Les réseaux de neurones artificiels
|
|
|
- Delphine Brisson
- il y a 8 ans
- Total affichages :
Transcription
1 Les réseaux de neurones artificiels Pierre Borne
2 Les Réseaux de Neurones Artificiels Présentation 2 Apprentissage 3 Analyse en composantes principales 4 Classification 5 Réseaux de Hopfield 6 Modélisation et commande des processus
3 Les réseaux de neurones artificiels Présentation
4 Présentation Neurone biologique Dendrites Axone Synapse Corps cellulaire
5 Présentation Neurone artificiel x 0 w 0 x w x i w i Σ f z x n w n y = n i = 0 w x i i ( ) z = f y
6 Présentation Fonctions d activation a) b) c) d) e) f) g) h)
7 Présentation Le perceptron Le perceptron comporte une couche d entrée constituée de neurones élémentaires dont la fonction d activation est linéaire et une couche de sortie constituée d un ou de plusieurs neurones dont la fonction d activation est en général du type plus ou moins, ou tout ou rien
8 Présentation Schéma du perceptron x 0 Σ / w 0 w j Σ. f z x j Σ / w ij w in Σ f z i. x n Σ / w mn Σ f z m y = Wx + w0x0
9 PERCEPTRON représentation matricielle x W + y z x 0 = w 0
10 Perceptron Séparation linéaire Σ f z x Σ / Σ f z 2 Σ f z 3 x 2 Σ / Σ f z 4 Σ f z 5
11 Classification à partir du Perceptron
12 Présentation des réseaux multicouches Réseaux multicouches Dans ce cas, le réseau comporte en général au moins trois couches : une couche d entrée, une ou plusieurs couche(s) cachée(s) et une couche de sortie l information circulant de l entrée vers la sortie à travers la (les) couche(s) cachée(s).
13 Réseaux multicouches, notations ( l ) z i ième : sortie du i neurone de la couche l à neurones () () () () l l l l z = z, z 2,, z n l ( l) w ième ij : poids liant le j neurone de la couche l - ième au i neurone de la couche l () l ième fi () : fonction d activation du i neurone de la couche l z ( ) i = x i n l x x x x n =, 2,, ( l + ) ( l + ) ( l) ( l + ) y = w z + w i ij j i0 j= T T nl
14 Représentation Schéma du réseau multicouches
15 Représentation matricielle x () z + ( 2) W ( 2) ( 2) y ( 3) + ( 2) f z W ( 3) + y f ( 3) ( 3) z ( 2) w 0 w ( 3) 0
16 Réalisation du OU exclusif ( 3) Il apparaît que z est égal à pour x x2 et à 0 dans le cas contraire. Il vient en effet : ( 2) 2x+ 2x2 > 0 si x et/ou x 2 = z = 2 2x + 2x < 0 si x= x2= 0 z = x x2+.5 < 0 si x= x2= z 2 = 0 2 x x2+.5 > 0 si x et/ou x 2 = 0 z 2 = ( ) 3 Pour avoir z =, il faut avoir : ( 2) ( 2) z = z2 = Ce qui exclut le cas : x = x. 2 ( ) ( ) ( )
17 Présentation Réseaux de neurones récurrents R R x0 () t R ( q ) ( ) z t+ R R
18 Présentation Schémas simplifiés R R R xt () R RN R z( t+) xt ( ) RNR z( t+)
19 Les Réseaux de neurones artificiels APPRENTISSAGE
20 Apprentissage non supervisé Règle de Hebb wij zi ( t) : valeur à l instant du poids liant le neurone j au neurone i ième () t : sortie à l instant t du i neurone ( ) : fonction d activation du type tout ou rien f v w t+ = w t +µ z t z t ( ) ( ) ( ) ( ) ij ij i j w t+ = w t + µ z t z t γw t ( ) ( ) ( ) ( ) ( ) ij ij i j ij
21 Apprentissage non supervisé Règle de Kohonen Cette règle s écrit sous la forme : ( ) w t+ = w t + µ z t w t ( ) ( ) ( ) ( ) ij ij i ij avec : i I( t). Elle permet au neurone d apprendre le vecteur présenté en entrée et donc d être utilisé en reconnaissance des formes. L apprentissage a lieu lorsque l indice du neurone appartient à un ensemble It ( ), défini en fonction des objectifs.
22 Apprentissage supervisé Règle du perceptron L objectif est d apprendre K patrons () z ( t) p t ( ) Notons le patron présenté à l instant t, la sortie désirée et la sortie réelle ème Erreur pour la sortie du neurone ( + ) = ( ) + ( ) ( ) ( + ) = () + () w t w t e t p t i i i w t w t e t i0 i0 i Variante de la méthode w t+ = w t +η t e t p t ( ) ( ) ( ) ( ) ( ) i i i i p k s t e t = s t z t ( ) ( ) ( ) i i i
23 Apprentissage compétitif standard ( ) () = ( ) ( ) z t w t x t j j wj = wj, wj2,, w jn ( 2 ) () = arg min ( ) ( ) z t x t w t n E t j t x t wj t 2 () = α () () () () E t w j j j 2 j= j T () t x() t w () t ( ) = α ( + ) = () η () w t w t t j j () E t w j j
24 Apprentissage compétitif standard Réseau x x k x n ( ) z j z ( ) ( ) z n Min ( 2) z Couche d observation Couche intermédiaire Couche de sortie
25 Apprentissage compétitif Algorithme des K-moyennes C est l algorithme le plus simple et le plus répandu en classification automatique. Centre Centre 3 Centre 2
26 C j Algorithme des K-moyennes Classe C j x p C x p w = min x p w ( ) ( ) ( ) j j k k N K E = αk ( p) x( p) w 2 p= k= k 2 E w w j k j = N p= j ( j) ( ) ( ) = α p x p w N p= α N j p= ( p) x( p) α j ( p)
27 Algorithme des K-moyennes Cet algorithme converge en un nombre fini d itérations, mais la solution obtenue peut varier suivant l initialisation. Si les observations arrivent séquentiellement, il est possible d adopter une forme itérative de l algorithme. Notons x() t l observation disponible à l instant t et w ( t) le vecteur définissant le centre de la classe C j au même instant. Il vient : α j ( t + ) wj( t+ ) = wj( t) + ( x( t+ ) wj( t) ) N j ( t+ ) avec : N j () t le nombre d éléments de la classe C j à l instant t : N ( t+ ) = N ( t) + α ( t+ ) j j j A l instant t +, seul le centre ( t ) α + = j est actualisé, les autres restant inchangés. w j tel que : j
28 Apprentissage compétitif Apprentissage pénalisant le rival ( ) ( ) g = arg min x t w t k () () r = arg min x t w t k g k k w r w g
29 Apprentissage compétitif Apprentissage pénalisant le rival ( + ) = ( ) + η ( ) ( ) ( ) ( ) w t w t t x t w t g g g ( + ) = () γ () () () ( + ) = ( ) {, } ( ) w t w t t x t w t r r r w t w t k g r k k
30 Algoritme compétitif pénalisant le rival - si le nombre K de neurones est supérieur au nombre réel de classes en présence, les neurones gagnants évoluent vers les centres des classes et les autres s éloignent de l ensemble des observations ; - si le nombre K de neurones est inférieur au nombre de classes en présence, il y a oscillation des vecteurs poids entre les classes durant l apprentissage ; ce qui indique la nécessité d ajouter une ou plusieurs classes.
31 Apprentissage supervisé Réseau à 3 couches x i ( ) z k ( 2) z j ( ) 3 z i Couche d entrée neurones Couche cachée neurones Couche de sortie neurones
32 Apprentissage supervisé Rétropropagation du gradient z t f w t f w z t w t w t i n n2 n ( 3 ) ( 3 () ) ( 2) ( () ) ( 2 () ) ( 3 () ) i = ij jk k + j0 + i0 (), =,, 3 j= k= n E() t = z t s t 2 ( ( 3 ) () ()) i i 3 2 i= () l ( ) () l () η () w t+ = w t t ij ij w l ij ( ) E t ()
33 Apprentissage supervisé du réseau multicouche Méthode de rétropropagation du gradient n q E() t = z t s t 2 i= ( ( q ) () ()) 2 i i () l ( ) () l () η () W t+ = W t t ( ) E t w () l
34 Apprentissage supervisé Rétropropagation du gradient Couche Couche l Couche l Couche q l tot i ( ) l z i tot ( l ) l j z j
35 Algorithme de rétropropagation du gradient () () l () l () () l ( ) () l E t z () i t toti t wij t+ = wij t η () l () l () () l z tot i t i t w ij ( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) w t+ = w t η t δ t z t q q q q ij ij i j δ ( q ) () ( ( q ) () ()) t = z t s t i i i q toti ( q ( )) i t f tot t ()
36 Les réseaux de neurones artificiels Analyse en composantes principales
37 Analyse en composantes principales Ensemble des observations: {,,,,, } X = x x x x 2 Ensemble de leurs projections : {,,,,, } Y = y y y y 2 [,,, ] x = x x x k k k2 kn [, 2,, ] ( X) y = y y y Y k k k km = ϕ T T p p x p P n P R y p R m
38 Analyse en composantes principales Extraction de la composante principale x P Σ= P p= ( xp µ )( xp µ ) T x 2 Σ y P xp P p= µ = x n n () w () t x () t y t = i= i i ( ) ( + ) = ( ) + η ( ) ( ) ( ) ( ) ( ) w t w t t y t x t y t w t i i i i
39 Analyse en composantes principales Réseaux de neurones hiérarchiques x x j x n Σ Σ Σ y y i y m i T ( ) = ( ) ( ) ; =,2,, y t w t x t i m i i wi t wi t t yi t x t yl t wl t l= ( + ) = () + η () () () () ()
40 Analyse en composantes principales Réseaux de neurones hiérarchiques L algorithme de Hebb généralisé est le suivant : η t petit paramètre positif et choisir le nombre maximum ) Choisir ( ) d itérations T. 2) Initialiser les poids du réseau à des valeurs aléatoires proches de zéro. 3) Présenter au réseau une observation xt ( ) de la base d apprentissage. 4) Calculer les équations du réseau et actualiser les poids conformément à la règle précédemment définie. 5) Tant que t < T, faire t = t+ et aller en 3.
41 Analyse en composantes principales Réseaux de neurones adaptatifs x x j x n Σ Σ Σ y y i y m i T () = () () + () () =, 2,, l= 2 ( + ) = ( ) + η ( ) ( ) ( ) ( ) ( ) 2 ( + ) = ( ) η ( ) ( ) ( ) + ( ) ( ) y t w t x t v t y t j m i i il l ( ) ( ) w t w t t y t x t y t w t i i i i i v t v t t y t Y t y t v t i i i i i i
42 Analyse en composantes principales Perceptron avec projection dans la couche cachée......
43 Analyse en composantes principales Méthodes de projection non linéaire L algorithme de Sammon consiste à déterminer la projection qui minimise la fonction d erreur : E PNL x y ( d d ) 2 uv uv x = x duv uv, P d uv uv, P EPNL 2 E PNL yp( t+ ) = yp() t η () t 2 yp E y p
44 Analyse en composantes principales Perceptron avec projection dans la couche cachée x p Σ f ( 2) z Σ Σ ( 3) z Σ f Σ x pn Σ ( 3) z n
45 Réseaux de neurones artificiels Classification
46 Classification Classification automatique supervisée Exemple :
47 Classification Réseaux multicouches x ( ) y ( 2) y ( 3) y ( ) 3 z W ( ) + + () w 0 + La première couche de neurones permet de définir des séparateurs linéaires afin de distinguer les classes de vecteurs. La deuxième couche réalise la fonction logique ET permettant de définir des zones et la troisième couche va servir à regrouper les zones de même nature en réalisant la fonction OU.
48 Classification Réalisation du «ou» exclusif Σ Σ Σ Σ -.5
49 Classification Cartes topologiques de Kohonen sorties sorties connexions f ( σ ) (a) (b) = + e σ w x = min w x ( ) ( ) ( ) ( ) ( ) ( ) v ( ) w t+ = w t + α v, v' η t x t w t v' V v' v' v' r r
50 Réseaux de neurones artificiels Réseaux de Hopfield
51 Réseaux de Hopfield Réseaux totalement connectés x W + f z ( ) = signe( ) f y y i i
52 Réseaux de Hopfield discrets Reconnaissance de patrons E = w z z x z 2 n k = H ij i j i i i j i p T P W = pkpk I n ième Il vient si le i neurone est choisi pour l actualisation l instant t+ : ( ) ( ) z t+ = z t si j i j j z ( t+ ) = signe w z + x j i i ij j i Initialisation du réseau : zi = xi i
53 Réseaux de Hopfield continus Optimisation Critère : Contraintes : T T E' = x Tx+ b x+ c 2 ( ) f u i T T E = xrx+ sx+ δ avec x= x, x2,, x n 2 T r x s = 0 i =,2,, l = = x ui + exp τ T i i i T T E = xtx+ bx 2 de E x du x = = + i + dt x u dt τ du dt [ ] E = = + x T i ( Tx b) diag ( x ) ( Tx b) ( Tx b) T
54 Réseaux de Hopfield continus Schéma du réseau x T i Σ u i x i T in x n Tii 0 b i
55 Réseaux de Hopfield continus Problème du voyageur de commerce V xi Visiter n villes. grandeur égale à si le voyageur visite la ville x à l étape i d xy représente la distance pour aller de la ville x à la ville y E = d V V + d V V x ( xy xi y i+ yx xi y i ),, 2 i x y x V xi = i = x xi i 2 2 E2 = Vxi + Vxi = 0 x i i x n 2 Le réseau de Hopfield est constitué de neurones V
56 Réseaux de neurones artificiels Modélisation et commande des processus
57 Modélisation et commande des processus La faculté de recopie par apprentissage des Réseaux de Neurones (RN) permet une utilisation particulièrement intéressante pour la modélisation et la commande des processus, en particulier en utilisant des réseaux de neurones dynamiques. (,,,,,,, ) y = f u u u y y y k+ k k k n k k k n N D
58 Modélisation et commande des Modélisation processus R R R commande sortie k RN u y k + R R R k RND u y k +
59 Modélisation Modèle direct commande processus sortie système d apprentissage RND
60 Modélisation Modèle inverse commande processus sortie système d apprentissage RND modèle inverse
61 Commande Utilisation du modèle neuronal inverse consigne sortie système de commande RND modèle inverse processus
62 Commande Commande à Modèle Interne neuronal consigne système de commande processus sortie RND modèle direct +
63 Commande Recopie d un système de commande RND correcteur consigne système d apprentissage système de commande modèle du processus sortie
64 Commande Commande à modèle de référence modèle de référence du système bouclé consigne système d apprentissage RND système de commande commande modèle du processus sortie
65 Réseaux de neurones artificiels Les réseaux neuro-flous
66 Réseaux neuro-flous Le réseau neuro-flou, étudié ici, comporte cinq couches. La première couche, formée de neurones linéaires, transmet sans changement les variables d entrée à la deuxième couche qui calcule les degrés d appartenance des variables d entrée aux diverses classes des situations préalablement déterminées. La troisième couche calcule le degré d appartenance de la partie prémisses en réalisant l opérateur ET, par exemple en prenant le minimum ième des appartenances ayant activé la k règle. En notant I k l ensemble des indices des fonctions d appartenance ayant permis d activer cette règle, il vient : z ( z ) l ( 3) ( 2) k = min l I k Les poids liant la troisième à la quatrième couche sont égaux à.
67 Réseaux neuro-flous La quatrième couche calcule les degrés d appartenance aux parties conclusions dont les classes sont définies par les fonctions d activation des neurones de cette couche. Elle réalise la fonction OU, par ième exemple pour la j variable de la couche 4 : y { zk } ( 4) ( 3) j = max k I j I j étant l ensemble des indices des variables de la troisième couche, intervenant dans la ième détermination de la j variable de la quatrième couche. La fonction d appartenance associée à cette variable peut être, là encore, de la forme triangle, trapèze ou fonction gaussienne de la forme : 2 ( 4 ) u c j f j ( u) = exp ( 4 ) σ j La cinquième couche du réseau réalise la défuzzification, par exemple suivant l expression : z ( 5) i = j I i c j I ( 4) ( 4) ( 4) i σ j j j σ ( 4) ( 4) j z j z
68 Réseaux neuro-flous { } ( 5 ) ( 5 ) z = z i 5 ième couche : couche de sortie { } ( 4 ) ( 4 ) z = z j 4 ième couche { } ( 3 ) ( 3 ) z = z k 3 ième couche { } ( 2 ) ( 2 ) z = z l 2 ième couche { } x x m = ière couche : couche d entrée x x x 2 n
69 Réseaux de neurones artificiels Questions?
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail.
العالي التعلیم وزارة والبحث العلمي BADJI MOKHTAR ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR ANNABA جامعة باجي مختار عنابة Faculté: Sciences de l'ingénieur Année : 2010 Département: Electronique MEMOIRE
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
4.2 Unités d enseignement du M1
88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter
Chapitre 6 Apprentissage des réseaux de neurones et régularisation
Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»
Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI [email protected] 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
4 Exemples de problèmes MapReduce incrémentaux
4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones
Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Abdeljelil Farhat Unité de recherche EAS-Mahdia Faculté des sciences économiques
CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle
CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Outils pour les réseaux de neurones et contenu du CD-Rom
Outils pour les réseaux de neurones et contenu du CD-Rom Depuis le développement théorique des réseaux de neurones à la fin des années 1980-1990, plusieurs outils ont été mis à la disposition des utilisateurs.
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE MÉCANIQUE M.Ing. PAR CHERIF MAKREM
SudoClick Reconnaissance de grilles de sudoku pour téléphones portables
SudoClick Reconnaissance de grilles de sudoku pour téléphones portables Patrick Anagnostaras 1 24 mai 2008 Department of Informatics - Master Project Report Département d Informatique - Departement für
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN Marie Cottrell, Smaïl Ibbou, Patrick Letrémy SAMOS-MATISSE UMR 8595 90, rue de Tolbiac 75634 Paris Cedex 13 Résumé : Nous montrons
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Asynchronisme : Cadres continu et discret
N d ordre : 151 Année 2006 HABILITATION À DIRIGER DES RECHERCHES UNIVERSITÉ DE FRANCHE-COMTÉ Spécialité Informatique présentée par Sylvain CONTASSOT-VIVIER Docteur en Informatique Sujet Asynchronisme :
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies
Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage
Approche modèle pour l estimation en présence de non-réponse non-ignorable en sondage Journées de Méthodologie Statistique Eric Lesage Crest-Ensai 25 janvier 2012 Introduction et contexte 2/27 1 Introduction
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
Modélisation du comportement habituel de la personne en smarthome
Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Agrégation des portefeuilles de contrats d assurance vie
Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
03/04/2007. Tâche 1 Tâche 2 Tâche 3. Système Unix. Time sharing
3/4/27 Programmation Avancée Multimédia Multithreading Benoît Piranda Équipe SISAR Université de Marne La Vallée Besoin Programmes à traitements simultanés Réseau Réseau Afficher une animation en temps
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion
L utilisation des réseaux de neurones artificiels en finance Philippe PAQUET Professeur de Gestion 2 Résumé Depuis le début de la décennie 1990, les réseaux de neurones artificiels habituellement utilisés
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Modélisation multi-agents - Agents réactifs
Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf
Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones
Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones Javier Burroni - Carlos Sarraute { javier, carlos } @ coresecurity.com Core Security Technologies SSTIC
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.
Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Les algorithmes de fouille de données
Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Examen d informatique première session 2004
Examen d informatique première session 2004 Le chiffre à côté du titre de la question indique le nombre de points sur 40. I) Lentille électrostatique à fente (14) Le problème étudié est à deux dimensions.
Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.
2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
Améliorer les performances du site par l'utilisation de techniques de Web Mining
Améliorer les performances du site par l'utilisation de techniques de Web Mining CLUB SAS 2001 17/18 octobre 2001 Stéfan Galissie LINCOLN [email protected] [email protected] 2001 Sommaire
Les deux points les plus proches
MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant :
