UE 13 Cardiologie. Physiologie de la circulation



Documents pareils
La pompe cardiaque, le débit cardiaque et son contrôle

THEME 2 : CORPS HUMAIN ET SANTE : L EXERCICE PHYSIQUE

Chapitre 7: Dynamique des fluides

La filtration glomérulaire et sa régulation

LASER DOPPLER. Cependant elle n est pas encore utilisée en routine mais reste du domaine de la recherche et de l évaluation.

Chapitre II La régulation de la glycémie

Les différentes maladies du coeur

Le VIH et votre cœur

TUTORAT UE Anatomie Correction Séance n 6 Semaine du 11/03/2013

Le cliché thoracique

CREATION D UNE CHAINE DE REFERENCE POUR

L eau dans le corps. Fig. 6 L eau dans le corps. Cerveau 85 % Dents 10 % Cœur 77 % Poumons 80 % Foie 73 % Reins 80 % Peau 71 % Muscles 73 %

le bilan urodynamique Dr René Yiou, CHU Henri Mondor

SEMEIOLOGIE CARDIO-VASCULAIRE Mesure de la Pression Artérielle

Prise en charge cardiologique

Transport des gaz dans le sang

Transport des gaz dans le sang

DIPLÔME INTERUNIVERSITAIRE D ECHOGRAPHIE. Examen du Tronc Commun sous forme de QCM. Janvier h à 16 h

Mesure du débit et volume sanguins. Cause des décès au Canada

Tronc Artériel Commun

«Boire un verre de vin par jour augmente la longévité.»

La prise en charge de votre insuffisance cardiaque

QUI PEUT CONTRACTER LA FA?

Si votre vie vous tient à COEUR

sur la valve mitrale À propos de l insuffisance mitrale et du traitement par implantation de clip

La Dysplasie Ventriculaire Droite Arythmogène

PICCO2. PROTOCOLE DE SERVICE Année 2010 MISE À JOUR Hôpital de Bicêtre Département d'anesthésie-réanimation Réanimation Chirurgicale

ADMINISTRATION D OXYGENE PAR L INTESTIN EXPERIENCES AVEC DES LAPINS

AMINES BIOGENIQUES. Dopamine/Noradrénaline/Adrénaline (CATECHOLAMINES) Sérotonine/Histamine/Dopamine

Formation des enseignants. Le tensiomètre. Objet technique modélisable issu de l environnement des élèves

TVP fémorale. Systématisation. La TVP : écho-doppler JP Laroche Unité de Médecine Vasculaire CHU Montpellier. Thrombus mobile

Champ électromagnétique?

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Tableau récapitulatif : composition nutritionnelle de la spiruline

Votre guide des définitions des maladies graves de l Assurance maladies graves express

Pseudotumor cerebri. Anatomie Le cerveau et la moelle épinière baignent dans un liquide clair, appelé le liquide céphalo-rachidien (LCR).

Chapitre 1: Facteurs d'échelle

Séquence maladie: insuffisance cardiaque. Mieux connaître l insuffisance cardiaque Vivre avec un DAI

S o m m a i r e 1. Sémiologie 2. Thérapeutique

Épreuve d effort électrocardiographique

Problèmes sur le chapitre 5

Séquence : La circulation sanguine

Automesure de la tension artérielle

Grossesse et HTA. J Potin. Service de Gynécologie-Obstétrique B Centre Olympe de Gouges CHU de Tours

Conseils aux patients* Lutter activement. *pour les patients ayant subi une opération de remplacement de la hanche ou du genou

Dossier d information sur les bêtabloquants

MODULE SOINS INTENSIFS PRISE EN CHARGE DU BDS DE SI MONITORING HÉMODYNAMIQUE: LES BASES.

Biométrie foetale. Comité éditorial pédagogique de l'uvmaf. Date de création du document 01/ Support de Cours (Version PDF) -

Hypertension artérielle. Des chiffres qui comptent

B06 - CAT devant une ischémie aiguë des membres inférieurs

La fonction respiratoire

ACCIDENTS ELECTRIQUES EN CHIRURGIE COELIOSCOPIQUE. Dr JF Gravié FCVD

Précision d un résultat et calculs d incertitudes

La prise en charge de votre artérite des membres inférieurs

Fonctionnement de l organisme et besoin en énergie

INSUFFISANCE CARDIAQUE DROITE Dr Dassier HEGP

Programme de réhabilitation respiratoire

Evaluation de la Fonction Diastolique Ventriculaire Gauche en IRM Cardiaque

PLAN RÉÉDUCATION POUR LES UTILISATEURS DE L'ARTICULATION. Contrôle de la phase pendulaire. Par Jos DECKERS

Notions de base Gestion du patient au bloc opératoire

Gestion moteur véhicules légers

Activité 38 : Découvrir comment certains déchets issus de fonctionnement des organes sont éliminés de l organisme

Séquence 1. Glycémie et diabète. Sommaire

1 Problème 1 : L avion solaire autonome (durée 1h)

maladies des artères Changer leur évolution Infarctus du myocarde Accident vasculaire cérébral Artérite des membres inférieurs

Ceinture Home Dépôt. Orthèse lombaire et abdominale. Mother-to-be (Medicus)

Les formalités médicales ci-dessous sont celles prévues aux conditions générales du contrat assurance emprunteur çaassure n 24.

LES FACTEURS DE RISQUE

Appareil Thérapeutique pour le Soin du Dos

Equipement d un forage d eau potable

Maladies neuromusculaires

Sachez mesurer vous-même votre tension

Comment évaluer. la fonction contractile?

Les Conditions aux limites

Maladies chroniques et APS

La fibrillation auriculaire : au cœur du problème

Ischémie myocardique silencieuse (IMS) et Diabète.

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

SANTÉ. E-BOOK équilibre. stop. cholesterol diabete hypertension. Réduire le cholestérol, l hypertension et le diabète SANS MEDICAMENT!

Eau chaude sanitaire FICHE TECHNIQUE

LE SYNDROME DE BUDD CHIARI

APPLICATION THOMSON HEALTHCARE GUIDE D UTILISATION

Diabète Type 2. Épidémiologie Aspects physiques Aspects physiologiques

Dr E. CHEVRET UE Aperçu général sur l architecture et les fonctions cellulaires

Première partie: Restitution + Compréhension (08 points)

Maladie des valves. Changer leur évolution. Rétrécissement aortique Insuffisance aortique Insuffisance mitrale Rétrécissement mitral

Les effets nocifs du bruit sur l'homme

Chambres à cathéter implantables

LE SPORT POUR CHACUN! Docteur CASCUA Stéphane Médecin du sport

Mesures de très faibles vitesses instantanées par échographie Doppler

L énergie grâce à l eau ça coule de source!

L APS ET LE DIABETE. Le diabète se caractérise par un taux de glucose ( sucre ) trop élevé dans le sang : c est l hyperglycémie.

3. Artefacts permettant la mesure indirecte du débit

NEPHROGRAMME ISOTOPIQUE EXPLORATION DE L HYPERTENSION RENO-VASCULAIRE

Le système nerveux entérique ou deuxième cerveau - LE VENTRE -

Le traitement de l'insuffisance cardiaque chez le chien

Référentiel CPAM Liste des codes les plus fréquents pour la spécialité :

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

1ST2S Biophysiopathologie : Motricité et système nerveux La physiologie neuro-musculaire :

PRISE EN CHARGE DES PRE ECLAMPSIES. Jérôme KOUTSOULIS. IADE DAR CHU Kremlin-Bicêtre. 94 Gérard CORSIA. PH DAR CHU Pitié-Salpétrière.

Transcription:

UE 13 Appareil Cardio-vasculaire 08/02/12 à 13h30 Ronéotypeur : Vincent Marmouset Ronéolecteur : Pierre-Yves Meun Professeur Bonnin UE 13 Cardiologie Physiologie de la circulation 1

I. Organisation générale de la circulation 1. Anatomie fonctionnelle de la circulation 2. Classification fonctionnelle des vaisseaux le long de la boucle circulatoire 3. Relation surface cumulée, nombre, diamètre, épaisseur 4. Evolution de la surface cumulée de la section des vaisseaux II. III. Les grandeurs hémodynamiques 1. Définitions 2. L évolution de la pression dynamique au niveau de la paroi artérielle 3. Evolution de la pression dynamique, des résistances hémodynamiques 4. La pression hydrostatique 5. Relations entre les grandeurs Vasomotricité 1. Organisation concentrique des cellules musculaires lisses 2. Rôle de la vasomotricité artériolaire 3. Rôle dans la perfusion tissulaire IV. Système à haute pression 1. Schématisation du système à haute pression 2. Pression pulsée / Pression moyenne 3. Régulation de la Pression artérielle 2

I. Organisation générale de la circulation 1. Anatomie fonctionnelle de la circulation On distingue deux circulations placées en série : Petite circulation = Circulation pulmonaire (entre le cœur et droit et gauche) où se fait l hématose Grande circulation = Circulation systémique (entre cœur gauche et droit) Différents types de circulation : Nourricière : cerveau, muscle, myocarde, hépatique, bronchique Fonctionnelles : elles vont servir aux grandes fonctions de l organisme : pulmonaire (hématose) et portale (absorption et stockage des aliments) Mixte : entérique (oxygène et nutriments apportés pour la paroi de l intestin & absorption et transport des aliments), rénale (sang apporté pour la trophicité des tissus rénaux & homéostasie hydro-électrolytique de l organisme), cutanée (assure la trophicité de la peau & la thermorégulation) Le cœur droit reçoit tout le sang veineux de l organisme à travers les deux veines caves (sup. et inf.). Le sang veineux va être éjecté jusqu au niveau de la circulation pulmonaire grâce aux artères pulmonaires. Le sang s oxygène et devient artérialisé. Il revient au cœur gauche par les quatre veines pulmonaires ou il sera ensuite éjecté grâce à l aorte dans la circulation systémique. Le sang artériel redevient ensuite veineux et revient au cœur droit par l intermédiaire des veines de l organisme. Une circulation particulière, la circulation portale ou hépato-splénique : L artère mésentérique supérieure irrigue la paroi de l intestin grêle. Les boucles capillaires de l intestin se réduisent ensuite en veines. Le sang veineux va être drainé par la veine mésentérique supérieure. Cette veine va s anastomoser avec la veine splénique pour donner le confluent veineux spléno-mésaraique qui est à l origine de la veine porte. Cette veine porte se divisera au niveau du foie en un deuxième réseau capillaire sinusoïde au contact des hépatocytes. Ces capillaires sinusoïdes se résolvent ensuite en veinules, puis veine sus-hépatique qui est drainée dans la veine cave inférieure. 3

Cette circulation sert à la digestion : les aliments vont pouvoir traverser la barrière intestinale et atteindre le foie. Au niveau des capillaires sinusoïdes ils vont pouvoir diffuser vers l hépatocyte stockage ou métabolisme. 2. Classification fonctionnelle des vaisseaux le long de la boucle circulatoire : Vaisseaux dits : De conduction et d amortissement : Grosses artères : ils vont conduire le sang oxygène à forte pression hémodynamique (riches en fibres élastiques, peu compliants, peu nombreux, degré de vasomotricité faible (entre 10 et 15%) ) Résistifs pré-capillaires : Artérioles qui vont exercer un frein hémodynamique à l écoulement du sang. (n= 10^6). Leur capacité importante de vasoconstriction va entrainer une réduction/augmentation de la lumière. Sur ces artérioles, il va y a voir des phénomènes d ondes de réflexion (abordé par la suite). D échange et de diffusion : Capillaires avec une paroi très fine (n= environ 10^9) Résistifs post-capillaires : Veinules : résistance supplémentaire, vasomotricité ++ Capacitifs : Veines : déformables, dilatables, très compliants, pouvant contenir une grande quantité de sang. 3. Relation surface cumulée, nombre, diamètre, épaisseur Plus on s éloigne de l origine de l aorte : Plus la surface cumulée des artères va augmenter. Plus le nombre de vaisseaux va augmenter Plus la surface cumulée augmente et elle est maximale au niveau des capillaires ce qui permet une surface d échange importante entre le sang et les tissus. Plus le diamètre et l épaisseur des vaisseaux va diminuer 4. Evolution de la surface de section cumulée des vaisseaux Quelque soit la distance du vaisseau par rapport au cœur, le débit reste constant. Sur le schéma, on a une augmentation de la surface cumulée au niveau des capillaires puis une diminution jusqu au retour des grosses veines. 4

Comme, Q (débit) = Surface de section cumulée x Vitesse On va avoir une diminution des vitesses circulatoires moyennes inversement à la surface cumulée. Le temps de contact réglé par la vitesse circulatoire va normalement être adéquat pour permettre les échanges. Au retour, lorsque les vaisseaux vont confluer en veines on va avoir une accélération du sang dans les vaisseaux circulatoires. Quand le sang a traversé cette boucle circulatoire, il va y avoir un amortissement des ondes de pression ; les pressions et les vitesses vont alors devenir continues. On va retrouver le même schéma dans la circulation pulmonaire avec augmentation des surfaces cumulées jusqu aux capillaires pulmonaires et diminution des vitesses moyennes. II. Les grandeurs hémodynamiques 1. Définitions Volumes de sang à un instant donné : Artères (700mL), capillaires (300mL), Veines (3,5L), Circulation pulmonaire (500mL dont 60 dans les capillaires pulmonaires) Le secteur capacitif est situé en amont du cœur car, quand il faut augmenter rapidement le débit cardiaque, le cœur droit va pouvoir puiser du sang grâce à une vasoconstriction de la paroi des veines. Ainsi le débit cardiaque augmente. 5

Pressions : PTotale : Pdynamique + P hydrostatique = P intra vasculaire P dynamique = pression crée par l activité contractile du cœur grâce au travail du ventricule gauche/droit. P hydrostatique = pression qui s exerce sur la colonne de sang de l organisme par la force de gravité terrestre. P transmurale = P intravasculaire (qui tend à dilater) - P extravasculaire (qui tend à contracter) Tension : Tension = P transmurale x rayon du vaisseau Si la pression est perpendiculaire à la paroi vaisseau, la tension va s exercer de façon tangentielle sur la paroi du vaisseau. Exemple = aorte d un calibre normale (15mm) qui a un anévrysme localisé au niveau abdominal Augmentation du rayon Augmentation de la tension 2. L évolution de la pression dynamique au niveau de la paroi artérielle Tout commence avec une pression très importante (110mmHg) au niveau de l aorte grâce à la force du ventricule gauche. Les vaisseaux conductifs (artères) vont permettre d apporter le sang grâce à cette forte pression. A l intérieur des organes ou au voisinage, on a les artérioles qui contiennent une forte résistance, et qui vont donc être à l origine d une diminution de la pression hémodynamique. La pression chute à 30mmHg. La pression diminue avec la distalité. Au niveau des capillaires, la pression est basse (30-20mmHg) et compatible avec l équilibre de Starling qui va aider à la diffusion et à la réabsorption dans les tissus. 6

Au niveau des veines, on a une augmentation de pression assez suffisante pour pousser le sang dans le cœur droit. Finalement, on distingue donc deux systèmes : Système à haute pression : aorte, artères, artérioles. Système à basse pression : capillaires systémiques, veinules, veines, cœur droit, toute la circulation pulmonaire. C est le gradient de pression entre l amont et l aval qui permet l écoulement du sang dans l organisme. Dans le ventricule gauche, la pression intermittente avec un maximum systolique puis une diminution diastolique. Le ventricule gauche est le seul organe moteur permettant de pousser le sang dans la circulation systémique. Du fait de l élasticité de la paroi artérielle au niveau des vaisseaux conductifs (notamment l aorte), lors de la diastole, on ne va pas avoir une chute mais un maintien de la pression au sein de la lumière. 3. Evolution de la pression dynamique, des résistances hémodynamiques La pression dynamique va varier en fonction des résistances hémodynamiques. Artères de conduction et de distribution : Artères élastiques : résistance faible Artères musculaires résistance peu importante (+/-) Artères de résistance : artérioles : résistance +++++ Capillaires : résistance très faible Veinules : résistance assez faible (+/-) Veines : résistance très faible 4. La pression hydrostatique P hydrostatique = pression qui s exerce sur la colonne de sang de l organisme par la force de gravité terrestre. A l interface entre l eau et l air, on a le point hydrostatique indifférent. Dans l organisme, ce point va se situer au niveau du cœur. La pression y est de 0 mmhg. Si on schématise l organisme par des tuyaux, la pression hydrostatique va entrainer une dilatation dans les parties déclives, et à l inverse, un collapsus dans les parties situées au dessus du point hydrostatique. 7

L exercice de cette pression hydrodynamique ne permet pas d expliquer la circulation du sang, mais seulement la déformation des vaisseaux. La pression hydrostatique et dynamique ont un exercice différent et synergique. En décubitus : La pression artérielle dynamique au niveau du ventricule gauche va varier entre 0 et 120mmHg. Comme le système artériel est peu résistif, on a très peu de perte de pression. Il y a à peu près un équilibre dans l organisme. En orthostatisme : La pression hémodynamique reste la même. Or La pression hydrostatique vient s ajouter à la pression hémodynamique. Au dessus, la pression totale va diminuer en haut et en bas, elle va augmenter. C est la paroi des artères des membres inférieures qui va permettre de supporter de fortes pressions. 8

5. Relations entre les grandeurs a) Pression/volumes : Compliance Compliance = ΔV / ΔP Les artères sont peu compliantes, peu déformables, il y a un rappel élastique important, propriétés de viscoélasticité de la paroi vasculaire. exemple = A chaque systole injection d un volume d éjection systolique (VES=80mL). Cela va permettre d élever la pression artérielle diastolique à la pression artérielle systolique. ΔP = PAs - PAd = 40 mmhg La compliance artérielle va être de 80/40 = 2 ml/mmhg Les veines, à l inverse, sont très compliantes, déformables, dilatables. Exemple = une perfusion IV de 500mL ne modifie pas ou peu la pression veineuse centrale. Compliance veineuse = 500mL /mmhg Capacitance et compliance artérielle : La relation pression/volume n'est pas linéaire. Dans les artères, aux pressions basses, une variation de volume sollicite les fibres élastiques Aux pressions élevées, la même variation de volume sollicite les fibres collagènes moins déformables. Quand la paroi vieillit, la part de fibres élastiques diminue et la part de fibres collagène augmente. De ce fait, la courbe se déplace et on aura pour une même variation de volume, une augmentation de la pression différentielle. Ceci explique l hypertension artérielle idiopathique chez les personnes âgées. b) Vitesse / débit Q = Surface de section x Vitesse moyenne 9

c) Pression/ débit : Loi de poiseuille Loi de Poiseuille : Δ P = Q x Résistance hémodynamique (Rh) Rh est proportionnelle à la viscosité du sang et au rayon instantané. III. Vasomotricité 1. Organisation concentrique des cellules musculaires lisses : Au niveau d une artériole, une simple cellule musculaire lisse peut faire une à deux fois le tour de la lumière vasculaire. Possibilités de vasoconstriction remarquables. Grâce a ces cellules musculaires lisses, au niveau des artérioles, on va pouvoir entrainer des variations importantes de résistances hémodynamiques. 2. Rôle de la vasomotricité artériolaire a) Localement La vasomotricité va réguler le débit sanguin local en fonction de la pression artérielle. Pour une pression artérielle donnée, par la loi de Poiseuille on a : La vasodilatation augmente le débit sanguin local La vasoconstriction diminue le débit sanguin local La vasomotricité permet le recrutement des anses capillaires perfusées Comme la résistance est inversement proportionnelle au rayon vasculaire à la puissance 4, une faible variation de diamètre provoque une forte variation de résistance, donc de débit local. 10

Qu est ce qui commande cette vasomotricité localement? Le tonus myogénique de base Besoins métaboliques tissulaires Valeur des PO 2, ph, PCO 2 Fonction endothéliale (Monoxyde d azote) Prostacycline Tout cela concourt à une régulation locale des apports nutritifs aux tissus. b) A l étage de l organisme : Qu est ce qui commande la vasomotricité à l étage de l organisme? Par voie endovasculaire : Substances vasoactives circulantes : Catécholamines circulantes Angiotensine 2 Système bradykinine/kallicréine Par voie extra vasculaire : le SN autonome et les terminaisons nerveuses La vasomotricité à l étage de l organisme est prépondérante par rapport à la vasomotricité locale. 3. Rôles dans la perfusion tissulaire Rôle dans la perfusion tissulaire au repos : danse des capillaires (expression totalement néologique du prof, vous cassez pas la tête à chercher sur internet, vous trouverez pas). capillaire perfusant dilaté Capillaire vasoconstricté Rôle dans la perfusion tissulaire à l effort : recrutement vasculaire. Les besoins en oxygène augmentent, on va avoir une dilatation des capillaires et des artérioles et veinules en regard. 11

IV. Système à haute pression 1. Schématisation du système à haute pression Le système à haute pression, qui se fait via les grosses artères, va avoir deux grandes fonctions : la conduction du sang et l amortissement de l onde de pression. a) Conduction du sang répond à la loi de Poiseuille : Du cœur vers les tissus périphériques avec une couverture par un débit sanguin approprié de leur activité métabolique. Cœur Rh : résistance hémodynamique locale des artères conductrices et leur débit Q associé. Toutes les circulations locales sont en parallèles les unes par rapport aux autres. Elles vont exercer une résistance systémique totale (RST). Loi de Poiseuille : = De plus, Qc = VES x FC Qc = et Qn = PA / Rh n La Pression artérielle est proportionnelle au débit cardiaque et à la RST. Certaines grandeurs vont être réglées : maintenues à un niveau Pression art Moyenne Débit cardiaque Débits locaux (comme le débit cérébral et rénal) 12

D autres réglantes que l on va pouvoir faire varier et ainsi maintenir les grandeurs réglées stables: VES FC (agit sur le débit cardiaque) RST (vasomotricité) Volémie Ce qui prime donc est la régulation au niveau de l organisme : Homéostasie de la pression artérielle et du débit cardiaque. Ensuite on aura les régulations d organes : Ajustement du débit sanguin local par rapport à la PA pour assurer la couverture métabolique. b) Amortissement de l onde de pression et de l onde de vitesse : Cet effet ou effet Windkessel est du aux propriétés visco-élastiques de la paroi des artères et influence les valeurs de pression pulsée. La pression est fortement pulsée, intermittente lors de l entrée dans le système à haute pression. Elle s amplifie ensuite tout le long de l arbre artériel puis s amortit au niveau des artérioles. A chaque systole, une VES (90mL) va injecter le système artériel. Une partie de ce VES va entrainer une dilatation du système artériel avec transformation de la force de pression en énergie de déformation. 60% du VES du VES est stocké dans les grandes artères et va donc permettre leur dilatation et 40% est transmis vers la distalité pour dépasser les artérioles. Puis lors de la diastole, le système à haute pression du ventricule gauche est isolé, la force de la paroi élastique artérielle va permettre de retransformer l énergie de déformation en force de pression. 60% du VES va aller injecter le système capillaire. 13

2. Pression pulsée et pression moyenne Sur ce schéma, on a l entrée du système artériel avec l aorte, ensuite on a les artères de distribution telles que les artères fémorales et poplitées et les artères jambières qui sont les plus distales. On a enfin la sortie de ce système artériel, avec les résistances artériolaires. Tout le long de la paroi artérielle, on a une onde de pression qui court depuis l origine du système jusqu à la fin. L onde de pression incidente va parcourir le système jusqu à être réfléchie à la distalité, l onde réfléchie va retourner et rencontrer une autre onde de pression incidente. Augmentation de l amplitude de l onde de pression : on aboutit à une Pression moyenne peu variable. Pour que ce phénomène d amplification se produise, il faut une certaine longueur du système ; il se produit donc sur l ensemble aorte/ artères des membres inférieurs alors qu il ne se produit pas sur les membres supérieurs car la longueur du système artériel y est insuffisante. A l entrée du système, le cœur, par son activité contractile, crée une onde de pression. Cette pression artérielle est intermittente et varie entre : - la pression systolique, correspondant à la valeur maximale - la pression diastolique, correspondant à la valeur minimale. Elle est caractérisée par : - une composante pulsatile ou pression pulsée (qui représente les fluctuations de la pression instantanée autour de la pression moyenne) - une composante continue virtuelle, qui est la pression moyenne (= pression dynamique constante dont l aire sous la courbe est égale à l aire sous la courbe de la pression instantanée). La pression moyenne répond à la loi de Poiseuille et correspond, pour un débit cardiaque et des résistances systémiques donnés, à une valeur de pression artérielle moyenne. A débit cardiaque constant, ce sont donc les variations des résistances artériolaires qui modifient la valeur de la pression moyenne par le jeu sur les pressions systolique et diastolique au niveau du cœur. La pression pulsée (le prof a pas beaucoup insisté mais bon je le marque quand même) : est influencée par les propriétés visco-élastiques des parois artérielles et leurs modifications au cours du vieillissement ou avec la pathologie. Elle est essentiellement dépendante de l'état de rigidité des artères et de l'intensité comme de la précocité des ondes de réflexion. 14

3. Régulation de la pression artérielle Origine : travail cardiaque (contraction ventricule gauche) Fonction : faire passer le sang dans la boucle circulatoire Une normalité de la PA est définie par l OMS (pas à savoir à mon avis, c est pas de la sémio!) : La PA varie de façon physiologique avec : Orthostatisme (augmentation) Age Repos Emotion Grossesse Exercice physique Veille, sommeil Techniques de mesure de la PA : Directe avec un cathéter que l on introduit dans l artère et un capteur de pression Indirecte (musculatoire) La pression artérielle est proportionnelle au débit cardiaque et la RST. Or, Rh = 8 ml / π r 4, donc la PA sera proportionnelle au rayon. Elle est aussi proportionnelle à la volémie (déterminant du contenu du système à haute pression). Différents mécanismes régulateurs : < à 1min : régulation nerveuse (boucle réflexe) (cœur, vaisseaux) sur le contenant Qqs min à 24 heures : régulation hormonale : système rénine angiotensine, le facteur atrial natriurétique sur le cœur (FNA), les vaisseaux et la volémie > à 24h : aldostérone, ADH, FNA a) La régulation nerveuse de la pression artérielle : Il y a une autorégulation par rétrocontrole négatif qui est innée (réflexe), automatique, à latence brève et spécifique. 15

Circuit propre de la régulation nerveuse de la PA : Barorécepteurs ou Tensorécepteurs : sont situés dans l adventice de la paroi de certaines artères : crosse de l aorte (près du point hydrostatique indifférent) et à la bifurcation carotidienne. Voie afférente : fibres nerveuses et nerfs des barorécepteurs qui vont aller renseigner les Centres bulbaires : ce sont les centres régulateurs situés au niveau du tronc cérébral Voies efférentes : C est essentiellement le SN parasympathique avec le nerf vague (X) et le système sympathique qui vont aller se distribuer sur les Organes effecteurs : Cœur (tonus parasympathique prédominant avec le nerf vague), les vaisseaux (tonus sympathique permanent avec la noradrénaline) et la médullosurrénale (sécrétion d adrénaline) En cas d augmentation de la PA : On va avoir tendance à la dilatation des vaisseaux donc une augmentation de la tension dans la paroi des artères (en particulier au niveau de la crosse de l aorte et de la bifurcation carotidienne). Cette dilatation va entraîner une augmentation de la fréquence d émission des potentiels d action dans les fibres nerveuses de la voie afférente. Cela va avoir pour but d informer les centres bulbaires. Les centres bulbaires vont répondre par : Renforcement du tonus parasympathique : Diminution de la FC et de la VES au niveau du cœur qui va entrainer une diminution du débit cardiaque. Diminution du tonus sympathique : Vasodilatation au niveau des vaisseaux donc une diminution de la résistance hémodynamique. Tout cela va avoir pour conséquence la diminution de la PA. En gros vous avez le schéma qui est texto ce qu a dit le prof : En cas de baisse de la PA : 16

b) Régulation hormonale de la PA : En cas d augmentation prolongée de la PA : Intervient lorsque la pression reste élevée, malgré l intervention de la régulation par le SN. En cas de baisse de la PA : Tous les traitements antihypertenseurs vont agir sur ces mécanismes hormonaux. 17