Analyse et contrôle optimal d un bioréacteur de digestion anaérobie

Documents pareils
Système de diffusion d information pour encourager les PME-PMI à améliorer leurs performances environnementales

Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud

La voix en images : comment l évaluation objectivée par logiciel permet d optimiser la prise en charge vocale

statique J. Bertrand To cite this version: HAL Id: jpa

Peut-on perdre sa dignité?

Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire

Sur le grossissement des divers appareils pour la mesure des angles par la réflexion d un faisceau lumineux sur un miroir mobile

Notes de lecture : Dan SPERBER & Deirdre WILSON, La pertinence

Les intermédiaires privés dans les finances royales espagnoles sous Philippe V et Ferdinand VI

Program Analysis and Transformation: From the Polytope Model to Formal Languages

Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.

L indice de SEN, outil de mesure de l équité des systèmes éducatifs. Une comparaison à l échelle européenne

Compte-rendu de Hamma B., La préposition en français

Adaptation et cloud computing : un besoin dabstraction pour une gestion transverse

Dessin assisté par ordinateur en lycée professionnel

AGROBASE : un système de gestion de données expérimentales

Bourses d excellence pour les masters orientés vers la recherche

Jean-Luc Archimbaud. Sensibilisation à la sécurité informatique.

Les Champs Magnétiques

UNIVERSITE LYON 3 (JEAN MOULIN) Référence GALAXIE : 4140

Comptabilité à base d activités (ABC) et activités informatiques : une contribution à l amélioration des processus informatiques d une banque

Famille continue de courbes terminales du spiral réglant pouvant être construites par points et par tangentes

Scroll down for the full contact details of these training centres.

Un SIG collaboratif pour la recherche historique Partie. Partie 1 : Naissance et conception d un système d information géo-historique collaboratif.

La complémentaire santé : une généralisation qui

e-science : perspectives et opportunités pour de nouvelles pratiques de la recherche en informatique et mathématiques appliquées

Les déterminants du volume d aide professionnelle pour. reste-à-charge

MATHS FINANCIERES. Projet OMEGA

UNIVERSITE DE LORRAINE Référence GALAXIE : 465

Un exemple spécifique de collaboration : Le produit-partage

Sur la transformation de l électricité statique en électricité dynamique

P h i l h a r m o n i s

Industrial Phd Progam

l u N D I 15 M D I D I 3 17 J u D I N D D I I M N C h COuPE Du PrEsIDENT OPEN 104 FEuChErOllEs EAuBONNE s1 20h15 COuPE Du OPEN 104 EAuBONNE s2 20h15

ISAN System: 3 Création d un V-ISAN

La santé de votre entreprise mérite notre protection.

ISAN System: 5 Œuvre à épisodes ou en plusieurs parties

Calculer les coûts ou bénéfices de pratiques sylvicoles favorables à la biodiversité : comment procéder?

UNIVERSITE DE BREST Référence GALAXIE : 4201

Introduction au pricing d option en finance

l Agence Qui sommes nous?

Jessica Dubois. To cite this version: HAL Id: jpa

DROIT-ECONOMIE-GESTION SCIENCES DU MANAGEMENT ADMINISTRATION DES ENTREPRISES

CURRICULUM VITAE FORMATION. 2001/2002 : Thèse ès sciences de gestion, option marketing, à l IAE de Dijon, Université de Bourgogne :

F411 - Courbes Paramétrées, Polaires

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Chimie/Chemistry.

Méthode : On raisonnera tjs graphiquement avec 2 biens.

CURRICULUM VITAE. Informations Personnelles

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

DR. MATHIEU LAJANTE. Maître de Conférences en Marketing. Fonctions. Formations universitaires. Responsabilités administratives

Curriculum Vitae. Informations générales

un bâtiment ouvert sur la nature

Circuits RL et RC. Chapitre Inductance

Examen de Guide de palanquée ANMP

La formation p. 2. Les doctorants témoignent p. 3. Le programme 2010 p. 5. Comment candidater? p. 6. Le label Docteur pour l entreprise p.

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

Material Banking Group Percentage Regulations. Règlement fixant le pourcentage (groupe bancaire important) CONSOLIDATION CODIFICATION

8. Cours virtuel Enjeux nordiques / Online Class Northern Issues Formulaire de demande de bourse / Fellowship Application Form

Un exemple d étude de cas

Journées «Entreprises» &

DISTRICT 5 (COCHRANE-TEMISKAMING) RTO/ERO MINUTES / PROCÈS-VERBAL

Notice biographique Repères biographiques communs. Grade : Maître de conférences depuis septembre Ecole Abbé Grégoire du CNAM.

Séries numériques. Chap. 02 : cours complet.

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Forge. Présentation ( )

CURRICULUM VITAE. Joseph ABDOU

Informations techniques et questions

RETHINKING JACQUES ELLUL AND THE TECHNOLOGICAL SOCIETY IN THE 21ST CENTURY REPENSER JACQUES ELLUL ET LA SOCIETE TECHNICIENNE AU 21EME SIECLE

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Marie Curie Actions Marie Curie Career Integration Grant (CIG) Call: FP7-People-2012-CIG

Règlement relatif à l examen fait conformément à la Déclaration canadienne des droits. Canadian Bill of Rights Examination Regulations CODIFICATION

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

LIVRAISON DE COLIS ET LOGISTIQUE URBAINE : QUELLES RECOMPOSITIONS DE LA MESSAGERIE EN MILIEU URBAIN?

Les cotutelles internationales de thèse

MEMOIRE POUR UNE HABILITATION A DIRIGER DES RECHERCHES

MSO MASTER SCIENCES DES ORGANISATIONS GRADUATE SCHOOL OF PARIS- DAUPHINE. Département Master Sciences des Organisations de l'université Paris-Dauphine

Soutien pour la formation à la recherche translationnelle en cancérologie

Appointment or Deployment of Alternates Regulations. Règlement sur la nomination ou la mutation de remplaçants CONSOLIDATION CODIFICATION

F-7a-v3 1 / Bourses de mobilité / Mobility Fellowships Formulaire de demande de bourse / Fellowship Application Form

Short-term Pooled Investment Fund Regulations. Règlement sur le fonds commun de placement à court terme CONSOLIDATION CODIFICATION

Probabilités III Introduction à l évaluation d options

Jimmy Tél : MOREL Mob :

PLANIFICATION ET BUDGÉTISATION

M1107 : Initiation à la mesure du signal. T_MesSig

CONSORTIUM D'APPUI AUX FORMATIONS FRANCOPHONES EN ASIE-PACIFIQUE

Cécile MAUNIER. Maître de Conférences Sciences de Gestion Responsable pédagogique - Master 1 Marketing, Vente TITRES UNIVERSITAIRES

Automatisation. Industrialisation des tests

LA SÉCURITÉ A UN NOM

MSO MASTER SCIENCES DES ORGANISATIONS GRADUATE SCHOOL OF PARIS- DAUPHINE. Département Master Sciences des Organisations de l'université Paris-Dauphine

Retournement Temporel

MASTER ECONOMIE APPLIQUEE

Etudier l informatique

MASTER MANAGEMENT DES RH ET DU DÉVELOPPEMENT SOCIAL SPÉCIALITÉ SCIENCES DES ORGANISATIONS ET DES INSTITUTIONS À FINALITÉS RECHERCHE ET PROFESSIONNELLE

Aiguilleurs de courant intégrés monolithiquement sur silicium et leurs associations pour des applications de conversion d'énergie

Transcription:

Analyse et contrôle optimal d un bioréacteur de digestion anaérobie Amel Ghouali To cite this version: Amel Ghouali. Analyse et contrôle optimal d un bioréacteur de digestion anaérobie. Optimisation et contrôle [math.oc]. Université Montpellier, 2015. Français. <NNT : 2015MONTS106>. <tel- 01245124v2> HAL Id: tel-01245124 https://hal.archives-ouvertes.fr/tel-01245124v2 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITÉ DE TLEMCEN, ALGÉRIE Spécialité: Automatique Option: Commande UNIVERSITÉ DE MONTPELLIER, FRANCE Ecole doctorale: Information Structure Systèmes I2S Spécialité: Mathématiques et modélisation THÈSE DE DOCTORAT Présentée par : Amel GHOUALI épouse BEDJAOUI CHAOUCHE Analyse et contrôle optimal d'un bioréacteur de digestion anaérobie Soutenue le 14 Décembre 2015 devant le jury composé de : Frédéric JEAN Professeur, ENSTA ParisTech Rapporteur Mustapha LAKRIB Jérôme HARMAND Ali MOUSSAOUI Professeur, Université de Sidi Bel-Abbes Directeur de Recherche INRA Professeur, Université de Tlemcen Rapporteur Directeur Directeur Claude LOBRY Professeur Emérite, Université de Nice Examinateur Brahim CHERKI Professeur, Université de Tlemcen Examinateur Terence BAYEN Maitre de conférence Université de Examinateur Montpellier Nahla ABDELLATIF Maitre ASSISTANTE, Université de Examinateur MANOUBA Alain RAPAPORT Directeur de Recherche INRA Invité

r ts s s tr 1 r r été ré sé s éq r t r t t q rs té t éq r t r t s à 1 r r r ss à ss rs r t P P r r r r éq t r q s t té é r r s s é t s éq s r t s à r r s r érô r t r r r r s s q tt t ès r t s r r r t r t t s s s q tés s t s t q s t t r s s ré 1 s s ss s s r s t é s s st t s té t s s r ts r ts t été r s rs t t r s s èr r r r t s s s é s ssé s s s s t t r r s r Pr ss r t é t q s à rs té q s r t r t r t r rs s r s s ér s t tt t s rt èr st à ttr 1 r r r ss r r t r t t r r s s t s t t st r ss r q s t t t r s s r q r èr tr s ttr t t îtr t t s s t és r rr r à ss 1 r s r t t r tt t s t t s té t t r s t tr sq à r t r é r r t é t tt ét s s ét s s t q s s s rté r r t ré s t été très r t s s s s s à r q t s r ré ér Pr ss r Pr s t s r st Pr ss r t é t q s à rs té ès t t r tr t ès t êtr s r rt rs t s à 1 r r t s s s t ts r r s t t s s èr s r t t s à s r r Pr ss r t t q à rs té t r t r r r ss tr ss st t à t s s s r t q s s r r r té

r rt r2 t ès t s rt èr t à r r r s r Pr ss r é ér t à rs té r térêt q rté à s tr 1 s s r ss t r té r tr t rés r r2 t ès r é t à ér 2 îtr ér s à rs té t r r s rt t à s rs tés t ès s r r sé à s r rt r t r r r à t r s s s t s s s ss s r t s s r 1 s éq r t s s t t été r rt t t t ès ê èr r s t s t r rés té ér t ss têt r rs t st r t t q s r tt ss st t str t t èr s té s s rs té t r r r r s t s s té r r é t r r r t r t rr r s r t r r r t P r t 33254QH t rs té rt r à s r t r st t r ss é t r r é P st r t t r rs té r èr é r t s é s r r s r s r s s q ssé ré s ts à t r s rt èr t r t r r r s t s r r ts t é t à s r P t t r r été t rs rés ts é r r ss s s r q t rs r t t rs s t s r r r s s é q t èr q t rs é é s r t s r r rès s r é s t t s tr s st ssé rt r t r r r é t r s r t èr r èr rés t s s r ts s t r s rs t rs q s s t q s q s ssé r r r rt r à t t s r r s t t r r q s rt r r t s ér s s r r s rèr s r r r ts s r r ts t ss à r t t r s t t rs r ts t t t ès tt q st ré rr t q st q t s t s t t ès q ss t ér réq t t t r s s é r t

t s à 1 r r r r ss t t t r à ss 2 é 1 r t tt t ès r s s t q t é t t s t s s t 1 à é r s tr 1 é ér r s t r ré s t t r à é r t s s t r ts rés t s r r ts r s t t r t t

é r r èr r t r r

és é tt t ès rt s r 2s t trô t st r ér t st r s r str té t r 1 s r q t té 3 r t s ré t r ér s r ér t s é P s rt èr t à rt r è s r é é t s ér t ss rt t ét q s r ss s rés s r è 1 s t 3 r t r s2stè t t s 1é t s t t 1 t r trô é t s t s t s s2stè 2s r è trô t t r îtr s rés té très rs s r èr rt s rés s r è s s ù t 1 t r tt t 1 s r é t 3 à éq r st à tér r s r s s t 1 s é t t t t êtr q é s2stè s t s s t t r s s2 t ès trô t st t r r r s tr t r s s2stè 2 q ét r t s s t s 1 t s t t s r ér q r t t s t P st t r s s r r s trô r t s t s q t r st q st s té s tr s rt r q s 1 s è t s2stè rs ê t t s 1 è rt s s ù t r st s s s r s é st à r s r t 1 t à q r r t r 1 3 à éq r st rs r 1 t r rs s é ss s s s r s t t r s t r s t t r s q s rés s q t r 1 P tr2 ts és trô t ré t r 1 s t 3 st ér

s t èr s tr t é ér t t rt tr t é ér tés s r st ér s r t st ér t s st ér t t t t t s ré t rs é s t st ér rç st r q è st t à 1 è r trô st ér 2 t ès r q Prés t t r é t q s 1 s t r t 3 ré t r st é r és é r é t q t r s r tr t s r t tr r 1 3 t t t s r t r s ts t t r s r st ss r rt s r s t t r st tr r t r s s rs t s s Pr Pr s t s t2 t s t2 t P t 3 t r t rs r r s ts r rt s t

trô t ré t r st ér és é r é t q t r s r tr t s r t tr r 2 t s s s t t r s t 2 t s r r r s t t r s r s t t r s s s rs t s s P tr2 1 Pr Pr Pr s t Pr Pr s t Pr Pr s t s s é ér s t rs t s

s r s r t s r é és ér t ér r ré t st ér r 3 t s t s tr s t s r t x s s r t s s s r r t st ss t t tr x s s r s 0 + x 0 = s in s t D min = 0 D max = 1.2D t t x s tt t tt s s s s st ss t t tr s s s r s 0 + x 0 = s in s t D min = 0 D max = 1.2D t t x s tt t tt s s s s t γ t r st tr 1 t t tr t tr t t P t s 0 +x 0 = s in r s t tr s s 0 +x 0 = s in s t t D D max t t t ts r t s s t s r t t tr t r s tr s t t P t tt t s tr t r s tr t r t r s 3 t tr t tr tt r ǫ = 5 P ts t t s y = µ(s) y = D min y = D max rr s t t r s s s t r s rr s t s = s in x D = µ(s ) r t r t t y = µ(s) P ts t t s y = γ(x) y = D min x y = D max x rr s t t r s s s t r r s rr s t x γ(x ) r t r t t y = γ(x) r t r t rs s m = 1 K = 0.1 n = 6 s in = 2 t t γ(x) = xµ(s in x) s rr s t t r s r t t s 1 ts t 1 s t t r [0,s in ] t s2 t s s t ss t2 r s t s r r s x = x s = s

t s(t) x(t) r x 0 = 10 s 0 = 10 t r t t rr s tr tt t r t t s t t r x 0 = 80 s 0 = 80 r s t 2 t r t t 2 s t s s2st r t r s t D = D max r tt r t s t D = D min t ss rt t s r r r ts ss rt t t t tr t r s rr s t t t t s (s 0,x 0 ) = (10,10) (s 0,x 0 ) = (80,80) r t s x = x (x) τ c = τ c (x) t s2 t s s t t t t r t r ts t t s2st P D > D s s t s t P D > D s s t s t P D > D s t s t s t s P D < D s t s t s t s P D < D s s t s t s P D = 0

st s t 1 s r t rt t t s D min t s r t s t r r s rt s t t t r x( ) s( ) s t s t t t t (s 0,x 0 ) D( ) s 2 r s s r t t t t s t t P t s r t2 t tr t r t r t t t t s t t P t s r t2 t tr s t r t r r r ǫ = 5 t rr s s r t r t r T = 2 P r t r s r r s m = 5 K = 10 K i = 50

tr t é ér st r ss r ss t r êtr t s s éré t st r rç té t s q té st é t té tr î r t s s 1 ré t rs s q t tés trés r t t s é é ts q s s s t s t s tr t s tr s r ss r s 2 r q s t s s à t t t 9,1 r s 2050 t 2, 4 r s r q s s r q è rt s 2s à ré s r s st t s é r t s r t q q rés r t s 1 ré t rs s q ré t s t s 1 tr té s s str t s r t r t t rés r t s té t r t t tr t s s rés t r q q s ré ts r t s à s t t s r s s r s 1 s s s r rt é à r r é rs s q èt r t r à é t 40% 2030 P r t t s s r s s rés r t s r ss r s t ér t t êtr t à rt t èr s s t rs t s é t r à r 3 2030 r ss ss t r st t sq t r t é st à t r q 748 s rs s s t ès à s r t t s 2 r s t r t q à s r t ètr q té té r r r rt 2, 5 r s s t s s r r t à s2stè t s s 2s é t s 90% s 1 sé s s t r té s s r t é ér t s s 2 r q s t t s q r ér q s s t t 96 rr s é s 2014 2015 té t é r q s t s 1 s r s s 9 r m 3 s t s é t s s r t rté r r té s r é r t s 1 sé s q r s s s r r 1 t t 110 st t s é r t P t 56 s

tr t é ér s t t s s ré s t r tt r s t r 239 st t s é r t s 1 sé s rr s t à té 1,2 r s m 3 r é ré t s s 1 sé s é ré s s r t s2sté t q t t sé s s r t r t s 100000 tr rt s t r r r rt à é t s 1 tr té s é é s à r t r s 1 tr t t s t rs r tr 2s P r ré r à s s é tés s r r s r tt t t r r s r s t s s s t êtr é é s t é s r s s s t s t r s st t s é r t s 1 s é1 s r t s st s t r é t q r s tôt r st t rés t t s r s r tér st q s r r s tr t s r t s t s s r st é s t s r é r r s st t s tr t t 1 st t s r r tr s r r s s t t s 1 st t s ér t r r r t t é t r q s rés s q s s s s st à tr s r r à r r s s ss t èr rés t s s é ts s s r r q t st t é r éss t r 3 t t s r 1 st 1 t2 s tr t t s 1 sé s ér rés 12 è r t r t s r s s st t s é r t t ér s 12 è q st r é é s t à tr t r s ts r és t èr r q t q t sé s s s2stè s ér s s st ér ét s t st r ss s 1 q t s rs ré t s q s é r t é ér t q tr ét s r s q t q tr s rt s r s s é q s t ré ss t s s s tr s r s ét s r 2 r 2s é ès ét é ès ét é ès s q tr ét s r s s r t rés té s ét s tr 1 t s t2 s tr t t st r s s t q t té s st s t s t s s s 1 sé s r q t r té s t r é r s r r é r t s 1 sé s é t à q rés r t s r ss r s t r t t r t t r st ér st ss té r r é r s s r 3 r r st é 3 1 q t t 50% à 70% ét

CH 4 r t r r r r sé t t q t tr s r é é é tr té P r rs rés ét s t st t t s r r à rt s r s t rr s r s 3 st t é r ét q é é t t êtr t sé s r é r r 3 st r très r s s s é r s r s à 2% s r 1 2s r é s 3 r t r rt s é r s q s 60% r s t str s r t r s 20% t ét s t s s s st t s é r t s 18% 2 t r q r 1 2s r é s t tr r s s t s s t à r r t 3 s tt q t à s tr t s é s r t à é t 3 s s rés 1 str t ss q é r t s s r s té é s t t st q 2014 q q q s s t s é r t s t tés rés 3 r st r èr à r té 3 s s t s r tt s s s t s é s r é t tt é r rt 2030 t r t 3 à 10% st tt s s ré s s r é s ù t r s r r s r r r t té 3 s t s r t s t s st ts été é s é ér ré t s t s 1 sé s é ré s s r à t s été tr é r s ét sté s st t s é r t 2s s t q st 1 r r t r t s st s s ts t été s t s s ré t t s s st t s t str t s ss 2 t èr r r ss tr r s s P P r r ét s t r é é str t s r é s r r ss s t r s s r ètr s t q r s rè s trô ss s t t q t st ér st r ss s très 1 ù t ré ss t r r r r s s sés r q s t t s 2s q s t2 r é é st t st s rt s ét s s t s t s q tr s rt s sés t rs t s r t t ttr ér s2stè P r s t s r s r t s é s t r sq à s rs s q st s t r t q t é q q st q s s st t s s ss r r st té s ét s rs s t s é r r r r t tr t t t t s r r t 3 t é t rt r t s r t s t r t s s r ètr s és r ss s P r tt r s té s t q t t q s tér ss t 1 r é és ét st ér t r é s t s r t t trô r r r s ér t s ré t s té s s t

tr t é ér tr rés té s tt t ès s rt t r 2s t trô t r é é st ér t st r s r str té t r 1 s r q t té 3 r t rs r t t P s rt è r t à rt r è s r é és t s ér t ss rt t ét q s r ss s rés s r è 1 s t 3 r t r s2stè t t s T t s t t 1 t D(.) r trô é t s t s t s s2stè rés t r è trô t t r îtr s rès té très rs s s ét t rés r è r s t s t s t s q s in = x 0 +s 0 t s tr t s s r t r P s rt èr t s s t s D min t D max s rs s t 1 s é t t t t êtr q é s2stè s é ss s 1 t2 r è s rt rs t 1 t r tt t 1 s r é t 3 à éq r st à tér r s 1 r s rs s s ér s s é r s t t r s t D min D D max s rés s r ét r s tr t r s s2stè 2 q r s t r st s s s r t é st à r s r t 1 t à q r r t r 1 3 à éq r st rs r 1 t r rs s é ss s s s r s t t r s t r s t t r s q s rés s q t r 1 P tr2 s r t st str t ré s t s r r tr ét t rt s r s s2stè s és à st ér st rés té t st té r s ér ts tr 1 é s t t2 r ss s t trô t st 1 té s rés t s r s t r é t q r é r 1 s t 3 t s ér t s t q s t é t q s s t à rés t s s t r s rs t s t rs é ts s rés t s r s t tr tr t s st t à rés r s ér ts s tés ré é t s è s s t à s2 t ès r q rés té s tr 1 s s s ré 1 è tr à s r t è é st t à r s t r è trô t q s s s s téréssé t à é r t str té trô s s tt r èr st t r ét r s tr t r s s2stè 2 q s s s tr s q trô t st trô t2 q s st à r s r t ss t t t éq r 1 s t é t 3 t 2 r st r râ à trô s r s rés t ts t é r q s s t rés tés t s r s s t 1 té s q tr t q s s rt s t s ré s s à s r t s t s rt èr s t ss tr t s s r t r t st tt t s ér ts rés t ts s t ér q s t rés tés t s tés tt t

t s r s tés é t t trô t t t sts r st ss r r rt 1 t s t s ét r t s s t s 1 t s t s r r t P st t r r rt r st s s r r st q s t rés t r r sé r t 2 r t r s s rés t ts t s str té r sé r s 1 rts r é é st t s té s tr ét s tr s s t à r 1 P tr2 st t s t 2t q r s 1 r rs s s q 2s tt té r r s r s s t rés té s P s ré sé t r t s st à r rés t r s r t s s2stè t s s t é r r s t s t t r t t s s q ér t s t s é ss r s t té é s r P P Pr 1 P tr2 tr r t s ré é t s s 1 s s érés t st s tt t t 1 q s ss s r st s r r r s s é é ts s t é és s tr r r s rés t s s é ér s r s rés t ts t s s q s rs t s t s 1t s s ss s tr ré sé

tr t é ér

tr t t rt tr t tr t t st é ss r t s r t s r t st rq s 1 sé s s t s s s t r s s r st t s tr t t q t t s ér t s tr t sé r t t s rt t q 1 t t t t s t s ê s ré t s q s s s s s s r ré t s s s s t s t r s t s r tr t t s r é és q s t é é t r s r é és str s 1 s t tr s r rés t t t s t t q t r r tr s r t st s r s r 2 é t s 1 sé s s s r ré t r q à t t ér rès r s ér ts tr 1 r t s à é s t t trô s r é és st ér s rés t s r è trô t q s s tr té é ér tés s r st ér s r t st ér st ér ét s t st r ss s q t r é s t t èr r q r s r r s s tér s q s t t s s t s ér s st à r s s 12 è st t èr r q é èr 3 r ét CH 4 à s 50% 12 r CO 2 t ré r 2 r è H 2 ét rés t t r êtr r sé s s r é r t2 tr t t s s é é r râ à r t ét t s t 12 è t r t s 1 é t r s P r r rt 1 t q s ss q s é t é r t q ér q s t rés 12 è st ér rés t s rs t s

5 10

H 2 CO 2 CO 2 CH 4

P t t rt tt s r t st s r t s st s ré t s 1 s s s r r st ér s s t à r r îtr t t ré t r é r t q s s t s r tt t 1 1 té r s r r s s tr r r é t s t s q r st ér ssè ss s é ts à s r t ss r ss s tér s ér s s ét q é r t t s s té s t s tér s s s 1 1 s r r s r q s t t 1 q s ré t t st té é à s s té 2 q r ss s té r s st tr t t ér t êtr é ss r t r t r t s t r t t s ré t rs r s s t t s t ss s s ré t r s t t s t t t st très s sq st r st r t èr r q à tr t r q st ssé s ré t r sq à é s t s str t à é r r t s st st t rs r ètr s à s r t ér t r t2 s str t s st t é st r st é t 2 t r t tt t q rés t t êtr s t r st rsq t st r t ss ss t st s t s rt é ss r à t t ré t rès t r ss st é t t2 r é é s t t s q t r t r s r é é t r 2 s st r r r ss t t t ré t r é t r s r r r q t r t r s t s r ss t s st s é t t r t sé r r s q ss s s s s r é és s tt t à t r tr t ss 3 é é ss s st r tt ét st tér ss t rsq t à tr t r rés t r tèr t r st ss té à st s é ts s s st t s ss r r é è s st r t rs q t st ss t r ss r r t t t tr ss t s str t t s ré t r t t t st té é t st t é t s rt st é é t tré t st t st é é r

é s t st ér t é q tt t st é r s st t s r s t s s ré t rs t sés t êtr s sés ss rt t q r 3 t t t 1 st é t s r é és t s t t st s t sé s tr t t s 1 sé s P r r ét s t r é é str t s r é s r t r s s r ètr s t q r s rè s trô ss s t t q é s t st ér t r s r s ér ts è s 1 st ts st ér r s r t è è t êtr é é r s s très rs s t s r r r r r r 1 q r é è s r é r ré r rt t trô r s2stè è st t t q s r t ré r 1 q st s q s s s s à r s r ss s ét é q é s t t t rq è st s t s s t 1 q rq r s é è s t è st ré éré 1 tr s r rt r s ré s s 1 q st s sé s é s t s r é és é ér t st ér rt r st 1 r ss 3 é t tr r t à 2s q ù s è s s t s t és t t s r r s r str t è s 1 st s s s s è s rs s s è s r ss tér s t très r q s é s t st ér r rés t r r très t s s r èr s é s s t 1 r r s t t t r s r s str té s té s r 1 è s t été r sés s rés t s s q s t r s ér ts tr 1 é s t st ér rç st r q è st t à tr t 1942 r r è r t t 1 r ss r à s str t t t r r s t q r t ss t t rrêt r ss s tér s st é à r ss t s str t t r s s t s r s s ss q t t s r s t r ss r rés té r 1 r ètr s és r rés t t té s r r s s r s str t t t ss 1 r ss r é t 1950 r s q t ss r ss t tér rr t êtr r rés té ét t r t ss t t 1 r ss

P t t rt P r s t é r r è é st t r rés té r 1 r s à s r tr t ss t s str t t t s ré t r t t t s éq t s è st t s r t r r s s ét s tr 2 q r é s t s r ss s r t t r r è s r s t s r t s t s t èr s q st t t s t s ss ts r é r s éq t s è t s r rs è s s s t sés s r ét é ès s s 2 t ès q s r t ét t t s s r é és st ér t 1 té s tr 2 été t sé r r r r rés t r t s tér s ét è s rés rt s tr t s s str t t r r é r tèr st st ér à 1 st 1 ts éq r s t st s r s2stè s 1 r é ss t t 1 t 1 tr s t r s t 1 t à q t s sé r s ré t r st s q t 1 r ss t r t s t ss tr s t rs s s t téréssés à t r s s str ts tr q s 3 t 2 r è t s t r s s é t r s s éq t r r 1 P r s t r rés t t r ss s été é ré tr s t tr s t s tér s è s ét è s t 1 s str ts t t t tr s ré t s è s é ér q r s t è q st t t è é é q st ér s t r tt t s r s ré t rs ér s r r N été r sé r r 1 rts t r t 1 st ér s s é t r t t r ss t r èr rs è r s r rt s t q t t q é r t 19 r ss s q s 7 t s tér s 26 r s ét t t r rt st s ss à s r t 86 r ètr s è ré s s s r t r tr t ss s r r s à r é é rt r s tés é t q r t st r s r s ré st t r 1 ér t t s str té s trô sé s s r tr s è s s s s t s r s s t s t r st t t s r s s st rs ér s st s r r é rt t é r à ré r t s è s s s2 t ét q s t s r r és r r trô t été r sés s t è AM 2 é ès ét é ès t s r r été é rs r t t r tr 2st r Pr ss r r t s r é s t t trô r é és st ér st è 1 ét s s s ér t

é s t st ér q 1 t s tér s s è s t s ét è s str t r s r s è s rêt s sé t à s r é r s r t t r t é t t rs s t str té s trô è é ét 2 r 2s st s té tr t t t rt t r é t èr s s s 1 é ts s s AM 2 r s 1 éq t s ér t s 2s t é t q très r r s t èt s éq r s è t r st té été t r 2 t t s tr 1 s ré ts s t rs t rté s r é t è 2 q r ré t r r r ér sé s r t è AM 2 t té r t r SM P Pr ts r s s tr è é st t sé AM 2G q r rés t s ê s r tér st q s q è AM2 s r t s é s 3 1 tr s s s q s t 3 s s st r été é é r s t trô r q té 3 è AMH1 st ss s s tr 1 r r t t t ét t é t r r r éq t s é ss r à 1 r ss r è AM 2 r 2s s s t s r s 2 t é t s é s 1 ér t s q 86% r ét t t s s2stè à 1 éq t s tr 91% r q tr éq t s s t rs t s éré s2stè s ét ù s str t tré st é r é r t tér ét è AM H1 s st à s ér r q ét t t st ér s t à s s r t t q t 1 r ss s ét è s st t s r q s ét è s s AM H1 tr s r t t t té s str t st st t é s è s rés t t térêt r êtr és t rés s é s q s s s r st r t 1 è s s t r q q s è s t é t q s r t ré t r ér s s s é s t ré ss t trô t t q s s r è t é t q r é é st ér 1 r ss è s s t è q t t s r q t té r t s s r s r s és r é é t q r tt ré r 1 s rt t 2 q s tt t ès s s t r s à s ér r s s 1 s t tér ù 2 q s2stè t êtr rés é r s ét é ès r t tt ét s tér s è s é r t s str t t r s t r s t 3 s t è st t è q ét é r r rt à s è s s 1 s r 1 ss 3 s s2stè s 1 s t st ér r t s té t s r rés t t 2 q

P t t rt s2stè ré t è très t r s2 t ès trô s tr 1 t s t s s tt t ès s s ç s s s ét é r r r r s à r s s ù è à s ét t è é st t é r t s s t r ss s st ér r trô st ér P s rs t rs s s t st s r 1 r r r ss s 1 1 trô r P r s t s és s t t r ré t t s rt st s t r é é t t s t s s r r s à s r 1 s t r t 3 s q s t s rés t s ét t rt s r s r t s ét s trô st ér 1 st t s s ttér t r 2 t ès r q rs s r r s s s tr é ér t s r s r trô s st rs ér s t êtr sé s s r s r 1 t s s trô r P P q é s2stè é r sé s s é r s t s é ss t t s s r t è s ét q s s q s ét ts s s t s é s s s r st q s t s r rs trô rs r s t s r s s s s t2 t t r r rt P r r rt té r P 1973 r t r s t t sté s t trô r é t r t ré t r s t à s r r r q r s t r sé trô r t s s st r r térêt r s r r s r t s r r r q s r sé t t s séq s r t s s r r st t q tr î t s t rt r r ss s r r s s ré t st ss t r s t s r t s r s à r ss tér s t2 s trô rs t s rés t ts s t s s ts s s t t 1 r è s r s é r té s s t s tés r s r è s rt t é r s q st é ér t s s r é és s s s é r s sé s s r s è s t rt r é r t à s str té s trô s s t r s s é r s t s r s r èr s st s r é t é r s2stè r é é t s s é s rr rs é t s é s t s

r trô st ér ér ts r ètr s s t s à st r ç rt t r rr é rr t ttr ér s2stè trô é r s s t t s r tt t t r ér s trô rs t ét é q st st t s r ètr s t s t tt r t s q t t ré r r s t t r t r q t r ss rt H 2 ss s s tr t s t r é é s s t s é s s t t sé s rsq s s s s è t t ré t st s t s q t s t s 1 s tt té r s sé s s r s è s 1 st tr s r s q t êtr q é s s s r s à tt r t rt r P r 1 s r t rt t r étr q st ré r è t êtr t r r r s ôté t t r st t st q t s t r st t t r s r r s ré s s2stè s s s r s r st s té r r t èr t t s t r r r t s rt r t s rs s2 t ès st é ss r é r t2 rt r t s q r sq t tér r s r r s ré t r s s s t s t rs t t r 1 s r q t té t s t s s rt r t s ss s r r s r rt r t s s t s ç ré sé t r tr r s ts s rt r t s s s é st s êtr très s r tr t é s r s r è s t 1 t t q r à s r é ss té tr r r s tr r st ss t r r rs s2 t ès trô s s r st q s t r s rés t ts s s t s tr t r s é r tés s2stè é t t tr r 1 té t é t q t2 st sé s r 1 rt s ér t r t rt s s r st q s Pũ t t ré é s s st r t s t sé s r q tr 1 r st q s t é é r s 1 rts é s r é és t t t q ss t r t t st ér s t r t r t é r q t r r r r été st té s s ù è t été t sé r é r P s ré sé t s t r sé r t 2 r t 1999 tt st rt èr t tér ss t r été é é s r t st ér r s tt r s r r s rt t s t tré r r st ss s à s rt r t s t t s2stè tt t st ét t é s2stè rt r t t r t t ré èr t r é é q t t t s r r r q s s r s 2s ré s s2stè t r 3 r t é r s t s rt r

P t t rt t t r t à tr t r st s st q é s r é t t t t q r s t s s t s r s rè s r t t t r r é é à s r r s 1 s r t 1 3 s s r s ér s t s é t é tré s té à s t r à s rt r t s t s q t tr t t tré P r rs é ss t s ss s tt tr t r s s r t t t s 1 rts r é é t s éré q tt t êtr t s s t t s êtr s r r r sq s t r ss t t r st q q st q s s s s r st s r s à s q r tèr r r sé st t s s t r s t s s ts ét s tr 2 s r t sq à rés t s s r sé q q s str té s t é r r r é é rsq r r st s sé r s tr t s é r t r s s r t s t q s é q é s ré t t êtr tr s sé s à s t s t s t r r s r r s st r à s r 1 s t 3 r t q st é r r t t st r s ré t s s r tr r s s str té s trô t s t à 1 s r q t té 3 ss r t t t été r sé s s tr 1 s t t s 1 r r tèr r è trô t s t s s é st t t trô t s r é és é ér t st ér rt r tr t r st t s r trô r tt t st té t s ré 2 q s2stè t t 1 s t q t té 3 t s r r st s sé s r è r t st rés té s s r r st r èr tér t t 1 t q à s t r r ttr s2stè r rs ét t éq r ù r t 3 st tt t t r rés t q q s t s à s r s 2 q s s2stè s t s st s rt tr tr r t2 st s t été é ss r tr s 1t s s t été r sé s s s r tr 1 r t t r sé trô s t r t 1 3 ré t r st ér é sé r s2stè r r 2 str té trô té st rés t t 1 r è s t s t r èr st r t à ét r t t éq r t s t t s t st t q s r t s t 2 q s rt t t r Pr 1 P tr2 r tr r trô r tt t s2stè r

r trô st ér ét t t rs ét t t t 1 s t r t 3 t s ér t tr s s r s r t t r sé s str té t t s t str t 2 r t s r r ss s st ér t s s str té s t r t r s2stè s r t ss s t t st à r ù r t 3 st 1 tt ç t r s2stè t rés t r r sq s rt r t s 1tér r s s r r r q s 3 s s q s2stè s tr s s ét q t t s tr t r s st é ss r r r r ér t r s r sq s r s tr s s t t s t été 1 é s t rt t t t ss tr té s r è s 1 s t 3 s r t r t s é rés rt r t s rés t rs r 1 s t rs t é s r s s rs t s t Pr 1 P tr2 t s2 t ès trô t s été 1 té t 2s trô té st s t r è trô t t t é ér té st s rés t r rt Prés t t r é t q r è q s s s s téréssés s tt t ès st s2 t ét sé s t s ér t è s st ér s t è é st t s 2 t ès s s r s s t s t s 2 t ès s à tr r t ét r rt à t té r é t r kµ(s)x r sé s ù k st é t r t µ(s) st ét q r ss tér t x st ss t=t s r s s r è 1 s t 3 max µ(s)xdt s r t r D(t) t=0 t s é T t s t t r t 1 t D(.) r r r st t 2 t r t q r s ré t rs t t t s2 t ès trô t st t s ér t s s t t s q s t 1 té s s s tr s 2 t 3 t r r ss ét q r ss

P t t rt s rès r ssé r s 1 t s r t s à st ér rés té s r 1 è s r ss s t é r é t q é ér trô s s rés t r s tr 2 è é st t t rés r r è trô t r s tr t s rt èr s s r t r s r rés r r è s s

s

P t t rt

tr 1 s t r t 3 ré t r st ér és é r é t q t r s r rès r r é s q t s è é st t t é t s 2 t ès s s r s s t s t s 2 t ès s à s rés s s rés t tr r è trô t r 1 s r q t té 3 r t s r t r t s é é t s t s t s t tr t s s r t r é t t t rés t r è t r îtr s rés tés très rs s s tr s t rés r r è s s s t t r s ù D min D D max D min t D max r rés t t rés t t s rs s t 1 s é t t t t êtr q é s2stè s2 t ès trô st t r ét r s tr t r s s2stè 2 q s s s tr s q trô t st st trô t2 s st t à r s r t ss t t t éq r 1 s t é t 3 t 2 r st r râ à trô s r s ré s t ts t é r q s s t rés tés t s r s s t 1 té s q tr t q s s rt s t s à s r t s t s rt èr s t ss tr t s s r t r t st tt t s ér ts rés t ts s t ér q s t rés tés t s tés tt t t s r s tés é t t trô t t t sts r st ss r r rt 1 t s t s r s s r r s trô r t s t s q t r st q st s té tr rt r q s 1 s è t s2stè rs ê t t ét r t s s t s 1 t s t s r

P 1 s t r t 3 ré t r st ér ér q r t t s t P st t é r t s s st rés té s rt rès t t é 1 3 s r t r ér st rr ré t s r Pr ss tr s t rt s ét s s s s t s é t str té té

tr t 1 3 s r t r t r st a,d r b,e r c,d, a rs té r t r t t q P ér b rst t r r ç s r t t r r c s t s r r d P P t r r e rs té t s r s rèr s èr s r rr s t r str t s r r s ts t tr 2 r 1 3 s r t r st rs rt r s s t r st r ss r tr t 1 3 t s r t r r T s t t r t s t tr r t t s str ts t t t r t t r t D(.) t s r r s t t t t tr r r s r2 r t s t2 t r s t r s r t t t r r s r str ts t t t r rt r t t r t t r t s s t s t s t 1 3 t q r r t s s s t t tr r s ss t s r t q t s 2s s r s t s str t t r st ss t tr t r s t t s r r t rs t 2 t r s t t t t s s t s r s ts t s t t t r st tr r s 2 t 2 r t s t rt s s t tr t r s r t r t t s 2 r 2 r t tr s r t P t t s s r t 1 r s t tr r s t 1 t 2t s t t t t tr r t s st t t s r t s t t t r t s t s 2 r s t tr r t r 1 3 t s r st tr t r st r t 3 t s r ss r s r tr s r t r 1 t s 2 r r s s s r ss s r r s t r s t 2 r tr t q s st r r 2 t t r s r t s r ss s s r r r t r s s r st s 1 r s2st s t st r r st 3 t r ss ts r st rt s 2s r t s t s t s ss r2 t t t s2st s t t 2 s r ss t st r s r t t 3 rt t st s s ts

P 1 s t r t 3 ré t r st ér r t r t st rt r t 2 t r r t s t t tr rs r s r s s r s rst r r t t s2 t s s t t t t tr s t s2st s st s tr rs r s 2 r t t t tr t2 2 r s s t r r r t q s r t t r t r t r rt s t 2 r s s t r t s s r r r st t2 r st ss t r s t t rt t2 r st r s r st t tr rs r s 2 r rt t s 2 s ss r s r s r s t 2 t r t r 2 1 rts t r st t sts rs r s tr t s s t t r t t 2 t r ss 2 s 2 r st t t r r ss s t s tr rs r s 2 s s 2 ss s r ts s 2 str t 1t s s s r t s tr t rt r t t t2 r s 2 r ss t s 2 t r rt t t t 2 r s 2 r r ss s s t t t r t r t t r s t t r r s s ss r2 t s2 t s 3 t tr r t 2 r t r s t st r s t r r s 2 t tr 2 r r ss s s str t 2 s s t r s rst t r2 t t r ss 2s s t s2st s r s s s t t r t s2st s t t r s t t t r t t s t s t r s st t r s t ts t r s r s t r s t q r s r t st s s t r r t t rs t t t tr s t r t t 2 t 1 tr t t t2 t r r ss t r t t tr t r tt r s t t t r t s t r tr s t 2 r st t 1 tr t t t2 r s2st s t 1 s r t t r r r t s r t r ss t tr r t t s r t t t s t r st r ss r r ss s t s s r r s s t r t t t r t r 1 t t r s t 2 2 rt 2 t s r s2 t t t s r t 2 r s s s t t s r s s t t s t t t t t r r t r s t r r t 2 s t s s ts s st r r r t r s r r t r t t t tr t r2 t t r t s s t t r s r st s r2 s s r t q t 2 t r t 2 r t r s s s s t s r t rs r 2 r s t

tr t s t r t tr s r st rs r st r t s r 2 s st s t r t r s t t tr r t st t t t tr r ss s r t r st rt r s st r q t t r rt r2 t tr 2 t t r t st r r t r st r ts r r t r t t t st 2 st t s r s 2 t t t t s s s s r st t t r t t t r t s t t r s s t tr2 t rs r s s t s str t tr t t rs s t t t r s r rt r t s t t t r t t t r t s r t s t tr s r 2 tr r st t st 3 r t 2 t r s t 1 t r t r r s r t s t r t s r s t t r s t t r t 2 st t t r t t r t r ss 2 s t r s s t t r t t t t s t t 2 t s r s t t t 2 s s st t r s 2 st 3 tr r s ss r2 t st 3 t q r ts r t t r t t t r 1t s s r r 2 t s t rs r t r s tr str t 2 r 1 3 s r t r st s2st 2 r r s2st tr s s2 t s 3 2 s t t 3 t r s rst 2 st t t 3 t r t t r t t r t t s 2 tr s t t 3 t r s t 1 r P tr2 t t tr r t s2st r t t t r s t t r t t 1 3 t s r t t 2 s r t r s ts s r ts r t r s s s t str t 2 r t 3 r st r ss t r 1 3 t s r t r r t s st t s r r t ss st r s r s t r r r r s s r r s r t s t 1 Pr P tr2 r t t tr s2 t s s s t 1 t 2 tr t2 2s s s r r t r s t r s r s st t s q t s r str t s t t t s s 2 t s s ss t s r s r t t t t2 s kµ(s)x s r s s s t s t r 1 3 t s r t r r t t=t max D(t) µ(s)xdt r r ss t s t s t t=0 r t r t s s r s ts r t s t tt r rst t s tr r r s 2 t 2 r s r s r 3 s s s t r s t t ss r s r t r st t 1t s t st s t r s ts t r t t 1 3 t t t t s r t r t st t s t 4 r t tr st s s t t t t r s 2 t 2 r t

P 1 s t r t 3 ré t r st ér s t 5 r s t s r t r t t t r t t tr t r s r r r ss t t s t t s s r r s s t s r s s s rs t s r r s r t tr r t r s t r s r s st r t r st r ss s r t r t r s str t t 2 s s r t t s CH 4 2 t r t x ss t t t t r t Q CH4 s r rt t t r t t2 s r s ss t ss st t s 2 t r s2st r r2 r t q t s { ẋ = (µ(s) D)x ṡ = D(s in s) µ(s)x r x s t ss s str t tr t s r s t 2 s in s t tr t t t s str t s µ(s) s t s r t r t ss D [D min,d max ] s t t r t s s r r t r s t tr r µ s t s r t r t r r s s t t t t 2 t Y s 2 rs t st t s t r t q t s s t s str t r r t s t t t r x = X/Y s s t r t s2st t t s q s r t t t t µ s t s s t r2 r r rt2 2 t s s µ(0) = 0 µ(s) > 0 r s > 0 t µ( ) s t r r s r t r 1 sts s s t t µ(s) s r s r 0 < s < s r s r s > s t s r s t 1 3 t s r t r t t r t t t r t r t t r [0,T] 1 r ss s J(x( ),s( ),D( )) = T 0 kµ(s(t))x(t)dt r (x( ), s( ), D( )) s t s 2 k s st t t t ss r t2 s r k = 1 t r 1 3 s r t s st 1 3 t t r r t str t D min D(t) D max s s r r s s t 2 s s r r2 r t r s t t tr r s r2 t t s t s 2 r str t r r tt t t s s tr t t 2 t s s 2 t s s t t s s2st t x 0 +s 0 = s in

1 3 t t t s r t t t t r 2 t s s x(t)+s(t) = x 0 +s 0 = s in s r s t t s t t s 2 s2st s r t t s s2st ẋ = γ(x) Dx; x(0) = x 0 t γ(x) = µ(s in x)x t t t γ(0) = 0 γ(s in ) = 0 t r r t t t t k = 1 s J(x( ),D( )) = T 0 γ(x(t))dt r (x( ),D( )) s t s 2 s t t str t D min D(t) D max 2 t t 2 r r tr t 2 t s s 2 t s s r 1 sts x ]0,s in [ s t t γ(x) γ(x ) r x [0,s in ] γ(x) s r s [0,x ] γ(x) s r s [x,s in ] 2 t s s t D = µ(s in x ) t tr r x = x s st 2 st t q t ss t t 0 D min D D max s r t t t t t s t t r µ(s) = µ max s µ(s) = µ max r s t 2 r 2 2 t s s s+k s+ s2 k i s+k s 1 3 t t t s r t r s ts rst st s t r s t t r s 1 Pr s t ss t t 2 t s s t t tr 1 3 t t s 2 D min x(t) < x D( ) = D max x(t) > x D x(t) = x r D = µ(s in x ) s t s r tr s x(t) = x t t t st 2 st t s s r t t s t x(t) t r s t t x t st r r t s t r t ts D = D min r t ts 1 t2 D = D max t t r s t s r r D st 2 t t t st 2 st t x r tr r s t r s t 1 s q t t t st st ss 2 t t r s t t t x st 2 t r x s tt

P 1 s t r t 3 ré t r st ér t t r s r st ss r rt s t t t tr t s s t s ss r q st s r t t t r t t t t t tr t r s s t rst q st t t 2 r s s r t t t r t r t tr t t t str t 2 t r s t 2 s2st t s t s s r s r s s s t t 2s s t s r r t s r t t 2 t s str t 2 r s2st t s r s s 2 r t s r r 3 t t q s s r s sts t t s t s r s t tr 2 t s s r t s t t t s t s s t tr s r 2 t s t x ǫ 2 x +ǫ 1 r s s ǫ 2 s +ǫ 1 s s s r st x r r ǫ 1 r ǫ 2 r t r t rs s s r r r 3 2 2 s t t t t s s2st s s t s t r 2 r r 3 t s t s tr s t s r t x s s r t s s s r r t r s s t t t t s s rs r t t rs t 2 2s 2 s st r t t t tr r s s s t s r t t rs t r r t q s 2 t t t r t s s2st st s t t s r st t s t s t t t t t rs s t r s t s t r s s t t r t s s t s r t r t r t t rs s s rs st t t r s t r s rs t t r st ss t tr r t r s s st r s t s t r s ts r r r t t t s st t t q s rt r r2 s t s r t r str t s q st s r r ss s r s 2 2 st s t r 1 r r r2 rt r s s t t s r 2 t 3 t r t r r st r t 2 t t r t s s t rt t s q s r t s s2st r

1 3 t t t s r t s s r 2 st t r t t t t 2 t t t r s s s r st x s s r r2 Pr s t 1 r t 2 r tt 2 s t s t tr t s s rt t r s t t t s t s t r s t t s s x(t) = s in s(t) t s s t t t s t 2 t tr ss t s t r r2 t Pr s t 1 st s t t t t tr r st t t r st ss r rt s t tr s2st st s t t r s r st s t t 2 r t s 2 r s st ss t r s t t t t s r t t t x 0 +s 0 = s in s t 2 t s s 2 t s t s t 2 t r st ss t tr t r s t t t t t s r rs t st 2 t s t t s2st t s s2st s s t t t tr s2 t s 3 r s t t t s s r x 0 +s 0 = s in t s t 2 t t s r 2 t s s s t s t s t tr s t t r r s 2 t t t t str t 2 r s Pr s t s sts 2 t r D min r D max t t s t t t s r tr D s t t st t t s r r x = x r s = s t s tt r t s st s 2 t t t t t s = s r x = x r t s r r s t r s r s r t tr t t r r t t t t t t t s2 t s s r s t t 2 r s s t tr r s Pr s t s t t 2 t s s s t s t s rst ss x s s r t s 2 t tr Pr s t 1 r r t s s 0 x 0 s in s t t x 0 +s 0 = s in s r s t s str t r s ss t s r t t r µ max = 4.5 K S = 10 S in = 100 D max = 1.2D r tr r2 r r t ts s s x 2 s µ max K S s in q s 76.8 t s s t t tr r r t T = 2 r s r s ts t t s t r t s D min t t r D min = 0 D min = 1 r r s t t r s s t s s r r r 3 t tr t ǫ 1 = 1 2 ǫ 2 = 5 r ǫ 1 ǫ 2 r r t s t s x s s r s ǫ 2 = ǫ 1 D D min D max D ǫ 2 = ǫ 1 D D max D min D s r µ max K S t s s t s t r

P 1 s t r t 3 ré t r st ér s s s r t t r t t tr t s2st t s t s s s2st r r2 r t q t s r s s st r t s rs t t s r r s s r rt t t r t 2 r s t r st s s s t s t t t s {s 0,x 0 } rr s t {10,10} {10,40} {10,70} D min = 0 r tt r 80 3.5 70 3 60 2.5 50 2 X, S x, s 40 30 D 1.5 20 1 and 10 0.5 0 0-10 0 1 2 Time -0.5 0 1 2 Time r st ss t t tr x s s r s 0 +x 0 = s in s t D min = 0 D max = 1.2D t t x s tt t tt s s s s r s r t t s {10,10} {10,40} {50,10} x s s r t s2st s s t t t st 2 st t s r r r r T s t 2 s r t q s 1 t t t s r s s 2 q t s 0 r s 1 t s t r s t s st t Pr s t s s x 0 < x t tr s D = D min = 0 t x(t) r s x T s r t t x 0 + s 0 = s in r t s t t t r s s str t r t ss t r x r x 0 +s 0 = s in r s t s s r t t s r {10,10} {10,40} {50,10} t 2 t t t r s t s str t r t ss t r s t 2 t tt x t r t r s x 0 +s 0 = s in s t r x 0 < x s 0 s t s t t tr r s t s t D max r s t D = D min = 0 t t r t r2 s t s tr s t s r 2 r st t r s t t t t s x s s r

1 3 t t t s r t D min {s 0,x 0 } t t s r x s r s 10, 10 10, 10 10, 40 10, 40 10, 70 10, 70 10, 100 10, 100 50, 10 50, 10 80, 10 80, 10 100, 10 100, 10 s r t rt t t s D min t s r t s t r r s rt s t t t r x( ) s( ) s t s t t t t (s 0,x 0 ) D( ) s 2 r s ss t t s s s r st x tr Pr s t 1 s r tt D min s(t) > s D( ) = D max s(t) < s D s(t) = s r s = s in x t s st 2 2 s t t r st ss t tr t r s t t t t t s s ǫ 1 = 1 2 ǫ 2 = 0.2 s t t s2st r t s t t t s r rt r t s D min t t s r r s s r rt t rt s t r s s r s t r s ts r r rt r s t s t t t s {s 0,x 0 } rr s t {10,10} {10,40} {10,70} D min = 0 t t t s r s s r rt t s s t s 0 +x 0 = s in s t s t s t s2st s s s T s r x 0 > 0 t t t s 2s tt rs t tr t s t t t r s t t t s r t s s 2 t s s r t r t t st t s2st r s s2 t t 2 t r s t t t t t x 0 +s 0 = s in t s s s t s 2 t t t tr s r st t r s t t t t s s s s r st x

P 1 s t r t 3 ré t r st ér rt r r s s x s tt D min > 0 T r t t t t t t s r s 2s r t r s s s r st x r t r rt s r t r t s t t r s t s r s t r t t t s r r s t s s 2 t s s s t s t s 80 70 60 50 4.5 4 3.5 3 2.5 x, X, S s 40 D 2 30 20 10 1.5 1 0.5 0 0 0 1 2 Time -0.5 0 1 2 Time r st ss t t tr s s s r s 0 + x 0 = s in s t D min = 0 D max = 1.2D t t x s tt t tt s s s s r s t t r st tr t s s t s t r s ts st s Pr s t t s t t t tr r s [ ] rs r t s2st t r s t s t t s 2 t tr 2 s s t st t t t st t t st r t rs r s t t r tr s r t t r t r t r s2st t r ss r s t t tr st r t t r t r r t ss t t s str t tr t s st t 2 t t t r t r s t s t s st r s s t r t s r t t s t t s r t st t t r t r s s rt 2 t r ss t r rr s

r t r r s t s r t 2 s t r ss s s r t t t t r s t r r s t t r t t t s t t t t s str t t t s tr t r t st r s t t r ss r t r t r t 2 r ts t r st ss 2 t st 3 t t r ss s s t t r t s r s t s r t s str t 2 t rs s r t t t s r t r r s t 2 t γ t r r t s t s t S in = 100 r t 2 t s s t t x 0 + s 0 = s in t 2 t s2st s 2 ẋ = γ(x) Dx rst s r q r t x s t t x < x t s r t t t t rr s t r t r s D max > D = µ(s in x) > D t s s t t t t tr s sts 2 D = 0 t t t s tr r t s2st t r s x = 76.8 tt t tr s t s t t D r t s t q r t x < x t s 2 t tr 2 t 2 r t rt r t s 2 st r D d > D r r t st 1 t t r t s t r t t t t s2st t t s t t t s r t t 2 t s2st s 2 ẋ = γ(x) D d x x r s st 2 t t r s γ s r s r x < x s r r s t s t r t t 2 r t s t t t s2st s t r2 r s t D r 2 st 3 t t r r t s str t 2 t s q t r t st t t 2 t t t tr s r t r s D s t 2 t t str t 2 s t 2 r t st t x t r s x rs 2 st rt r t t t D < D s t t x > x s s t s r s t r s 2 t t t t t γ s r s r x > x t t t r st tr r t st t t r s x s t t tr st s 1 t 3 t r t r s 2 t r st str t 2 s t t t r s t t t t s t t r t t r t t st t x t s t t str t 2 t st t t t tr s s r t rs t s s t r t s2st t r s t t t x 1 3 s t t t s r t r t r r s s t s s t tr r t s2st t r s t t t t r 2 t s s t s t s t t tr t r2 r 2 t s s r t t t t s r st t t s2st 2 t s s s t 2 r r t t s2st s r t t rs s s t s t ss 2 r t r 2t 2 t s t r t r s r r t r s r rr t s t 2 r t 3 t st r s t r s s r t t r s r s s t r P r t s

P 1 s t r t 3 ré t r st ér 250 200 1 1 150 100 2 2 50 3 3 0 0 50 100 150 r t γ t r st tr t s t s r t 3 t r t t tr t r s t s s r t 3 t t ts s t s s t r 2 t t tr 2 t r t t r t r t t 3 t t s2st t str ts t t t r rst t s r t P rs 2 t s s s t t t t 1 t t s t s t s r t rs s t s s t s t t s s r t t x = 76.87 D = 3.14 1 t t tr s 2 Pr s t s s 2 t s s t t x 0 = 10 s 0 = 90 t r r s t tr s r r 3 t ǫ 1 = 1 t s r t tr t r s t 2 Pr s t t s t 2 P r t s rst 1 t st t tr t r s rr s tr s s r tt r P t 3 t r t rs r s ts r r rt 1 r t s t s s r q t q t t 422 s 2 P rs tr s s r t t t r t t s t

r t r x ( t ) x 0 = 10 x, s s ( t ) s 0 = 90 D D ( t ) s 0 = 90 x ( t ) x 0 = 10 x, s s ( t ) s 0 = 90 D D ( t ) s 0 = 90 r 1 t t tr t tr t t P t s 0 +x 0 = s in s r s ts s st t t P 2 t t st t 1t s s t t tr s t s 2 t s s s t s t t tr t 2 r rt r st t t t t tr s t t P s 0 +x 0 = s in s t s 2 r t r s ts t t s t t t r r t st 2 t r st ss t tr t r s t t t t t s t s t t P r t t r s s t r t P s x 0 = 10 s 0 = 10 40 70 r s t 2 t r s ts r r s t r t t t s r s s r rt P t 3 t r t rs r s ts r r rt 1 r r s 2 t r s s r r r s t r r s 2 r t tr t r s t t t r st ss st 2 2 Pr s t 1 s 0 +x 0 = s in s t t s t t P tt t tr t r s tr s r t t r st r tt t

P 1 s t r t 3 ré t r st ér x ( t ) s 0 = 40 x ( t ) s 0 = 70 s s ( t ) s 0 = 70 x, s ( t ) s 0 = 40 x ( t ) s 0 = 10 D D ( t ) s 0 = 70 D ( t ) s 0 = 40 D ( t ) s 0 = 10 s ( t ) s 0 = 10 t t s ( t ) s 0 = 70 x ( t ) x ( t ) s 0 = 40 s 0 = 70 D ( t ) s 0 = 70 s s x, s ( t ) s 0 = 40 ( t ) s 0 = 10 t x ( t ) s 0 = 10 D D ( t ) s 0 = 40 t D ( t ) s 0 = 10 s ( t ) s 0 = 70 x ( t ) s 0 = 40 x ( t ) s 0 = 70 D ( t ) s 0 = 70 s x, s ( t ) s 0 = 40 x ( t ) s 0 = 10 D D ( t ) s 0 = 40 D ( t ) s 0 = 10 s ( t ) s 0 = 10 t t r r s t tr s s 0 + x 0 = s in s t t D D max t t t ts r t s s t s r t t tr t r s tr s t t P t tt t s tr t r s tr t r t r s 3 t tr t tr tt r ǫ = 5 t tr t r s rr s tr s t t P r t t r t t s tr s s r r2 s2 s 2 s P s t s t tr t r2 s s r r s tt r s r t 3 t s t r 2 t r s t 2 t r t r t t 3 3 t tr s r t r t s J(x(.),s(.),D(.)) = T 0 [ µ(s(t))x(t)+ǫd(t) 2 ] dt rs r t s 2 r s st s ǫ st t s t s 1 t t t s r ǫ s r t t tr t r s r

s s rs t s s 0 t 10 40 70 s r t t t t s t t P t s r t2 t tr t r t r s 0 t t 10 40 70 t t t t s t t P t s r t2 t tr s t r t r r r ǫ = 5 t rr s s r t r t r T = 2 t t s s t t s t r s t ǫ t s t r s 3 r tr t r s tr s rr s t t 3 t s t t ǫ = 5 r tt t st r P t 3 t r t rs r s ts r r rt 1 t t r t r s ts rst r t s r t s r rt s t t s t t P t t t2 t tr r rt r r t t s s r t t t t t t s r s r t r t t tr r r t t t t2 t tr t r t r r r s ts r rt s t r s ts r r t r t tr s t r r str 2 t t2 t r t r t t str t s r r r t t t s s t rst s st P t t t r 2 t t r t s t s t 2t s t r s t t t r t s r s ts s st t t 2 t tr r s t t r r Pr s t 2 t s s s t s r r s 2 r s ts t r s s r t t t t t s t s t s q t r st t rt t2 t t s t s s s s s s r s s rs t s t s r s ss ss t t r s r st ss ss s t r s t t r t r s ts r t tr t r2 r t st t t t ss t s s t s 2 2 t s s s t s r s ts t t t2 t r st tr t 2 r s 2 t 2 r t s st t t s s t t t s

P 1 s t r t 3 ré t r st ér r st tr s s t t r s t t t 1 3 t t s r r t t t t r s t s2st t r s t s t t t t t t tr P rs t s t s r t 1t s r r s ts t r 1 s t t s st t t 2 s r r s ts t t r t 3 t t t t P s t r t r 3 t t r s ts t s r t t x 0 + s 0 = s in s t t 2 r s r t t rs t t t r t rr r s r t r r r t t P r t 33254QH t rr s r r r t r s rt 2 s t r 2 r2 ss rt r r t s ss s t t s r

s

Pr Pr s t Pr Pr s t t D( ) ss tr t x(t,x 0,D( )) t s t t s2st ẋ = γ(x) D(t)x, x(0) = x 0 t t D = D( ) tr s t s 2 D min D(t) D max r t [0,T] x(t,x 0,D max ) x(t,x 0,D( ) x(t,x 0,D min ), r t [0,T] Pr t s r r t t t t r r s s t s 2 s2st s s r 2 tr D( ) s t s 2 D min D(t) D max s γ(x) D max x γ(x) D(t)x γ(x) D min x t t r Pr s t r r s t µ( ) µ( ) s r s t r s r t t t r s s r t s t t s s t s t2 t Pr t s s t ss t t µ( ) s r s r t 2 t s s D min D µ(s ) = D s < s in s t r 1 sts s min s t t µ(s min ) = D min s min s < s in t t x(t,x 0,D min ) s t s t ẋ = γ(x) D min x, x(0) = x 0 s t r s t r s x min = s in s min x r x 0 x t r 1 sts t min (x 0 ) s t t x(t min (x 0 ),x 0,D min ) = x r 2 x(t,x 0,D max ) s t s t ẋ = γ(x) D max x, x(0) = x 0 D max supµ( ) t s t r s t r s D max < supµ( ) t s max 2 µ(s max ) = D max r t 2 t s s s s max s s st st s s max < s in t t s t r s t r s x max = s in s max x s max s in t r s t r s 0 r x 0 x t r 1 sts t max (x 0 ) s t t x(t max (x 0 ),x 0,D max ) = x t s t (x 0 ) = { min(t,tmin (x 0 )) x 0 x min(t,t max (x 0 )) x 0 x

t r r s t (x 0 ) s t st t t t s t x(t,x 0,D min ) r s x x 0 x r x(t,x 0,D max ) r s x x 0 x ts r s t [0,T] t s s t s r r x [0,T] t (x 0 ) s t q t T t r Pr s t s r ss tr D( ) t t x 0 [0,s in )] s 2 t t s t x(t) = x(t,x 0,D( )) st s t s s x 0 0 x 0 x t t s s r t tr D (t) = { Dmin 0 t t (x 0 ) D t (x 0 ) < t T r t (x 0 ) s 2 rr s s t s 2 { x(t,x0,d x min ) 0 t t (x 0 ) (t) = x t (x 0 ) < t T s r ss tr D( ) s x(t) x(t,x 0,D min ) = x (t) r t [0,t (x 0 )] x (t) x r t [0,t (x 0 )] r t t γ(x(t)) γ(x (t)) r t [0,t (x 0 )] x (t) = x r t [t (x 0 ),T] r t t γ(x(t)) γ(x (t)) r t [t (x 0 ),T] s r t [0,T] γ(x(t)) γ(x (t)) r r r x 0 x J(x( ),D( )) = T 0 γ(x(t))dt T 0 x x 0 s in t t s tr t tr { Dmax 0 t t D (x 0 ) (t) = D t (x 0 ) < t T γ(x (t))dt = J(x ( ),D ( )) r t (x 0 ) s 2 rr s s t s 2 { x(t,x0,d x max ) 0 t t (x 0 ) (t) = x t (x 0 ) < t T s r ss tr D( ) s x(t) x(t,x 0,D max ) = x (t) r t [0,t (x 0 )]

Pr Pr s t x (t) x r t [0,t (x 0 )] r t t γ(x(t)) γ(x (t)) r t [0,t (x 0 )] x (t) = x r t [t (x 0 ),T] r t t γ(x(t)) γ(x (t)) r t [t (x 0 ),T] s r t [0,T] γ(x(t)) γ(x (t)) r r r x 0 x J(x( ),D( )) = T 0 γ(x(t))dt T 0 γ(x (t))dt = J(x ( ),D ( )) r t t r t t s x 0 [0,s in ] t ss tr D( ) s J(x ( ),D ( )) = max D min D( ) D max J(x( ),D( )). s t t t s t tr 2 2 s t s 1 t 2 t Pr s t st t s s t2 t Pr ss t t t r 1 sts s s t t µ(s) s r s r 0 < s < s r s r s > s rs s min r s max r t r s s t s s s t s q t s µ(s) = D min r µ(s) = D max r s t 2 t s q t s t st t s t s st 1 t s t r r r t s t s min r s max t x ]0,s in [ 2 2 t s s γ (x ) = 0 γ (x) = µ(s in x) µ (s in x)x µ (s ) = µ (s in x ) > 0 t t s t s 2 0 < s < s r t 2 t s s D( min ) D µ(s ) = D s < s in s t r 1 sts s min s min s t t µ(s min) = µ s min = D min s min s < s in s min < s < s min s s st st s µ(s in ) D min t t s t s 2 s in s min t r x 0 x t s t r s t r s x min = s in s min x r r t r 1 sts t min (x 0 ) s t t x(t min (x 0 ),x 0,D min ) = x µ(s in ) < D min t t s t s 2 s in > s min t r x 0 x t s t r s t r t r s x min x t r t r s r r s 2

x min < x 0 x r x min = s in s min > 0 t s t r s t r s x min x t min (x 0 ) 2 x(t min (x 0 ),x 0,D min ) = x 0 < x 0 < x min t s t r s t r s s t t t r tt s x t t min (x 0 ) = + D max supµ( ) t s t r s t r s D max < supµ( ) t s max s max s t t µ(s max ) = µ ( s max) = Dmax s s max < s < s max 2 s s st st s s max s in t t s t r s t r s s max < s in < s max t t r s t r s x max = s in s max x s max < s in t t r s t r t r s x max x t r t r s 0 r r r x 0 x t s t tt s x t r r t r 1 sts t max (x 0 ) s t t x(t max (x 0 ),x 0,D max ) = x t (x 0 ) 2 r st t r s t s s t r µ(s in ) < D min t s t s 2 st t r 1 st t t s s 0 < x 0 < x min r x r s t r s 0 t r t t t r s D min = 0 P t 3 t r t rs r r s ts r rt s t r t r r rt P r t rs r t t 3 t s r 3 t P r rt r s t s r t t s x 0 = 10 s 0 = 90 s r t 3 t t t r r tt s r t 3 t st 1 t s t t 0.85s s r r t r 1.0000000000e 010 t P P P 0.323s t P P 0.477s t r t s 31 t s r r s t t s x 0 = 10 s 0 = 10 s r t 3 t t st r r 1 t r s r t 3 t st 1 t s t t 0.57s s r r t r 1.0000000000e 012 t P P P 0.29s t P P 0.223s t r t s 40 t s r r s t t s x 0 = 10 s 0 = 40

P t 3 t r t rs r r s ts r rt s t s r t 3 t t st r r 1 t r s r t 3 t st 1 t s t t 0.64s s r r t r 1.0000000000e 012 t P P P 0.34s t P P 0.251s t r t s 48 t s r r s t t s x 0 = 10 s 0 = 70 s r t 3 t t st r r 1 t r s r t 3 t st 1 t s t t 0.37s s r r t r 1.0000000000e 012 t P P P 0.207s t P P 0.138s t r t s 37 t s r tt r s t t s x 0 = 10 s 0 = 10 s r t 3 t t t r r t ss s r t 3 t st 1 t s t t 0.58s s r r t r 1.0000000000e 005 t P P P 0.21s t P P 0.315s t r t s 20 t s r tt r s t t s x 0 = 10 s 0 = 40 s r t 3 t t st r r 1 t r s r t 3 t st 1 t s t t 0.32s s r r t r 1.0000000000e 005 t P P P 0.16s t P P 0.11s t r t s 21 t s r tt r s t t s x 0 = 10 s 0 = 70 s r t 3 t t st r r 1 t r s r t 3 t st 1 t s t t 0.37s s r r t r 1.0000000000e 005 t P P P 0.18s t P P 0.12s t r t s 23

tr trô t ré t r st ér és é r é t q t r s r s r s s s tr 3 rés t r è trô é r t s s s r s t t r s t r s t t r s t s t r t tt r èr s st à r rés t r s tr t r s s2stè t s t é r r s t s t t r t t s s q ér t s t s é ss r s t té é s r P P Pr 1 P tr2 t tr s rs té p(t) = 0 tr t t t r r s s t s q t r t rt x = x 0 rs r t r 3 t p = 0 s t s T t 0 tr r t s ré é t s s s t t st s tt t t 1 q s ss s r st s r r r é r t s s s t st rés té s rt rès t t é t tr r st r ss s s ré t s r t t s t rt s ét s r ét é s tr 2 s r 2s tt té r s r P r s t s r r s rt s2 t ès trô s s s t t s t r 1 P tr2

P trô t ré t r st ér t tr t r st r ss a,d r b,e r c,f, a r t r t t q rs té P ér b rst t r r ç s r t t r r c s t s r r d r P t r r e rs té t s s r f P r t s s t s r rr s t r str t s r 1t s t r s ts r s t t t tr r s t rs t s r t t r t t tr r t 1 3 t t s t q r s t t t t r str ts rst rt st s r s ts t t ss t2 t s r r t t tr s t s t t t s t t t t r s r r r s t 1 r s t t t r t s s r r s r r t t t 1 3 t s r t t q r s t t t s t 2 t tr s t r r s ss t t s 2 r s t tr st t r t r s 1 3 t r s t tr t r st r t 3 t s r ss r s r tr s r t r 1 t s 2 r r s s r t s r ss s s r r r t r s s r st s 1 r s2st s t st r r st 3 t r ss ts r st rt s 2s r t s t s t s ss r2 t t t s2st s t t 2 s r ss t st r s r t t 3 rt t st s s ts r t r t st rt r t r s t r s r s st r t r st r ss s r t r t r s str t t 2 s s r t t s CH 4 2 t r t x ss t t t t r t Q CH4 s r rt t t r t t2 s r s ss s t ss st t t 2 q t s r 2 t r s2st r r2 r t q t s { ẋ = (µ(s) D)x ṡ = D(s in s) µ(s)x

s r t tr r t t r t r t s s Q CH4 = µ(s)x x s t ss s str t tr t s r s t 2 s in s t tr t t t s str t s D [D min,d max ] s t t r t s s r r t r s t tr r µ s t s r t r t r r s s t r s t r s r t s s st r t r st r ss r s t t r s r t r t r s str t t 2 s s r t t s CH 4 2 t r t x ss t t t t r t Q CH4 s r rt t t r t t2 s r s r t r st 1 3 Q CH4 r t r T r t str ts D min D(t) D max r r ss t s t r t r s st t t 1 3 t t t J(x(.),s(.),D(.)) = t=t µ(s)xdt t 2 t s r r t=0 r s t r 1 3 t s r t r r t s st t s r r t ss st r s r s t r r r r s s r r s r t s t 1 Pr P tr2 t s r t t x = x r x s t 1 t t x xµ(s in x) s t s r r t r s r t t tr s2 t s s s t 1 t 2 ss t2 2s s s r r s r t ss t t s s 0 + x 0 = s in st s t t t t r t t tt t 1 s r t t q r D = µ(s in x ) s t t D min 1 D max t t tr s sts t r s t r r s q r t x s st s ss s t r D min r D max t s t x 0 t r s t t x t q r x s tt t t s t t D t s t s t t x s t 2 t s s D min D D max t s s s s t t r s r t r s t r 1t t r s ts r s t t s r t s rst ss t2 st 2 t s r r s r s st 2 t ss t2 t st 2 t t 2 t s s x 0 +s 0 = s in s t ss t s 2 t s s s s t t 3 t r t rt r s s t r r s r s t t r s r r s D r s D max D r s D D min s r t tr r 2 t s s t s q s r µ t s t t s t s 2

P trô t ré t r st ér 2 t s s t µ(s) s t s r t s s t t µ(0) = 0 µ(s) > 0 r s > 0 r r t s t r r s r t r 1 sts s s t t µ(s) s r s r 0 < s < s r s r s > s r t t r t t µ(s) = ms K +s, µ(s) = ms K +s+s 2 /K i s t s 2 t s 2 t s s s t rst s r s t s s r s r 0 < s < s = KKi r s r s > s t t s 2 r t r st t s r t s t2 t t r t t s r s t2 t t r t t s r s t r s s 1 s t 1 3 t s r t r t t r t t t r t r t t r [0,T] 1 r ss s J(x(.),s(.),D(.)) = T 0 µ(s(t))x(t)dt r (x(.),s(.),d(.)) s t s 2 r t str t D(.) [D min,d max ] t t r s ts r s t r t t 2 t s s s 2 t s s t t s s2st t t x 0 +s 0 = s in t t t r 2 t s s x(t)+s(t) = x 0 +s 0 = s in s r s t t s t t s t 3 t r s r t t s t 3 t r ẋ = γ(x) Dx, x(0) = x 0 J(x(.),D(.)) = T 0 γ(x(t))dt t γ(x) = xµ(s in x) s t 3 t r s q t t t s t 3 t r ṡ = D(s in s) γ(s in s), s(0) = s 0 J(s(.),D(.)) = T 0 γ(s in s(t))dt t s t r t s t q t t 3 t r s r t γ(x) s t s s s 2 t r rt s γ(0) = γ(s in ) = 0 γ(x) > 0 r 0 < x < s in r r t st r 1 t t r [0,s in ] ss t t t s q 1 t s t r

s r t tr r 2 t s s r 1 sts x ]0,s in [ s t t γ (x ) = 0 γ (x) > 0 r x [0,x ) γ (x) < 0 r x (x,s in ] r t t s r 2 2 t s s r st r t t str t r r t t s s t t γ (x) = m (1+s in/k i )x 2 +(K +s in +s 2 in/k i )(s in 2x) ( K +sin x+(s in x) 2 /K i ) 2 ms in K+s in +s 2 in /K i r r γ (0) = x t t r (0,s in ) x = K K i K i +s in +s in > 0 γ (s in ) = ms in K < 0 γ (x) = 0 s q s t K 2 K 2 i K i (K i +s in ) +Ks 2 in K i +s in r 2 r t t str t r r t t s s t t γ (x) = m x2 +(K +s in )(s in 2x) (K +s in x) 2 r r γ (0) = ms in K+s in > 0 γ (s in ) = ms in < 0 K γ (x) = 0 s q s t x t t r (0,s in ) x = K +s in K 2 +Ks in t s t t t t r s r t t r r t r s r t t 2 tt K i = s in D min D max x s D P r t r s r r s m = 5 K = 10 K i = 50 2 t t 2 r r tr t 2 t s s t tr r t r D min 2 t s s ss t t µ(s in ) > D min s st 2 t s s s s t t s t t r t 2 ttr t q r t s t t t t t s s s t r st r t

P trô t ré t r st ér r P ts t t s y = µ(s) y = D min y = D max rr s t t r s s s t r s rr s t s = s in x D = µ(s ) r t r t t y = µ(s) r P ts t t s y = γ(x) y = D min x y = D max x rr s t t r s s s t r r s rr s t x γ(x ) r t r t t y = γ(x) r s s t t s st s t t s t r r r s t t t t r s t 2 rr s t s γ(x) r s r r t t t 2 t s s s t 2 2 t s s r st r t r s r t t µ(s) = ms 1+2s n K +s 1+s n t t γ(x) = xµ(s in x) 1 t t 1 s t t r [0,s in ] s

s r t tr r r r t r t rs s m = 1 K = 0.1 n = 6 s in = 2 t t γ(x) = xµ(s in x) s rr s t t r s r t t s 1 ts t 1 s t t r [0,s in ] s r s t t r s rst r t r s ts st s r t s ss t t 0 D min D D max r D = µ(s in x ) Pr s t ss x s s r t t tr s 2 D min x < x D(x) = D max x > x D x = x r D = µ(s in x ) s t s r tr ss s s s r t t tr s 2 r s = s in x D = µ(s ) s t s r tr D min s > s D(s) = D max s < s D s = s r s t s r s Pr s t q t t s r r r t 1 t r s t r r t s r s t 2 s t P tr2 1 Pr P P t s r s t t t P P t t r t t str t 2 s s q t t t s rst

P trô t ré t r st ér s in D = D max x x D = D min t T r t s2 t s s t st s s ss q t s r ts s t rst t r tr t s s s t str t s t 2 2 r t t P P t str t 2 Pr s t s sts t r s x r s s r t t s t x(t) t r s t t x r s s(t) t r s t t s t st r r t s t r t ts D = D min r t ts 1 t2 D = D max t x r s s t 2 r s t s r r x r s s t st 2 t s t s r tr D s r s s ss 2 D min D D max t s r 2 t s s s t r st t s r 3 s t s t r P t 1t s t s r t r t s t t str t 2 r s s r t r t 3 t r t t s t s 2 t s 2 t s s s t t 2 t s r r t s r r S s s 2 t t t s ss t r 1 sts st t (s,x) D S(x,s) s t t r 2 t t S t t t 0 t s t s2st t D = D S(x,s) r s S r 2 t r t s s t t D(x(t),s(t)) [D min,d max ] r 2 t t > t 0 t s s t 2 t s s s t r t t s s 0 +x 0 = s in s t s t t str t 2 Pr s t ss rst t t x(t) s s r s t tr r r D = D min r D = D max s t st t (s(t),x(t)) t r s t s r r x = x st st 2 t ss t2 t s s r r x = x t r t r t s ss t st 2 t r t st t r tr s s t st 2 t x = x r r s 2 x = x 0 = ẋ = (µ(s) D)x D = µ(s)

t 2 t s r r st r r x(t) s s r t tr t s D max x(t) > x D(t) = µ(s(t)) x(t) = x D min x(t) > x s tr s t tt x = x t st 2 t s s t t t s r t ss r t s r r x = x t x = x tt r t t s t s t s 2 s 0 + x 0 = s in st t r t ss r x = x t t s t s t t t s r tt t s r r D min D(t) D max s D min µ(s) D max r t t µ(s) = ms K+s D min = 0 t s t s q t t 0 s λ max r µ(λ max ) = D max s r t s r t r s r r ts rr s t D min = 0 t r r s t r t t r (λ max,x ) rr s t D max ss t t x 0 < x t t t s t t t r ts t t D = D min t tr t r2 s t tt x = x r t tt s x = x t s > λ max x (s,x ) (λ max,x ) x (s,x ) (s, Dmax D x ) (s, D min D x ) s s r ss t2 r s t s r r s x = x s = s r 2 ss t t s(t) s s r s t tr r r D = D min r D = D max s t st t (s(t),x(t)) t r s t s r r s = s st st 2 t ss t2 t s s r r s = s t r t r t s ss t st 2 t r t st t r tr s s t st 2 t s = s s = s 0 = ṡ = D(s in s ) µ(s )x D = µ(s ) s in s x = D x x st t st 2 t s r r s = s r r s(t) s s r t tr t s D max s(t) < s D D(t) = x x(t) s(t) = s D min s(t) > s

P trô t ré t r st ér s = s tt r t t s t s t s 2 s 0 +x 0 = s in st t r t ss r s = s t t s t s t t t s r tt t s r r D min D(t) D max s D min D x x(t) D max D min D x x(t) D max D x s tr s t tt s = s t st 2 t s s t t t s r t ss r r t s r t r s r r ts rr s t D min t r r s r r ts rr s t D max str t t s r s ts t s s r t t s r s(t) s t t tr s t t rt t r s rst s t t x(t) s t s r s t t t s r tr D x x(t) t s s(t) = s t t s r r s s r t r t r t tr r s tt r r t t r s r t s r r 3 t t q s r r 3 t s sts r t tr 2 t r r 3 tr D reg (t) = D max s(t) s ǫ 2 D + D min D ǫ 1 (s(t) s ) s ǫ 2 < s(t) < s +ǫ 1 D min s(t) s +ǫ 1 r ǫ 1 > 0 ǫ 2 = Dmax D D D min ǫ 1 r r 3 t t tr s s s r s t tt r s r t s ts t t s t t ss t2 r x 0 = 10 s 0 = 10 t rst x 0 = 80 s 0 = 80 t t r r t rs r 2 m = 4.5 K = 10 s in = 100 str ts t t t r r 2 D max = 1.2D D min = 1 s t t tr t ǫ 1 = 1 2 s ǫ 2 = 0.2934 t t = T = 2 s t r s ts r r rt r s t r s t t t t t s s r t D max t D sing r D min t D sing r D sing (t) = D x x(t) s t s r tr t t t s t s t t s r r s = s in s 2 t r s t t r t r D max t D min t D sing t s x 0 = 10 s 0 = 10 r D max t D min t D sing t s x 0 = 80 s 0 = 80 r r s 2 t r s r t > 0.7 t s s s t r r 3 tr D reg (t) = D + D min D ǫ 1 (s(t) s ) t t t s t s t t t2 s r r s in ǫ 2 < s < s in +ǫ 1 s s 1 t 2 t s 2 t ss t2 2s s t s s s 2 t s s s r

t 2 t s r r 80 70 4.5 4 60 3.5 50 3 40 30 2.5 2 20 1.5 10 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 140 4.5 120 4 100 3.5 80 60 40 3 2.5 2 1.5 20 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 r t s(t) x(t) r x 0 = 10 s 0 = 10 t r t t rr s tr tt t r t t s t t r x 0 = 80 s 0 = 80 r s t 2 x (s,x ) (80,80) x (s,x ) (s, Dmax D x ) (10,10) (s, D min D x ) s s r t r t t 2 s t s s2st r t r s t D = D max r tt r t s t D = D min t ss rt t s r r r ts ss rt t t t tr t r s rr s t t t t s (s 0,x 0 ) = (10,10) (s 0,x 0 ) = (80,80)

P trô t ré t r st ér r s t s t t s t t s s 2 D max r s D min t s s r r s(t) tt s s t t t st t s s t t t ss rt t s r r t s t s ss r2 t s t t t t r 1tr tr D min r s D max r t s 2 s t t D sing t s t r s D tt r rst t s ss t2 r r t r t t s r r s t r t s t t s s2st t t str t 2 r s t s 2 t s s s t s t s rt r t s r t str t s s t t ts r r {x 0,s 0 } = {10,10} {x 0,s 0 } = {80,80} r r s 2 r r (s 0,x 0 ) = (10,10) r s r (s 0,x 0 ) = (80,80) s t tr s t D max t D min r s D min t D max t D sing rr s s t t tr s t D max t D min r s D min t D max t D reg s s r r s t t r s t t s t t t t t tr r s 2 t r s t Pr s t ss D max D t t tr s 2 { Dmin t > τ D(t,x) = c (x) D max t < τ c (x) r t t t r τ c (x) s 2 τ c (x) = T x x dξ γ(ξ) D max ξ. t s t r x s q 2 2 q t s x < x < x, γ(x ) = γ(x) r s s t P tr2 1 Pr s t 1 t s t t t τ c (x ) = T t t T τ c (x) s t r r t r 1 t t t 2 t rt s x x γ(x) D maxx s r s s r t t s t t st t t (t,x(t)) t r s t t t t t r t = τ c (x) t st r r t s t r t ts D = D min r t ts 1 t2 D = D max t t t t s t s rr s t D = D max r t r s x max s 2 µ(s in x max ) = D max D max D s x x max s in t t t t t t x s t r s t rt r r t s s t t str t 2 s sts x(t) s s s ss t x s r r t t s t 1 r ss s r x γ(x) x = (K +s in)(s in x) K +s in x

r s t t r s y y = D maxx y γ(x)=γ(x ) y = 1 γ(x) D maxx y = γ(x) T τ c x x x max s in x x x max s in r r t s x = x (x) τ c = τ c (x) s in s in D = D max D = D max x max t = τ c(x) x x x x t = τ c(x) x min D = D min D = D min t T t T r t s2 t s s t t t t r t

P trô t ré t r st ér γ(x) = mx(s in x) K +s in x r t t s t 1 r ss s r x γ(x) x = (K +s in +s 2 in/k i )(s in x) K +s in x+s in (s in x)/k i γ(x) = mx(s in x) K +s in x+(s in x) 2 /K i 1 t s s γ(x) D maxx s r t t s t r t 1 t 2 t t t t = τ c (x) s 1 t 2 r s t t r s r 2 t t s t t t t t tr r s 2 t r s t Pr s t ss D min D t t tr s 2 { Dmin t < τ D(t,x) = c (x) D max t > τ c (x) r t t t r τ c (x) s 2 τ c (x) = T x x dξ γ(ξ) D min ξ. t s t r x s q 2 2 q t s x < x < x, γ(x ) = γ(x) s s r t t s t t st t t (t,x(t)) t r s t t t t t r t = τ c (x) t st r r t s t r t ts D = D min r t ts 1 t2 D = D max t t t t s t s rr s t D = D min r t r s x min s 2 µ(s in x min ) = D min D min D s x x min > 0 t t t t t t x s t r s rt r r t s s t t str t 2 s sts x(t) s s s ss t x s r s s rs t s t s r 1t t r s ts t 2 r s t t 1 3 t t t t s r t r r t r t t r 2

s s rs t s x 0 +s 0 = s in r t ss st t ss t s s r s q t r s s s s t t str ts t t t r r t s t s r t t 1t s s t r s t t t r s ts r s t t t r s t 2 r s P rs t s t s r t r 3 t t r s ts t s r t t x 0 +s 0 = s in s t t 2 r s r

P trô t ré t r st ér

s

P tr2 1 Pr P tr2 1 Pr t s s t 2 t P tr2 1 Pr P P t t t 3 t r t r s Pr s t s s t tr r u = D D min D max D min t 3 t r s ẋ = g(x) uαx, x(0) = x 0, 0 x 0 s in J(x( ),u( )) = T 0 γ(x(t,u( )))dt r α = D max D min > 0 g(x) = γ(x) D min x t tr u( ) s t s s 0 u( ) 1 x(t, u( )) s t rr s s t tr t t ss t t st t H(x,p,u) = p[g(x) uαx]+γ(x) = (pg(x)+γ(x)) pαxu. r p s t st t 2 P tr2 s 1 r 2 1 t st t tt t s (x (t),p (t),u (t)) st 1 3 t t H(x,p,u) t r s t t u H(x (t),p (t),u (t)) H(x (t),p (t),u) r u [0,1] st s t t s2st { ẋ = H p (x,p) t r2 tr s rs t2 t s ṗ = H x (x,p) r t t H(p,x) s 2 x(0) = x 0, p(t) = 0 H(p,x) = max 0 u 1 H(x,p,u) H s r t t r u t s r t t r r H(p,x) = { H(x,p,0) = (p+1)γ(x) Dmin px p > 0 H(x,p,1) = (p+1)γ(x) D max px p < 0 D (t) = { Dmin p > 0 D max p < 0

(x (t),u (t)) s t s t t r 1 sts p (t) s t t (x (t),p (t)) s s t r r st t s t s t t s2st t t r st rt t t 0 t rt x = x 0 r r t r 3 t str t p = 0 t t T s t ts S = {(x,p) : p = 0} s t s t r t t s2st tr s rs t2 t p (T) = 0 s s t t t t s t tt s t s t r S t t = T q st r s t s p (t) t s r t r t s t tr t r [0,T] t r r s t st t (x (t),p (t)) t t s2st r r ss r r t s t r S t st t r s S t t u (t) r q t 2 D (t) s t t r 2 tr s s t s r t s s r t 2s s s r q r t t r u (t) s s st t (x (t),p (t),u (t)) s t s t t p (t) s t t s t r p = 0 s s t r [0,T] t t s t s 2 t tr s s r 2 x (t) = x D (t) = D t s s t r Pr t s r t s q t t t ṗ = (p+1)γ (x)+dp p (t) = 0 = dp dt (t) = γ (x (t)) = 0 = x (t) = x t t tr D (t) = D s r t rst q t t 2 ẋ = γ(x) Dx x (t) = x = dx dt (t) = γ(x ) D (t)x = 0 = D (t) = D st st 2 t r s t s r t s t s2st tt r rst t 2 t st 2 t s t t s2st t t H(p,x) = (p+1)γ(x) Dpx r D s 1 D = D min r D = D max t t s { ẋ = H p (x,p) = γ(x) Dx ṗ = H x (x,p) = (p+1)γ (x)+dp

P tr2 1 Pr t t t t tr t r s r t 2 t t tr t r s t D = D min t p > 0 t tr t r s t D = D max t p < 0 q r r 2 t s t s q t s { 0 = γ(x) Dx st s q t 0 = (p+1)γ (x)+dp γ(x) = Dx t 0 x s in s q t s 2s x = 0 s s t 2 r t t r s t s µ(s) s t2 t s t st s t s t s µ(s) s t2 t t st t s t s t s x 1 x 2 s s t s s t s 2 x > x 1 > x 2 D > D x 1 > x > x 2 D < D r s t 2 Pr µ(s) s t2 t s s t s t D > µ(s in ) s t s t D µ(s in ) r t s t2 t rst t r 2 t s s t t 0 < s < s t 2 s γ (x) = µ(s in x) xµ (s in x), r γ (x ) = 0 t t µ(s in x ) = x µ (s in x ) µ (s ) > 0 t s t s 2 0 < s < s r r q t s µ(s) = D t st t s t s s 1 s 2 s t s 2 s < s 1 < s < s 2 D > D s 1 < s < s < s 2 D < D t st t s t s x 1 x 2 s t t x > x 1 > x 2 D > D x 1 > x > x 2 D < D t s2st ts t r2 q r E 0 = (0,p 0 ) r p 0 = γ (0) s q r s s t s s r tr s r 2 q t s D γ (0) (p+1)γ(x) Dpx = 0 rt r s t x = 0 t s q t s t st s r tr 1 E 0 s s t s t t s t r q r t s s t s t s t 2 x D t s t r r q r E D = (x D,p D ) r p D = γ (x D ) s q r s s t s s r tr s r 2 q t D γ (x D ) (p + 1)γ(x) Dpx = Dx D rt r s t x = x D t s q t s t st s r tr 1 E D Pr x D [0,s in ] s s t t E D = (x D,p D ) s q r 2 0 = (p D + 1)γ (x D ) + Dp D t t s t s 2 p D = γ (x D ) t r t q r D γ (x D ) s r t 1 t t tr 1 t s r γ (x D ) D D γ (x D ) t 2 r r s t s s t t t q r E D s s t

rt x = x D s t st s r tr 1 E D st s t 2 s t t q t H(p,x) = H(p D,x D ) r s t (p+1)γ(x) Dpx = Dx D t t t x = x D s t s s s t s q t s ẋ = 0 s 2 x = 0 r x = x D r x D s s t s t t 1 sts s ṗ = 0 s 2 p = γ (x) D γ (x) s s ẋ = 0 ṗ = 0 t rs t t t s ts E 0 E D t s q r 1 sts t t s s s t s t s r tr s E 0 E D r t r ts q t s H(p,x) = 0 H(p,x) = Dx D r s t 2 s t r t s q t s s rt r s t s t rt s x = 0 r x = x D r t st s r tr s E 0 E D r s t 2 1 t t rt s x = 0 r x = x D r x D s s t s t t 1 sts r r ts t r r ts r t r s t t s p = h γ(x) r h s st t γ(x) Dx Pr t t H(p, x) s st t r t r ts r 2 q t H(p,x) = (p+1)γ(x) Dpx = h r h s st t r r t r t s t r q t p = h γ(x) γ(x) Dx s s t s r tr s E 0 E D r t t h = 0 h = Dx D r s t 2 t s r ts r tt r t r t t (x,0) s q t s H(p,x) = h, h = H(0,x ) = γ(x ) 2 rt t r t s t t t s2st s r t s tt r r t t t t t (0,x ) s t t rs t t s ṗ = 0 t t x 1 s s tt r t r r ts r tt r r s r ts r r s t s s s s t r s s t s s2 t t t s rtr t ts r s t r ts t t s2st r r s t2 s t t s s r t 2s s t s s t r t t r s Pr s t s s t t t x(t,t 0,x 0,D) r t s t ẋ = γ(x) Dx, x(t 0 ) = x 0 x(t,t0,x 0,D) x 0 dx γ(x) Dx = t t 0

Pr Pr s t r r ts t t s2st P D > D s s t s t P D > D s s t s t P D > D s t s t s t s P D < D s t s t s t s P D < D s s t s t s P D = 0 Pr Pr s t t 2s s t s str t r s r r t ss t2 D min = 0 s r 2 t s s t D = D min s t st s t s t t r ts r p > 0 r s r t t r ts s r s r r 2 t D = D max s ss 2 r s t s t s r r t r ts r p < 0 r s r t t r ts s r s r r t s s t t s x 0 x t 2 x = x( T,0,x,D min ) s x s 2 x x dx γ(x) D min x = T r r x < x rs t t t r t x(t) = x(t,0,x 0,D min ) s s r s s ss r2 t x 0 x t (x (t),p (t)) r 0 t T 2 x (t) = x(t) t s t q s t p (t) = γ(x T) γ(x(t)) γ(x(t)) D min x(t)

Pr r x 0 x t s t t x T = x(t) x x(t) x T r t [0,T] p (t) > 0 r t [0,T) p (T) = 0 r t s t t (x (t),p (t)) s s t q ss s r t t t t r 2 p 0 > p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 s t s 2 t t p(t) > 0 r t [0,T] s t t p(t) > 0 t t r r 2 p 0 < p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 tt t s t r S r s t s < T t s t x s < x T x s r t t st 2 t s t r S t s t s t s t t p < 0 s t t p(t) < 0 x x 0 x s r t s t rr s t t r t (x,0) tt s t s t r s t T st 2s t t s t r t t T s t ss s r t tr D (t) = D [D min,d max ] r r s 2 t r s t t x < x 0 x t t < T s t t x(t ) = x t (x (t),p (t)) r 0 t T 2 x (t) = { x(t) 0 t < t x t t T p (t) = { γ(x ) γ(x(t)) γ(x(t)) D min x(t) 0 t < t 0 t t T t s t q s t Pr r x < x 0 x t s t t x T = x(t) > x s t t t r 1 sts t < T s t t x(t ) = x s t s 2 x x 0 dx γ(x) D min x = t p (t) = 0 x (t) = x r t [t,t] r t s t t (x (t),p (t)) s s t rr s t t s r tr D (t) = D t s t r [t,t] q ss s r t t t t r 2 p 0 > p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 s t s 2 t t p(t) > 0 r t [0,T] s t t p(t) > 0 t t r r 2 p 0 < p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 tt t s t r S r s t s < T t s t x s < x T x s r t t st 2 t s t r S t t s t s t t p < 0 s t t p(t) < 0 s r t s x 0 x t 2 x + = x( T,0,x,D max ) s x + s 2 x dx γ(x) D max x = T x

Pr Pr s t r r x + > x rs t t t r t x(t) = x(t,0,x 0,D max ) s s r s t s r ts s r t r s t t x 0 x + t (x (t),p (t)) r 0 t T 2 x (t) = x(t) p (t) = γ(x T) γ(x(t)) γ(x(t)) D max x(t) t s t q s t t x + > x 0 x t t < T s t t x(t ) = x t (x (t),p (t)) r 0 t T 2 { x(t) x 0 t < t (t) = x t t T p (t) = { γ(x ) γ(x(t)) γ(x(t)) D maxx(t) 0 t < t 0 t t T t s t q s t r r r t r s t s t t t t str t 2 s sts s 2 t D = D min r x x D = D max r x x s r s Pr s t r t s t t t t rt x = x min r x min s ss s t γ(x) = D min x s t st s r tr 1 t s t E Dmin rr s t t s t x min rs t p > 0 t t r t x r r t s 2 t t s r t t r ts t t s2st t s x 0 < x r 2 γ(x) = D max x s s t r t x = x max t t r [0,s in ] t x > x max r t s t s x max s t t t rt x = x max s t st s r tr 1 t s t E Dmax rs t p < 0 t t x t s ts t s r t t r ts t t s2st t s x 0 > x r 2 t s s s t s t s t r t t µ(s) s t2 t q t γ(x) = D min x s t s t s x 1 x 2 s t t x 1 > x > x 2 r r x 0 < x 1 t t s t r s t r x 0 > x 1 t r s t r x 2 s t t t tt x t t tr s s 1 t s s s t r s t 1 3 t s r t t tr s s t s2st t t s t t s s Pr Pr s t t 2s s t s str t r t ss t2 µ(s in ) > D max s r 2 t s s t D = D min s t st s t s t t r ts r p > 0 r s r t t r ts s r r r r 2 t D = D max s r t s t s t s r r t r ts r p < 0 r s r t t r ts s r r r

t s s t t s x 0 x max t x = x( T,0,x,D min ) s x s 2 x dx γ(x) D min x = T x r r x < x rs t t x m (t) = x(t,0,x 0,D min ) x M (t) = x(t,0,x 0,D max ) r s r t r t s t x 0 x t (x (t),p (t)) r 0 t T 2 x (t) = x m (t) t s t q s t p (t) = γ(x T) γ(x (t)) γ(x (t)) D min x (t) Pr r x 0 x t s t t x T = x m (T) x x m (t) x T r t [0,T] p (t) > 0 r t [0,T) p (T) = 0 r t s t t (x (t),p (t)) s s t q ss s r t t t t r 2 p 0 > p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 s t s 2 t t p(t) > 0 r t [0,T] s t t p(t) > 0 t t r r 2 p 0 < p (0) t s t t t s2st t t t x(0) = x 0 p(0) = p 0 tt t s t r S r s t s < T t s t x s < x T x s r t t st 2 t s t r S t s t s t s t t p < 0 s t s s p(t) < 0 x x 0 x t s r t s t s t rr s t t r t (x,0) t t s t s s x(t ) = x p(t ) = 0 st 2s t t s t r t t T s t s r r x = x s t ss s t tr D (t) = D t t r ts t st 2 t s t ss tr D (t) [D min,d max ] r s t r ss t2 t s s s 2 t r s t s r s t t t tt s t s r r S r s t c T t s t (x c = x m (t c ),0) s t tr D min t s t t t tr D max s t r t (x c = x m (t c ),0) t t (x T = x M (T),0) st γ(x c ) = γ(x T ) t c = τ c (x c ) r τ c (x) s t t 2 Pr s t c x c x T st s t s 2 t q t s xt x c dx γ(x) D max x = T t c s t t s s r st H(x c,0) = H(x T,0) = γ(x c ) = γ(x T ) r r t c = τ c (x c ) r τ c (x) s t t 2

Pr Pr s t t x + s t t τ c (x + ) = 0 t x ++ s t t γ(x + ) = γ(x ++ ) r r x++ dx γ(x) D max x = T x + t t s t s 2 t s t ẋ = γ(x) D max x t s t T t r x + t x ++ t x 0 x + t (x (t),p (t)) r 0 t T 2 x (t) = x M (t) p (t) = γ(x T) γ(x (t)) γ(x (t)) D max x (t) t s t q s t t x x 0 < x + t (x (t),p (t)) r 0 t T 2 { x(t) x 0 t < t (t) = c x(t,t c,x c,d max ) t c t T p (t) = { γ(xc) γ(x (t)) γ(x (t)) D min x (t) γ(x T ) γ(x (t)) γ(x (t)) D maxx (t) 0 t < t c t c t T t s t q s t Pr x + x 0 x max t x T = x M (T) < x max x 0 > x max t x T = x M (T) > x max p (T) = 0 (x (t),p (t)) s s t q ss s r r ts s r t t s s t r s s s r t s x x 0 x + t t c < T x c = x(t c ) s t t x(t,t c,x c,d max ) = x T, t c = τ c (x c ) γ(x c ) = γ(x T ) p(t T ) = 0 (x (t),p (t)) s s t t s t q s t t s s2st r r t t str t 2 s sts s 2 t D = D min r t > τ c (x) D = D max r t < τ c (x) s r s Pr s t Pr Pr s t t 2s s t s str t r t ss t2 D max < max(µ(s)) s r 2 t s s t D = D min s 2 s t s t t r ts r p > 0 r s r t t r ts s r r 2 t D = D max s r t s t s t s r r t r ts r p < 0 r s r t t r ts s r r r t s s t t s x 0 x min t x = x( T,0,x,D max ) s x s 2 x dx γ(x) D max x = T x

r r x > x rs t t x m (t) = x(t,0,x 0,D min ) x M (t) = x(t,0,x 0,D max ) r s r t r t s t x 0 min(s in,x ) t (x (t),p (t)) r 0 t T 2 x (t) = x M (t) p (t) = γ(x T) γ(x (t)) γ(x (t)) D max x (t) t s t q s t Pr r x 0 min(s in,x ) t s t t x T = x M (T) x x M (t) x T r t [0,T] p (t) < 0 r t [0,T) p (T) = 0 r t s t t (x (t),p (t)) s s t q ss s r r ts s r t t s s t r s s x x 0 x t s r t s t s t s r t s t rr s t t r t (x,0) t t s t s s x(t ) = x p(t ) = 0 st 2s t t s t r t t T s t s r r x = x s t ss s t tr D (t) = D t t r ts t st 2 t s t ss tr D (t) [D min,d max ] r s t r ss t2 t s s s 2 t r s t s r s t t t tt s t s r r S r s t c T t s t (x c = x m (t c ),0) s t tr D max t s t t t tr D min s t r t (x c = x m (t c ),0) t t (x T = x M (T),0) st γ(x c ) = γ(x T ) t c = τ c (x c ) r τ c (x) s t t 2 Pr s t c x c x T st s t s 2 t q t s xt x c dx γ(x) D min x = T t c s t t s s r st H(x c,0) = H(x T,0) = γ(x c ) = γ(x T ) r r t c = τ c (x c ) r τ c (x) s t t 2 t x + s t t τ c (x + ) = 0 t x ++ s t t γ(x + ) = γ(x ++ ) r r x++ dx γ(x) D min x = T x + t t s t s 2 t s t ẋ = γ(x) D min x t s t T t r x + t x ++ t x 0 x + t (x (t),p (t)) r 0 t T 2 x (t) = x M (t) p (t) = γ(x T) γ(x (t)) γ(x (t)) D max x (t)

Pr Pr s t t s t q s t t x x 0 > x + t (x (t),p (t)) r 0 t T 2 { x xm (t) 0 t < t (t) = c x(t,t c,x c,d min ) t c t T p (t) = { γ(xc) γ(x (t)) γ(x (t)) D maxx (t) γ(x T ) γ(x (t)) γ(x (t)) D min x (t) 0 t < t c t c t T t s t q s t Pr x + x 0 x max t x T = x M (T) < x max x 0 > x max t x T = x M (T) > x max p (T) = 0 (x (t),p (t)) s s t q ss s r r ts s r t t s s t r s s s r t s x x 0 x + t t c < T x c = x(t c ) s t t x(t,t c,x c,d max ) = x T, t c = τ c (x c ) γ(x c ) = γ(x T ) p(t T ) = 0 (x (t),p (t)) s s t t s t q s t t s s2st r r t t str t 2 s st s 2 t D = D max r t > τ c (x) D = D min r t < τ c (x) s r s Pr s t

s s é ér s t rs t s ét rés té s tt t ès s rt t r 2s t trô t st ér 1 s t 3 s r r t s s s r é s ts é ér 1 st ér tt s ss ré t s q s s q s str t r q st tr s r é ss t t CO 2 t CH 4 q é s2stè rt èr t 1 t t t st s r t èr t P r r t r t t r é é rs r ètr s r t 1 t ér t r té r êt t rt t t s s té r t s t s tér s à rt s sés t r é r s s q 1 r ètr s r t 1 r r é é t t t st s séq s s t st r ér st t t r r sq q 1 rt s s st s r é és t r à t q s s s 1trê s é ss t rrêt t r é rr té tr t t q st s r t t r t q t é q t t r s s s t s t q s t été r sé s r é r r r é é t r r s s str té s trô r s t t s r s è s t é t q s s r rs t r rés t r s è t ss s s2stè s ét és rès r ssé r s ér ts è s st ér 1 st ts s ttér t r s s ss r s è s 1 té r s s t r q s t été é és s è s r s s s é és r s r t s r r r r rt t é é q s2stè s è s s és é és r trô é r t èr r s q st ér r ét s s t 2 t s té r è trô t ê t t s st q é t à rés r s s r ù rt s t rs t é tré q st ér t êtr é sé r è s ét s s s s tt és à rés r

s s é ér s t rs t s r è st è q s s t sé t t tr t ès q r s r é és st ér s s r é ér t s r s 1 st t s s ttér t r t s ss q s P P t 1 r st q s s r tt t ès s s s s tt és à é r s s t s 1 r è s r t s trô t st ér 1 s t 3 s r r 3 t s é t s s rés r è t st r ér s ét P r s t s t s rt èr s t r ss tr t s s r t r é r t str té trô été t s tr s s t s rés t ts rt ts 1q s s s t s t s trô t été t t s t r r r s s tr t r s s2stè 2 q s t ét t x(t) r r rt à ét t t x st r st à s té D = D min 1 D = D max sq à tt r r s r D = D r r r t s2stè t r s r t x ù r t 3 st 1 trô st éq t à r s r t ss rs x t 2 r st r q r s s t r ér t été t sé r é t r r str té trô t s t r t Pr 1 P tr2 2s t r rés t t s r t s s2stè t s (x,p) s t r s é r s t t r t t s s ér t s t s ss r s t té é s r Pr 1 P tr2 ér r q t str té s st à q r trô D = D min t t q ét t x(t) st ss s rt r t t t c (x) ès q x(t) tr rs tt r trô D = D max st q é s s q s s trô st s s t é st à r q s r 1 st r r à r q r t t r éq r s2stè q 1 s r t 3 tr s t r s t t st s ss 3 ss t r é r r é t t t q t r t é t 3 t r s 1 s s s s s tt r x t 1 q ss r st s r r r ê rsq trô st s r t é s str té té s st à q r trô D = D max t t q x(t) st ss s r t t t c (x) s trô D = D min r è trô s s t st très tér ss t à rés r t t é t q t s s q s s r t q s s ré st

s s s ù s s s s s r r s t r 1 t r t q tt r t t t à s rés t ts t té str té r st q r sé r t 2 r t été s té s s tré q tt s t s2stè rs ê t t s t t s s s ré s s s r q st s s t r r rt à str té trô r sé r s é r t st q é ss t très r t s t st r t t à q r s r r é é ré rsq 2 t ès x 0 +s 0 = s in st s ér é r è trô st à ré s r t rêt st r s r r r q t q s ss t r t t s r s s t s t s rsq s r èr s s t s à ét r r 2 t q t s s été s tr 1 r r s r r t ér q q st t à t s r r rés r s r è s trô t r tt ét st sé s r s rét s t r è t ét r t tr t r t r s tr t r s t s t t s t s t s t s t ér q s ss t s t ss r tèr à t s r è s2stè t s tr t s sé s s r trô r s s s t s t été ré sé s s s ù 2 t ès s r t t x 0 +s 0 = s in st ér é é r s trô t s rs r t t t 3 éq t s à str té r sé r s s ù x 0 +s 0 = s in st s ér é rés t rt s s t s s tr t r s s2stè t r r s r s r s r s s à r é è st s t té trô t t r rs r s r P r é t r é è r t t é rét tt r s s s tr t t r é té s r tèr à t s r rt s r r s trô t t s s é té s r s r tèr s q r t t t 3 t été ré s str té r sé s rés t ts t s s t r s t és s t s s ts tr rt s rés t ts s èr t q t r sé s r s t 1 rsq 2 t ès 2 st s ér é r t r s rés t ts r s t s t r s r t 3 t q s t t st ss 3 r st r r rt 1 t s t s t t q s st s ré s s rés t ts t t t rt t à s rès t r t 1 s r rs t t s s t q s rt 1 3 3 r t r r st rt s é r t rés t r è t r 1 s r r t 3 s st r ér s s t rt t t tr 2 s r t r îtr s r Pr ss tr

s s é ér s t rs t s rt t tr r st r ss rt s r è t r 1 s r r t 3 s st r ér s s s t s t rt rés t r è st ét é t 2s trô té s r s s rs st t t rt t t r tr 3 t ès s s t t r té tr r rés s é ér té t s rés t ts s t ét s r r ss s r ss t r str r s s s îtr ét q r ss s rés t ts r st t s r s ét q s r s s µ(s) q t q t 3 s t t t t 1 s t s é és s s r t tr t à s r t t s st rs ér t à é r r rs r r s q r t tr r à r îtr ttr t té tt t tr t t s t té tr s rs t s s t r s s P s rs ts ér t r t tr s st t s s ssé s t r rés t r è trô t ss té t s t 2 t ès s r str t s t t à s s t s t s s r t 1 r r â r tt 2 t ès t rés r r è é ér s s tér ss t é r s tt rr t r ttr t s r r t 3 è AM2 q s r s st è s ré st st ér 1 ét s ù s str t st tr s r é r s 1 ré t s q s r èr r s st r t à s r r à r è s s ér t s r ts s2stè s s r ts s é t r s s t s s t s t ét q r ss rés t t s rs 1 s s s q s r t str té trô à t r s r r s s t r é ss r s r ré r à s ré t s rt s r rs r q s s r tt str té trô t t s êtr ét r é s t 1 r ss s tér s tr t ss é str r s s r t rs r s 1 r rs à rt r s s r é t ét t té r r trô rés t r térêt r t rt t à r r r s r t q str té r sé s r t téréss t t st r s r st r t t à s t s rs é s s è s r t r r st r q ét t très tér ss t s r 1t s s tr 1 trô t à ss s é ér s2stè s q s t t t 1 s2stè s q t

ss 1é s r s rt

s s é ér s t rs t s

r st t t r st é r s r é és q s é t s 1 sé s t à st ér P P r 3 3 3 r rt P t 2 r 3 3 r 3 P 2 rt 3 st t r s r t r ss 2 rt r t rs t t t r st Pr s t t 2 2 tr r t t r t t s t r r r s s t 3 t r2 str t s t 2 r st t st t t t tr r t rs s r 1 r r 2 s r r r s P t 2 r 2 t r t r t t r r st t r tr t t r ss t 2 r ss ss t 1 t2 r r ss r2 1 t r st r ss t r 2 s P rt ré r t 1 s s r rt tt r r 00726992 2 r r r r è st ér ss r ôt r

P 2 é s t t s r t s r é és à r s t à st ér rs té t t r 2 r r r r t st t2 2s s r t r r st r ss s r Pr ss tr 2 r r r q s rés t ts s r s r t è r ér t é rr r é és t s s ét s t rs té t r s P t tt t tr r t r r t r t 3 t t r2 t s tr r st r st 3 tr rt r ss t t t tr r st r t t tr rt r t t r ss t st r tr tr r st r t t st s tr r st t t s t st r tr P s 2 r r2 2 r r2 r r t r t t q s r é és 2st s t t sés r ès r s ts r ss tr r ss tr tr 2st t t r r s t 2 s t t r t r st t r ss s t t r r Pr ss tr t3 3 èr ét é rr t 3 s s r 3 r r s è t r t s é q s rs

P t s st ér s s r http : //www.atestoc.com/default f ichiers/methanisation.html s t t s t 2 q t t s r r st ér rt P è s t é t q s r ét t t 1 st s s è s r s s é st t rs té t r 2 t rs té r s é t èt r r t tés r é 3 r r t r st r ts t t str st t r tr t t t r2 t st t r r s r 2 r r 1 3 s r t r t r st r Pr ss tr 79 88 t t t tr r st t r s r r tr t à 2s t trô s s2stè s q s t 1 r é és é t t t r t r t r t ss é s t q té 3 r t r r t r ét è t str té ré t s r s t rs té t s r st r rt s r r t t r st Pr ss s s r r t t r st Pr ss s r st t rt P s ss tt ss 1tr s t r tr r t s 2 s r t r r t t t r 2 4 5 35 44

P r2 r q t s ér t s à s r s s t s trô é r t t s r 1 rs r P r s 2 r t s s r st r st t t s P rt ré r P t 1 s s r rt tt r r t s t 2stè s 2 q s P s t s s t s ès t r t rs té t s P st r t r st r ss 3 r r t 3 t t st t t 2 s s r ts t r s r Pũ P P t t tr t tt2 s r st s 332 s r t r s t 2 103 110 ét s t s s r http : //www.f rance biogaz.f r/biogaz en bref/methanisation.html r s s r r ss s t r s tér s r t t t r st r ss r t r2 s s r t r t s rt t s r s t r 2 209 232 ü r t t sts r s s t t 2 r t s rs t 2s r r t t P t t t tr r st r ss t s t t 2 r 287 294

P r2 3 3 2 r s r tr r r r st r ss s t r 2 57 62 r r r t 3 st rt tr t 2 r t r r ss s2st s r r r s t r t r r t r t str t s r r st s2st s r r r r r t t s t s Pr t r st 2st s r r ts t 18th r r ss t 2 r r r s s s t tr 2 r r st s2st s P r r ts t 8 th 2 s tr r ss s t P t r2 t st t 2 s r t t r rs t2 Pr ss t t t 2 r t s s s P P P r s t s t tr r st rs r t ss ss t P t 2 r P èr tt tr r s t r ss s t r st r s t s ré t trô t t é r t t s rt t t é t q s rèt s s rt é ér t r q http : //www.unicef.org/french/publications/index 7 4751.html ût

és é tt t ès rt s r 2s t trô t st r ér t st r s r str té t r 1 s r q t té 3 r t s ré t r ér s r ér t s é P s rt èr t à r t r è s r é é t s ér t ss rt t ét q s r ss s rés s r è 1 s t 3 r t r s2stè t t s 1é t s t t 1 t r trô é t s t s t s s2stè 2s r è trô t t r îtr s rés té très rs s r èr rt s rés s r è s s ù t 1 t r tt t 1 s r é t 3 à éq r st à tér r s r s s t 1 s é t t t t êtr q é s2stè s t s s t t r s s2 t ès trô t st t r r r s tr t r s s2stè 2 q ét r t s s t s 1 t s t s r ér q r t t s t P st t r s s r r s trô r t s t s q t r st q st s té tr r t r q s 1 s è t s2stè rs ê t t s 1 è rt s s ù t r st s s s r s é st à r s r t 1 t à q r r t r 1 3 à éq r st rs r 1 t r rs s é ss s s s r s t t r s t r s t t r s q s rés s q t r 1 P tr2 ts és trô t ré t r 1 s t 3 st ér str t s t s s s s t t tr r st r r 1 3 ts s r t rt r s s t r st r ss r tr t 1 3 t s r t r r t s t t r t s t tr r t t s str ts t t t r t s r r s t t t t tr r r s r2 r t s t2 t rst rt s r t t t r r s r str ts t t t r rt r t t r t t r t s s t s t s t 1 3 t q r r t s s s t t r s s t t tr r s ss t s r t q t s 2s s r s t s str t t r st ss t tr t r s t t s r r t rs t 2 t r s t t t t s s t s r s ts t s t t r st tr r s t t r t r s t rt s s t tr t r s r t r t t s 2 r 2 r t tr s r t P t t s s r t 1 r s t tr r s t 1 t 2t s t t t t tr r t s st t t s r t s t t t r t s t s t s rt t r 1 3 t s r t s tr t t t t r s r r s s r t s s r s t t r s s r s t t r s s s t s t r s s t 1 Pr P tr2 2 r s t tr r t r 1 3 s r st