E = k. La vitesse est nulle, la FEM E est nulle aussi. Ce = k. Um = E + R Im. 2 π 60 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU



Documents pareils
Electrotechnique. Fabrice Sincère ; version

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

Electrotechnique: Electricité Avion,

Cahier technique n 207

Test : principe fondamental de la dynamique et aspect énergétique

Machine à courant continu

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Electricité Générale

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

DISQUE DUR. Figure 1 Disque dur ouvert

CIRCUIT DE CHARGE BOSCH

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

véhicule hybride (première

1- Maintenance préventive systématique :

BALAIS Moteur (charbons)

ANALYSE FONCTIONNELLE INTERNE DEVOIR LIBRE

MESURE DE LA TEMPERATURE

PRINCIPE, REGULATION et RECHERCHE de PANNES

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

MATIE RE DU COURS DE PHYSIQUE

INSTALLATIONS INDUSTRIELLES

ELEC2753 Electrotechnique examen du 11/06/2012

Electricité. Electrostatique

Equipement d un forage d eau potable

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

MAGTROL. Frein à courant de Foucault haute vitesse WB 23. WB 23 Fiche Technique CARACTÉRISTIQUES COMMANDE PAR PC DESCRIPTION

CIRCUITS DE PUISSANCE PNEUMATIQUES

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire Sébastien GERGADIER

Mesure de la dépense énergétique

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

MOTORISATION DIRECTDRIVE POUR NOS TELESCOPES. Par C.CAVADORE ALCOR-SYSTEM WETAL Nov

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Catalogue de machines. CNC-Carolo. Edition de juillet 2011

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

TP 7 : oscillateur de torsion

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

4.14 Influence de la température sur les résistances

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

M HAMED EL GADDAB & MONGI SLIM

SUIVEUR SOLAIRE : Informations complémentaires

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CONCOURS COMMUNS POLYTECHNIQUES

Les Mesures Électriques

2 La technologie DTC ou le contrôle direct de couple Guide technique No. 1

GROUPE HOLDIM Leader mondial de l optimisation moteur. DYNORACE 2WD /DF2 Banc 2 roues motrices. Banc de puissance Disponible en 3 versions :

Centre de tournage. et de fraisage CNC TNX65/42

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

Entraînements personnalisés

Le véhicule électrique

Cercle trigonométrique et mesures d angles

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

La polarisation des transistors

Convertisseurs statiques d'énergie électrique

Un système d aide aux handicapés

association adilca LE COUPLE MOTEUR

Sujet. calculatrice: autorisée durée: 4 heures

Actualisation des connaissances sur les moteurs électriques

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

Table des matières. Banc de test 1

Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

made in Germany par Schick. Le résultat d'une longue expérience.

Chapitre 0 : Généralités sur la robotique 1/125

CAPTEURS - CHAINES DE MESURES

Mathématiques et petites voitures

Multichronomètre SA10 Présentation générale

MODULE DIN RELAIS TECHNICAL SPECIFICATIONS RM Basse tension : Voltage : Nominal 12 Vdc, Maximum 14 Vdc

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

mm 1695 mm. 990 mm Porte-à-faux avant. Modèle de cabine / équipage Small, simple / 3. Codage

ANALYSE SPECTRALE. monochromateur

CHARGE ACTIVE. Banc d'essais de machines tournantes. Notice d'instruction. Cette notice doit être transmise. à l'utilisateur final

GENERALITES SUR LA MESURE DE TEMPERATURE

Chapitre 1 - Les circuits électriques

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Références pour la commande

Choix multiples : Inscrire la lettre correspondant à la bonne réponse sur le tiret. (10 pts)

Physique, chapitre 8 : La tension alternative

DOSSIER TECHNIQUE R-GO SPA. Production et assemblage 100 % Française. 3 Rue Pierre Mendès France ARGENTAN

MEMOIRES MAGNETIQUES A DISQUES RIGIDES

CONCOURS GÉNÉRAL DES LYCÉES Session Durée 5 heures. Corrigé. Poséidon au secours d Éole pour produire l énergie électrique

CH IV) Courant alternatif Oscilloscope.

Depuis 1927, spécialiste des composants pour les machines tournantes et le rebobinage. Alimentation d'engins mobiles. Contacteurs électriques

Les schémas électriques normalisés

uc : Cas d utilisation Top-Chair [Utilisation normale] Fauteuil Top-Chair Déplacer le fauteuil sur tous chemins «include» «include» «extend»

TP 03 B : Mesure d une vitesse par effet Doppler

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Transcription:

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 A PRÉSENTATION Beaucoup d'appplications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéstique couple/vitesse de pente importante, ce qui permet de vaincre un couple résistant élevé et d'absorber les à coups de charge : la vitesse du moteur s'adapte à sa charge. D'autre part, la miniaturisation recherchée par les concepteurs trouve dans le moteur à courant continu une solution idéale, car il présente un encombrement réduit grâce à un bon rendement. Ce type de moteur se caractérise par des lois de fonctionnement linéaires. elles rendent l'exploitation de ses caractéristiques plus faciles d'emploi. B FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU I PRINCIPE DE FONCTIONNEMENT Le schéma de principe donné ci-après pour une spire permet de comprendre le fonctionnement d'un moteur à courant continu : B > Exemple d'un moteur à courant continu : - Puissance utile : 55 W. - Poids : 300 g. - Longueur : 83 mm. - Diamètre : 47 mm. S F > I F > N I FONCTION Puissance électrique fournie La puissance fournie est de type électrique : La puissance utilisable est de type mécanique (rotation) caractérisée par : II SYMBOLE CONVERTIR L'ENERGIE ELECTRIQUE EN ENERGIE MECANIQUE Courant (I) et tension (U) continus. Le couple utile (Cu) et la vitesse de rotation (Ω) Symbole général M moteur continu à aimant permanent M Puissance mécanique utilisable Frottement entre balais et collecteur + Alimentation Les pôles Nord et Sud des aimants permanents créent un flux (champ magnétique B ) dans le moteur. La spire est alimentée et plongée dans ce flux. Elle est soumise à un couple de forces F (force de Laplace). Le moteur se met en rotation. On dit qu'il y a création d'un couple moteur. Les points représentent les balais (solidaires de la carcasse) qui frottent sur le collecteur. Compte tenu de la disposition des balais et du collecteur, le sens du courant I dans la spire change à chaque demi-tour, ce qui permet de conserver le même sens de rotation (sinon, la spire resterait en position d'équilibre). On obtient un couple moteur plus élevé soit : - en augmentant le nombre de spires. - en augmentant le nombre de pôles d'aimants. En permutant les fils d'alimentation du moteur le courant dans la spire est inversé. Le couple qui s'applique est alors de sens contraire au précédent : le moteur change de sens de rotation. Par nature, le moteur à courant continu est un moteur à deux sens de rotation.

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 2 / 6 II CONSTITUTION D'UN MOTEUR À COURANT CONTINU 2 FORCE ÉLECTROMOTRICE (FEM) E Dans chaque spire alimentée, il se crée une force électromotrice. On définit E la somme de toutes les forces électromotrices des spires. Cette f.e.m est proportionnelle à la vitesse de rotation : E = k Ω - E : force électromotrice en V - k : constante de couple en V/rd/s - Ω : vitesse angulaire en rd/s Cas particulier, au moment du démarrage : La vitesse est nulle, la FEM E est nulle aussi. k est une constante qui dépend du nombre de spires et du nombre de pôles de l'inducteur. Elle peut être exprimée en N.m/A ou en V/rd/s. 3 COUPLE ÉLECTROMAGNÉTIQUE Ce Le couple électromagnétique Ce est proportionnel au courant dans le moteur : Le moteur est constitué d'une partie fixe : le stator (ou inducteur) et d'une partie tournante : le rotor (aussi appelé induit). Le stator est formé d'une carcasse métallique et d'un ou plusieurs aimants créant un champ magnétique à l'intérieur du stator. Il porte également la partie porte-balais et balais qui assure les contacts électriques avec le rotor. Le rotor est constitué d'une carcasse métallique. Il porte dans ses encoches les spires (faisceaux de fils ou bobines) reliées entre elles au niveau du collecteur. Le collecteur est une bague constituée de plusieurs lamelles en cuivre qui frottent sur les balais pour alimenter les bobines. Dès que le rotor se met à tourner, les balais changent de lame de collecteur (pour que le moment du couple de force produit soit toujours maximum). III DÉFINITIONS / RELATIONS 1 VITESSE Elle s'exprime soit en tours par minute (notée N en tr/min) soit en radians par seconde (notée Ω en rd/s) : Ω = N 2 π 60 Ce = k - Ce : couple électromagnétique en N.m - k : constante de couple en N.m/A - : courant dans l'induit du moteur en A Attention : Le couple électromagnétique Ce n'est égal au couple utile disponible sur l'arbre moteur Cu que si la pertes constantes (pertes par frottement et pertes magnétiques) sont négligées. 4 SCHÉMA ÉQUIVALENT I Le schéma électrique équivalent permet de modéliser l'induit du moteur : Um R E (fem) A partir du schéma équivalent, on établit l'équation électrique : Um = E + R - Um : tension aux bornes du moteur en V - E : Force électromotrice en V - R : Résistance d'induit en Ω - : courant dans l'induit en A

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 3 / 6 IV BILAN DES PUISSANCES / RENDEMENT 1 PUISSANCE UTILE Pu N (tr/min) 7000 Vitesse de rotation Rendement η 70% C'est la puissance mécanique produite par le moteur pour entraîner la charge : 6000 Pu = Cu Ω - Pu : puissance utile en W - Cu : couple utile en N.m - Ω : vitesse angulaire en rd/s 5000 4000 3000 Cas particulier, à vide : 2000 La puissance utile Pu est nulle. 1000 2 PUISSANCE ABSBORBÉE PAR LE MOTEUR Pa 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Couple (N.m) 3 PERTES Pertes joules Pj, puissance dissipée par effet joule : Pj = R 2 - Pa : puissance absorbée en W - Um : tension aux bornes de l'induit en V - : courant dans l'induit en A Pertes constantes Pc : ces pertes sont la somme des pertes mécaniques (puissance perdue par frottement) et magnétiques (saturation magnétique et courant de Foucault). Ces pertes peuvent se déterminer à vide. 4 RENDEMENT η Pa = Um Le couple fourni par le moteur et sa vitesse de rotation sont dépendants. cette caractéristique est linéaire. Elle permet de connaître la vitesse à vide et le couple de démarrage du moteur. P (W) 500 400 Puissance électrique (Pa) 300 Puissance mécanique (Pu) η Pu Cu = = Ω Pa Um Pu = Pa - Pj - Pc 200 100 V COURBES CARACTÉRISTIQUES On donne ci-contre, les courbes caractéristiques d'un moteur à courant continu (Johnson Electric HC971 utilisé pour une tondeuse électrique). Les grandeurs : vitesse de rotation, rendement, puissance électrique et puissance mécanique sont données en fonction du couple résistant sur l'arbre moteur pour une tension d'alimentation constante. 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 La Puissance utile se déduit de la courbe vitesse-couple du moteur. Les caractéristiques nominales du moteur sont définies pour ηmax. Couple (Nm) La puissance absorbée augmente avec le couple car I est proportionnel à C.

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 4 / 6 VI MODES DE FONCTIONNEMENT I CONSTITUTION D'UN RÉDUCTEUR Un moteur à courant continu est réversible : il peut fonctionner en génératrice. En faisant tourner le rotor du moteur sous l'action d'une force extérieure, on récupère une puissance électrique aux bornes des spires de l'induit du moteur (dynamo). Les dessins suivants illustrent les différents modes de fonctionnement du moteur (fonctionnement dans les quatre quadrants) : II RAPPORT DE RÉDUCTION R Dans les quadrants 1 et 3 : Dans les quadrants 2 et 4 : fonctionnement en moteur (le moteur fournit une puissance mécanique). fonctionnement en freinage ou génératrice. (le moteur absorbe une puissance mécanique). C ASSOCIATION MOTEUR + RÉDUCTEUR Les moteurs à courant continu sont construits pour fonctionner en permanence à une vitesse proche de leur vitesse à vide. Pour la plupart des applications, cette vitesse est trop élevée. Pour la réduire, un réducteur mécanique est associé au moteur et l'ensemble ainsi constitué est nommé motoréducteur. Les constructeurs proposent généralement une gamme de motoréducteurs dotés chacun d'une série de rapports, ce qui permet de couvrir une multitude d'applications. C'est le rapport entre la vitesse Nr en sortie du réducteur et la vitesse du moteur Nm : Nr R = Nm - R : rapport de réduction - Nr : vitesse en sortie du réducteur - Nm : vitesse de rotation du moteur Pour éviter d'avoir à manipuler des nombres inférieurs à 1, l'usage veut que quand on parle du rapport de réduction d'un réducteur, on emploie le nombre 1/R. Le fait que ce soit un réducteur et non un miltiplicateur lève toute ambiguité sur la signification du nombre employé. III CHOIX D'UN MOTORÉDUCTEUR En fonction de la vitesse recherchée, on opte pour un moteur direct ou un motoréducteur : - vitesse de 1000 à 5000 tr/min moteur direct ; - vitesse inférieure à 1000 tr/min motoréducteur. 1 CHOIX DU MOTEUR La partie moteur est choisie en fonction de la puissance utile nécessaire pour l'application. Le motoréducteur doit posséder une puissance utile supérieure ou égale à la puissance voulue. Ce choix s'effectue en vérifiant que le point de fonctionnement (couple et vitesse en sortie du motoréducteur) se trouve en dessous de la caractéristique vitesse-couple nominale du motoréducteur choisi. 2 CHOIX DU RAPPORT DE RÉDUCTION Le principal critère de choix ne fait intervenir que la vitesse souhaitée en sortie du réducteur. Il satisfait à la majorité des applications rencontrées.

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 5 / 6 D APPLICATIONS I DÉTERMINATION DES CARACTÉRISTIQUES TECHNIQUES D'UN MOTEUR À PARTIR DES COURBES On souhaite déterminer les caractéristiques techniques principales du moteur à courant continu Johnson Electric HC971 à partir des courbes de fonctionnement données page 3. 1 CARACTÉRISTIQUE COUPLE-VITESSE Repérer sur la courbe la vitesse de rotation à vide No du moteur. Donner sa valeur : No = 6200 tr/min 6A 5A 4A 3A 2A (1) (3) Repérer sur la courbe le couple de démarrage Cmax du moteur. Donner sa valeur : Cmax = 0,62 N.m 2 CARACTÉRISTIQUES NOMINALES DU MOTEUR (AU RENDEMENT MAX) 1A 0A (2) (2) Repérer les courbes le point de fonctionnement nominal. compléter le tableau suivant en donnant la valeur nominale de chacune des caractéristiques : Vitesse de rotation (tr/min) 5 100 Couple utile (N.m) 0,1 (4) Puissance utile (W) 55 Puissance absorbée (W) 90 Rendement (%) 62 II IDENTIFICATION DES PHASES DE FONCTIONNEMENT D'UN MOTEUR Le graphe ci-contre donne la valeur du courant lors des différentes phases de fonctionnement d'un moteur d'entraînement d'une broche de machine à graver. Repérer sur le graphes les différentes phases : - démarrage (1) ; - fonctionnement à vide (2) ; - usinage (3) ; - freinage (4). III DÉTERMINATION DES ÉLÉMENTS DU MODÈLE ÉQUIVALENT AU MOTEUR Le moteur utilisé dans l'exercice II est alimenté sous une tension continue de 24V. 1 VALEURS DU COURANT POUR LES DIFFÉRENTES PHASES En utilisant le graphe ci-dessus, déterminer : - Id, la valeur du courant de démarrage. Id = - Io, le courant absorbé à vide. Io = -, le courant en phase d'usinage. = 6 A 0,5 A 1,7 A

COURS TELN CORRIGÉ STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 6 / 6 2 CALCUL DES ÉLÉMENTS DU MODÈLE ÉQUIVALENT On rappelle le schéma électrique équivalent au moteur : Um R E (fem) 4 CALCUL DU RENDEMENT DU MOTEUR On donne la valeur des pertes constantes : Pc = 8 W Calculer la puissance utile Pu : Pu = Pa - Pc - Pj = 24 x 1,7-8 - 4 x 1,7 2 Pu = 40,8-8 - 11,6 = 21,2 W Quelle est la valeur de la fem E du moteur au moment du démarrage (justifier la réponse) : E = k. Ω Au démarrage, la vitesse est nulle donc E = 0 A l'aide du résultat précédent et des valeurs trouvées à la question 1, calculer R la résistance d'induit du moteur (présenter le détail des calculs) : U = E + R I U = R. I R = U R = 24 = 4 Ω I 6 3 CALCUL DE LA VITESSE DE ROTATION DU MOTEUR La constante de couple k vaut 0,0527 Nm/A. Elle peut aussi être exprimée en V/rd/s. Calculer la valeur de la fem E lors de la phase d'usinage : U = E + R I E = U - R. I E = 24-4. 1,7 = 17,2V Calculer la vitesse de rotation du moteur (en tr/min) lors de la phase d'usinage : E = k. Ω = E k = 326 rd/s 326. 60 Ω N = 2 π = 3116 tr/min Calculer le rendement η du moteur : η = Pu = 21,2 = 52 % Pa 40,8 IV CHOIX D'UN MOTORÉDUCTEUR Soit le système à tapis roulant suivant : L'arbre de sortie du motoréducteur est solidaire de l'axe de la roue entraîneuse. Le tapis doit avancer à une vitesse de 0,5 m/s. Calculer la vitesse de rotation Nr en sortie du motoréducteur en tr/min : V = r. Ω Nr = 10. 60 2 π Ω = V r = 95 tr/min = 10 rd/s r = 5cm On utilise un moteur RE 540/1 (doc. page 4) ayant une vitesse de rotation de 13360 tr/min auquel on associe un réducteur. Calculer le rapport de réduction R que doit avoir ce réducteur : Nr R = R = 95 = 0,007 Nm 13360 Le rapport de réduction (1/R) sera de 140 Choisir le rapport de réduction adapté parmi ceux disponibles (page 4) : On prendra le motoréducteur ayant le rapport de réduction de 148