau déplacée. 9. Marc travaille dans un supermarché. Il doit amener une caisse de conserves de l entrepôt jusqu au rayon. Il exerce une force constante de 90 N pour faire glisser la caisse et effectue un travail total de 3150 J. Quelle est la distance entre l entrepôt et le rayon? 10. Un coureur cycliste de 90 kg a une puissance maximale de 1400 W. Il monte un col de longueur l=2 km pour une différence d altitude de 200 m. a. Evaluer le travail et déduire la valeur minimale du temps de montée. b. Prédire la vitesse du cycliste en m/s et en km/h. Expliquer pourquoi la vitesse réelle sera bien inférieure. 11. Quel est le temps mis par une pompe de puissance 3,7 kw pour transporter 10 m 3 d eau à une hauteur de 25 m? 12. Le moteur d une grue fournit une puissance motrice de 88 ch. Combien de temps met grue pour soulever une masse de 90 kg d une hauteur de 30 m? 13. Calculer la distance de laquelle il faudrait laisser tomber une voiture de masse m=1,3 t pour que les dégâts causés soient identiques à ceux d une collision frontale à une vitesse de 50 km/h. 14. Décris les transformations d énergie qui ont lieu lors du rebond d une balle de tennis sur une raquette. 15. Une bicyclette en mouvement possède de l énergie cinétique. Qu advient-il de cette énergie lorsque le cycliste freine? 16. Décris les transformations d énergie lors d un saut à la perche (fig. 5 à 9). Quels sont les travaux qui font passer l énergie d une forme à l autre?

Physique 3 ème ADEG (Y.Reiser / LN) Mécanique 15 17. Une voiture qui freine perd de l énergie. Que penses-tu de cette affirmation? 18. On laisse rouler une balle dans une valée (dénivellation h=3 m), de sorte à ce qu elle puisse remonter de l autre côté (le tout sans frottements). Décris toutes les transformations d énergie qui ont lieu. Quelle sera la hauteur maximale atteinte de l autre côté. Que se passe-t-il en réalité? 19. Le soleil éclaire une cellule photovoltaïque. La puissance rayonnée qui atteint la cellule vaut 1030 W. a) Quelle est l énergie électrique fournie par la cellule si son rendement vaut 5%? b) De quelle hauteur un moteur électrique pourrait-il soulever une masse de 5 kg en 2 minutes, s il recevrait l énergie de la cellule photoélectrique?