Introduction au pricing d option en finance

Dimension: px
Commencer à balayer dès la page:

Download "Introduction au pricing d option en finance"

Transcription

1 Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés en bourse ont des prix fluctuants établis en fonction de l offre et de la demande. En finance, on confond le nom du produit et son prix. Ainsi S t désigne le prix d un actif financier, par exemple l action Renault, à l instant t. S il n y avait pas d aléas dans les marchés on aurait S t+δt = S t (1 + µδt) où µ est la tendance de l actif, à la hausse (µ > 0) ou à la baisse (µ < 0). Cette relation exprime simplement que si l action Renault par exemple qui vaut aujourd hui 90$ monte de 4% en un an alors elle vaudra 90( ) = 90.3$ 12 dans un mois. Lorsque le taux d intérêt bancaire vaut r il est raisonnable de penser que µ = r, car si µ > r il serait plus avantageux d acheter ce produit financier que de prêter au taux r, et inversement, personne ne garderait le produit si µ < r. Mais le marché n étant pas entièrement prévisible, on écrit S t+δt = S t (1 + rδt + σ(w t+δt W t )) où W t est un processus aléatoire brownien et σ est un coefficient numérique appelé la volatilité. Pour la suite, nous n utiliserons qu une seule propriété de W : W t+δt W t = δt N (0, 1) 1

2 où N (0, 1) est le processus gaussien centré en zéro et de variance unité 1 Là encore la modélisation est très simple et dit simplement que la partie aléatoire est d autant plus grande que le pas de temps δt est grand et que la volatilité est grande. Ainsi pour prédire la valeur de l actif S le lendemain, le modèle a un paramètre, σ, ajusté chaque jour sur les données de la veille. Pour prédire la valeur due S dans un an il faut répéter le processus 365 fois. 1.1 Programmation La génération d un nombre aléatoire gaussien va se faire par la procédure gauss() ci-dessous. Celle-ci repose sur l utilisation de la fonction système random() qui rend un entier aléatoire compris entre 0 et un grand nombre RAND MAX (nombre prédéfini dont la valeur dépend de la précision arithmétique de l ordinateur). Ainsi chaque fois l instruction x = random() retourne une valeur différente pour x. Notez que (1+random())/double(1+RAND MAX) est un nombre quelconque entre 0 et 1 avec une probabilité uniforme. On démontre que si x et y sont deux nombres aléatoires de probabilité uniforme entre 0 et 1 alors cos(2πx) 2 log(y) est un nombre aléatoire sur R := (, + ) avec une distribution de probabilité gaussienne centrée en 0 et de variance 1. On obtient donc le programme suivant: #include <iostream> // pour les entrees sorties #include <cmath> // pour les fonctions, cos, log... #include <vector> // pour les vecteurs de la STL #include <fstream> // pour la gestion des fichiers using namespace std; // pour donner un sens a cout... const double two_pi =2*M_PI; // constante de la lib cmath 1 On rappelle qu une variable aléatoire est gaussienne N (µ, σ) si la probabilité qu elle appartienne à (x, x + dx) est (2πσ 2 ) 1/2 exp( (x µ) 2 /(2σ 2 ))dx. Remarquez que si x est N (0, 1), ax est N (0, a). 2

3 double gauss() { double x= double(1.+random())/double(1.+rand_max); double y= double(1.+random())/double(1.+rand_max); return sqrt( -2 *log(x) )*cos(two_pi*y); void EDOstoch(vector<double> &S, double S0, int M, double sigma, double r ) { // historique de S, valeur initiale de S, nb de jours, vol et taux const double dt=1./m, sdt =sigma*sqrt(dt); S[0]= S0; for(int i=1;i<m;i++) S[i]= S[i-1]*( 1 + r*dt + gauss()*sdt ); int main() { const double sigma=0.2, r=0.1; // volatilite, taux const int M=365; double So; vector<double> S(M); // prix de l actif chaque jour cout<<"entrer la valeur de So "; cin >>So; EDOstoch(S,So,M,sigma,r); cout <<"Valeur de S apres un an "<<S[M-1]<<endl; // ecriture des valeurs intermediaires dans un fichier // pour visualiser le resultat utiliser gnuplot: plot "result.dat" w l ofstream ff("result.dat"); for(int i=0;i<m;i++) ff<<s[i]<<endl; return 0; Remarque 1 Pour obtenir un entier aléatoire, random() utilise l overflow. Par exemple sur une machine 64 bits, si s est un entier plus grand que 2 32 le résultat de s s étant supérieur à , il ne tient pas dans le registre du multiplicateur de la machine, il y a overflow et la machine produit n importe quoi quand on calcule s s. Le nombre s utilisé dans random() s appelle en anglais seed. Le résultat de random() est utilisé comme seed pour l appel suivant de random(). Par défaut au début, s est toujours le même; donc si on exécute plusieurs fois ce programme on 3

4 obtiendra toujours les même valeurs. Pour obtenir des valeurs différentes à chaque exécution, ce qui est légitime puisque random() est censé générer des nombres aléatoires, il faut changer seed en rajoutant au début dans le main(): srand(time(null)); La fonction srand ne rend rien mais initialise seed à un entier calculé à partir de l horloge. Deux exécutions à deux temps différents donneront donc deux résultats différents. 160 "result.dat" Figure 1: Une réalisation de S t sur un an. 4

5 2 Pricing d option Une option sur un actif financier est un contrat d achat ou de vente de l actif à un prix donné à une date future. Ce contrat est anonyme, il peut donc être revendu et le problème à résoudre est celui de la détermination de son prix. Prenons un exemple concret: une banque possède un actif qui vaut aujourd hui S 0 = 100$; elle souhaite se couvrir contre les fluctuations du marché et pour cela elle fait savoir qu elle est prête à payer un tiers un prix P 0 (dollars, euros...) une obligation conditionnelle d achat de l action dans un an à 105$. L obligation est conditionnelle dans le sens où celui qui à reçu les P 0 est forcé d acheter l action si la banque le souhaite mais il ne peut forcer la banque à vendre. Le contrat est nominatif dans le sens que le tiers s est engagé et qu il doit donc être localisable sur la période (0,T). On dit alors que la banque a émis une option put P sur S de strike K=105$ et de maturité T=1 an. Le premier problème est de déterminer une valeur raisonnable pour P 0? La banque peut ensuite vouloir vendre l actif à une date ultérieure mais comment établir un prix raisonnable pour ce put? Notez que ce put n a de sens que si l on possède aussi l actif (on dit le sous-jacent) sur lequel il est basé; cependant on peut toujours l acheter plus tard sur le marché, c est pourquoi cette option peut avoir une vie autonome indépendamment du sous-jacent (mais toujours avec le même tiers contractant). Modélisation: Si le marché est fluide, il est raisonnable de supposer que le prix P t de P à une date t > 0 est l espérance du profit que le propriétaire de S t et P t fera à la date T, escompté en t, soit P t = e r(t t) E(K S T ) + où f + (s) = max(f(s), 0) et E désigne l espérance au sens de la théorie des probabilités, c est à dire l intégrale R (K s)+ ρ(s)ds, lorsqu une densité de 5

6 probabilité ρ() existe pour S T. En effet si dans un an l option est cotée en bourse à S T, le profit à la vente est K S T si K > S T et zéro sinon. Or n$ au temps t vaudront ne r(t t) à la date T (exprimée en portion d année) car ils peuvent être placés au taux r. Lorsque dt est petit, on introduit la notation: ds t le problème s écrit: = (S t+dt S t); alors ds t = S t (rdt + σdw t ), S t=0 = S 0 donné P t = e r(t t) E(K S T ) + (1) C est le modèle de Black et Scholes. Programmation: Il suffit de faire générer par le programme N réalisations S n de S T et de faire P t = t) N 1 e r(t N n=0 (K S n ) + D où le programme suivant: #include <iostream> #include <cmath> #include <fstream> #include <cassert> using namespace std; const double two_pi =2*M_PI; double gauss(); double EDOstoch(double S0, int M, double sigma, double r ) { const double dt=1./m, sdt =sigma*sqrt(dt); double S= S0; for(int i=1;i<m;i++) S *= (1.+gauss()*sdt+r*dt); return S; 6

7 int main() { const double r=0.1, sig=0.2, K=140, S0=120, t=12; double option = 0; int T=365, N=50000; for(int I=0;I<N;I++){ double aux = K-EDOstoch(S0,365,sig,r); if(aux<0) aux=0; option +=aux/n; cout <<"L option apres "<<t<<" jours vaut " << option*exp(-r*(t-t)/365) <<endl; return 0; L exécution de ce programme produit Valeur de l option apres 12 jours L équation aux dérivées partielles de Black & Scholes On démontre 2 grâce au calcul de Itô que (1) est équivalent à où u(x, t) est la solution de P t = u(t t, S t ) u t σ2 x 2 2 u 2 x rx u 2 x + ru = 0 dans R+ (0, T ), u(x, 0) = (K x) + Remarque 2 Notez que cette EDP contient implicitement des conditions aux limites en 0 et +. En x = 0, l EDP donne t u+ru = 0, u(0, 0) = K, donc u(0, t) = Ke rt. Si on suppose que u est dans L 2 (R + ) alors lim x + u(x, t) = 0. Exercice 1 Montrer que l EDP peut aussi s écrire sous forme divergentielle u t x 2 u x (σ2 2 x ) βx u x + ru = 0 dans R+ (0, T ), u(x, 0) = (K x) + avec β = r σ 2 xσ σ x. 2 Paul Wilmott, Sam Howison, and Jeff Dewynne. The mathematics of financial derivatives. Cambridge University Press, Cambridge, A student introduction. 7

8 3 Option panier sur 2 sous-jacents Prenons maintenant l exemple d une banque qui pour minimiser encore les risques combine une action Renault avec une action Peugeot avec l idée que si l une baisse, l autre montera et que la somme des deux est plus stable que chacune séparée. Soient St 1, St 2 les prix de ces deux actions. On prend le modèle suivant dst 1 = St 1 (rdt + dwt 1 + dwt 2 ) dst 2 = St 2 (rdt + dwt 2 + dwt 1 ) (2) Comme précédemment Wt 1, Wt 2 sont deux processus gaussiens mais tels que E(dW 1 ) 2 = dtσ 2 1, E(dW 2 ) 2 = dtσ 2 2, E(dW 1 t dw 2 t ) = dtqσ 1 σ 2 Notez que si q = 0 on obtient le modèle précédent pour chacun des actifs et donc q mesure la corrélation entre les deux actifs. Un option put construite sur la somme S 1 + S 2 pour un strike K et une maturité T aura donc comme prix l espérance du bénéfice escompté, soit P t = e r(t t) E(K S 1 T S 2 T ) + Equation aux dérivées partielles : Dès qu une quantité déterministe dépend de la solution d une équation différentielle stochastique, le calcul de Itô s applique. Ici, il donne P t = u(t t, S 1 t, S 2 t ) où u est la solution de u t σ2 1x 2 2 u 2 x σ2 2y 2 2 u 2 2 y qσ 1σ 2 2 xy 2 u x y rx u u ry x y + ru = 0 u(x, 0) = (K x y) + (3) 4 Calcul d une courbe d option par Monte-Carlo #include <iostream> 8

9 #include <cmath> #include <fstream> using namespace std; const double two_pi =2*M_PI; class PriceMC{ public: double r,sigma,k,t,s0; // taux, vol, strike, matur,actif double t, u; // valeur de l option au temps t double gauss(); double EDOstoch(int M); double getputprice(int N, int M); PriceMC(double r1, double sigma1, double K1, double T1, double S01) : r(r1),sigma(sigma1), K(K1), T(T1), S0(S01){ ; // /////////////////////// implementation ///////////////// double PriceMC::gauss(){ double x= double(1.+random())/double(1.+rand_max); double y= double(1.+random())/double(1.+rand_max); return sqrt( -2 *log(x) )*cos(two_pi*y); double PriceMC::EDOstoch(int M){ const double dt=t/m, sdt =sigma*sqrt(dt); double S= S0; for(int i=1;i<m;i++) S *= (1+r*dt+gauss()*sdt); return S; double PriceMC::getPutPrice(int N, int M){ double option = 0; for(int n=0;n<n;n++){ double aux=k-edostoch(m); if(aux<0) aux=0; option += aux/n; return option*exp(-r*(t-t)); // //////////// end class PriceMC ////////////////////// int main(){ srandom(time(null)); PriceMC p(0.01,0.2,140,1,100); // r, sigma, K,T,S0 9

10 p.t = 0.; p.u = p.getputprice(5000,100);// nb trials, nb time steps cout <<"Valeur de l option apres "<<p.t<<" jours "<< p.u <<endl; // gnuplot pour S0->p.u: plot "option.dat" using 1:2 w l ofstream ff("option.dat"); for(p.s0=0; p.s0<250; p.s0+=10){ p.u =p.getputprice(50000,100); cout<<p.s0<<"\t"<<p.u<<endl; ff<<p.s0<<"\t"<<p.u<<endl; return 0; 140 "option.dat" using 1: Figure 2: Résultat du programme ci-dessus pour le calcul d un put. 10

11 5 Annexe: deux arguments pour justifier l EDP 5.1 Le cas déterministe Lorsque σ = 0 le problème n est pas stochastique et se réduit à ds t = S t rdt, S(t 0 ) = S 0, P 0 = e r(t t 0) (K S T ) + Ici c est volontairement que nous ne prenons pas t 0 = 0. La solution de ce problème est On en déduit que S t = e r(t t 0) S 0, P 0 = e r(t t 0) (K e r(t t 0) S 0 ) + P 0 = re r(t t0) (K e r(t t0) S 0 ) + + e r(t t0) 1 t (K e r(t t 0 ) S 0 ) +S 0re r(t t 0) 0 P 0 = e r(t t0) 1 S (K e r(t t 0 ) S 0 ) +er(t t 0) (4) 0 et donc que P 0 P 0 = rp t rs 0 t 0 S 0 qui est l EDP de Black-Scholes dans le cas σ = Le calcul de Itô Soit X t un processus verifiant dx t = µdt + σdw t et f(x t, t) à valeurs réelles fonction des statisitiques de X t et non pas des valeurs (réalisations de) X t, alors df = f f dt + t X µdt + 2 f σ 2 X 2 2 dt Autrement dit, il faut pousser le développement de Taylor justqu a l ordre 2 pour avoir tous les termes d ordre 1 a cause du fait que dw t est d ordre O( t). 11

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

1.6- Génération de nombres aléatoires

1.6- Génération de nombres aléatoires 1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

PROJET MODELE DE TAUX

PROJET MODELE DE TAUX MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Manuel d Utilisateur - Logiciel ModAFi Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 12 juin 2012 Table des matières 1 Introduction 3 2 Modèles supportés 3 2.1 Les diérents modèles supportés pour

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

Prix et couverture d une option d achat

Prix et couverture d une option d achat Chapitre 1 Prix et couverture d une option d achat Dans cette première leçon, on explique comment on peut calculer le prix d un contrat d option en évaluant celui d un portefeuille de couverture de cette

Plus en détail

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE Le présent document est un recueil de questions, la plupart techniques, posées à des candidats généralement jeunes diplômés, issus d école d ingénieurs, de commerce

Plus en détail

Calculating Greeks by Monte Carlo simulation

Calculating Greeks by Monte Carlo simulation Calculating Greeks by Monte Carlo simulation Filière mathématiques financières Projet de spécialité Basile Voisin, Xavier Milhaud Encadré par Mme Ying Jiao ENSIMAG - Mai-Juin 27 able des matières 1 Remerciements

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Calibration de Modèles et Couverture de Produits Dérivés

Calibration de Modèles et Couverture de Produits Dérivés Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr Edition 28, dernière m.à.j. le 1 mars 28 La dernière version de ce document est disponible

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Claude Delannoy. 3 e édition C++

Claude Delannoy. 3 e édition C++ Claude Delannoy 3 e édition Exercices Exercices C++ en en langage langage delc++ titre 4/07/07 15:19 Page 2 Exercices en langage C++ AUX EDITIONS EYROLLES Du même auteur C. Delannoy. Apprendre le C++.

Plus en détail

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.

Plus en détail

Examen d informatique première session 2004

Examen d informatique première session 2004 Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.

Plus en détail

Programmation C++ (débutant)/instructions for, while et do...while

Programmation C++ (débutant)/instructions for, while et do...while Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai.

Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. 1 Introduction On considère une grille de 20 lignes 20 colonnes. Une case de la grille peut être vide, ou contenir une et une

Plus en détail

TP : Gestion d une image au format PGM

TP : Gestion d une image au format PGM TP : Gestion d une image au format PGM Objectif : L objectif du sujet est de créer une classe de manipulation d images au format PGM (Portable GreyMap), et de programmer des opérations relativement simples

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Résumé... 9... 10... 10... 10

Résumé... 9... 10... 10... 10 Bibliographie 1 Table des matières Table des matières.................................... 3 Résumé............................................ 9........................................ 10........................................

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Options exotiques. April 18, 2000

Options exotiques. April 18, 2000 Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Surface de volatilité

Surface de volatilité Surface de volatilité Peter TANKOV Université Paris-Diderot(ParisVII) tankov@math.univ-paris-diderot.fr Dernière m.à.j. February 15, 15 Ce document est mis à disposition sous un contrat Creative Commons

Plus en détail

C++ Programmer. en langage. 8 e édition. Avec une intro aux design patterns et une annexe sur la norme C++11. Claude Delannoy

C++ Programmer. en langage. 8 e édition. Avec une intro aux design patterns et une annexe sur la norme C++11. Claude Delannoy Claude Delannoy Programmer en langage C++ 8 e édition Avec une intro aux design patterns et une annexe sur la norme C++11 Groupe Eyrolles, 1993-2011. Groupe Eyrolles, 2014, pour la nouvelle présentation,

Plus en détail

Premiers pas avec Mathematica

Premiers pas avec Mathematica Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.

Plus en détail

Séminaire RGE REIMS 17 février 2011

Séminaire RGE REIMS 17 février 2011 Séminaire RGE REIMS 17 février 2011 ADACSYS Présentation des FPGA Agenda Spécificité et différences par rapport aux autres accélérateurs Nos atouts Applications Approche innovante Document confidentiel

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

Cours d Algorithmique et de Langage C 2005 - v 3.0

Cours d Algorithmique et de Langage C 2005 - v 3.0 Cours d Algorithmique et de Langage C 2005 - v 3.0 Bob CORDEAU cordeau@onera.fr Mesures Physiques IUT d Orsay 15 mai 2006 Avant-propos Avant-propos Ce cours en libre accès repose sur trois partis pris

Plus en détail

Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire)

Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire) Petite introduction aux mathématiques des dérivés financiers notes de cours, version provisoire Michel Miniconi Département de Mathématiques Laboratoire Jean-Alexandre Dieudonné Université de Nice Sophia-Antipolis

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Couverture des risques dans les marchés financiers

Couverture des risques dans les marchés financiers énéral2.6.137 1 2 Couverture des risques dans les marchés financiers Nicole El Karoui Ecole Polytechnique,CMAP, 91128 Palaiseau Cedex email : elkaroui@cmapx.polytechnique.fr Année 23-24 2 Table des matières

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné : Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

INTRODUCTION INTRODUCTION

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Les options sont des actifs financiers conditionnels qui donnent le droit mais pas l'obligation d'effectuer des transactions sur des actifs supports. Leur intérêt réside dans

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

Evaluation des options parlatransformée de Fourier

Evaluation des options parlatransformée de Fourier Evaluation des options parlatransformée de Fourier Bogdan Negrea Juin 00 y Abstract Le modèle de Black et Scholes a pour hypothèse la constance de la volatilité associée à la distribution risque-neutre.

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes

Plus en détail

Qu est-ce-qu un Warrant?

Qu est-ce-qu un Warrant? Qu est-ce-qu un Warrant? L epargne est investi dans une multitude d instruments financiers Comptes d epargne Titres Conditionnel= le detenteur à un droit Inconditionnel= le detenteur a une obligation Obligations

Plus en détail

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE Avec le développement des produits dérivés, le marché des options de change exerce une influence croissante sur le marché du change au comptant. Cette étude,

Plus en détail