Détection et suivi d'objets dans une séquence d'images par contours actifs

Documents pareils
Les algorithmes de base du graphisme

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Modélisation multi-agents - Agents réactifs

Généralités sur le Langage Java et éléments syntaxiques.

R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale

Codage vidéo par block matching adaptatif

Equilibrage de charge pour les grilles de calcul : classe des tâches dépendantes et indépendantes.

THÈSE. Mesures statistiques non-paramétriques pour la segmentation d'images et de vidéos et minimisation par contours actifs

Simulation du transport de matière par diffusion surfacique à l aide d une approche Level-Set

Faire de la déformation interactive avec GIMP

Projet de Traitement du Signal Segmentation d images SAR

ANALYSE DE RISQUE AVEC LA MÉTHODE MEHARI Eric Papet Co-Fondateur SSII DEV1.0 Architecte Logiciel & Sécurité Lead Auditor ISO 27001

Chapitre 2 : Caractéristiques du mouvement d un solide

Object Removal by Exemplar-Based Inpainting

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO

Résolution d équations non linéaires

Méthodes de développement. Analyse des exigences (spécification)

Système immunitaire artificiel

Les mesures à l'inclinomètre

Contrôle par commande prédictive d un procédé de cuisson sous infrarouge de peintures en poudre.

Fête de la science Initiation au traitement des images

Technique de compression des images médicales 4D

Projet : Recalage par maximisation de l information mutuelle

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Fonctions de deux variables. Mai 2011

Classification Automatique de messages : une approche hybride

Analyse de la vidéo. Chapitre La modélisation pour le suivi d objet. 10 mars Chapitre La modélisation d objet 1 / 57

TITRE III PRÉVENTION DES RISQUES D'EXPOSITION AU BRUIT. CHAPITRE Ier Dispositions générales

Chapitre 1 : Introduction aux bases de données

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

MCMC et approximations en champ moyen pour les modèles de Markov

Laboratoire 4 Développement d un système intelligent

Méthodologies de développement de logiciels de gestion

Application 1- VBA : Test de comportements d'investissements

Élasticité des applications à base de services dans le Cloud

Traitement bas-niveau

COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

Introduction au datamining

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

CHAPITRE VIII : Les circuits avec résistances ohmiques

Méthode de sureté de fonctionnement pour une maintenance efficace Application à un poste électrique (60/10KV)

Laboratoire d Automatique et Productique Université de Batna, Algérie

CURRICULUM VITAE. Informations Personnelles

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

SIMULATION HYBRIDE EN TEMPOREL D UNE CHAMBRE REVERBERANTE

Application de K-means à la définition du nombre de VM optimal dans un cloud

LES INTERFACES HOMME-MACHINE

Annexe A de la norme 110

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Mathématiques et leurs interactions. Mathématiques et leurs interactions. Mathématiques et leurs interactions. Mathématiques et leurs interactions

Cours d Analyse. Fonctions de plusieurs variables

GESTION DE PROJET SÉANCE 2 : LES CYCLE DE VIE D'UN PROJET

Méthodes de développement

Des systèmes de chauffage avec pompe à chaleur et accumulateur de chaleur pour les construction dans les zones de montagne.

Géométrie discrète Chapitre V

Système binaire. Algèbre booléenne

Figure 3.1- Lancement du Gambit

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE

Mesure agnostique de la qualité des images.

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Continuité et dérivabilité d une fonction

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Chapitre 8. Estimation de la valeur d un bien immobilier

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes.

E-Biothon : Une plate-forme pour accélérer les recherches en biologie, santé et environnement.

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

LE PROBLEME DU PLUS COURT CHEMIN

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

PROJET BIGDATART DOSSIER DE PRESENTATION

Echantillonnage Non uniforme

Sommaire. Introduction Définition Historique Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

ipra*cool v 1.08 guide de l utilisateur ipra*cool v.1-08 Guide de l'utilisateur ipra*cool v

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Optimisation, traitement d image et éclipse de Soleil

Conservation des documents numériques

Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons

Exemple d application en CFD : Coefficient de traînée d un cylindre

Comparaison des performances d'éclairages

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

Monnaie, Banque et Marchés Financiers

A V I S N Séance du mercredi 1er avril

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

NOTIONS DE PROBABILITÉS

Fonctions de plusieurs variables

IFT2255 : Génie logiciel

Mode d'emploi du plugin Grayscale_Granulometry

Des réels aux flottants : préservation automatique de preuves de stabilité de Lyapunov

Transcription:

Détection et suivi d'objets dans une séquence d'images par contours actifs A. Fekir (1), N. Benamrane (2) et A. Taleb-Ahmed (3) (1) Département d informatique, Université de Mustapha Stambouli, BP 763, Route de Mamounia, 29000, Mascara, Algérie aekfekir@gmail.com (2) Equipe de vision et imagerie médicale, laboratoire SIMPA, Département d informatique, USTO Oran, B.P 1505 El mnaouer 31000, Oran, Algérie nabenamrane@yahoo.com (3) LAMIH UMR CNRS 8530, Université de Valenciennes et du Hainaut Cambrésis, Le mont Houy, 59313 Valenciennes Cedex 9, France taleb@univ-valenciennes.fr Abstract. Dans cet article, nous proposons une méthode de détection et de suivi d un objet dans une séquence d images basée sur le contour actif. Une fonctionnelle d énergies est attachée au contour actif. Après une initialisation du contour actif dans la première image de la séquence, la minimisation des énergies attachées est utilisé afin de détecter le contour. Puis une initialisation automatique du contour actif dans les images suivantes est proposée pour le suivi dans les autres images de la séquence. Elle consiste à utiliser le barycentre de l'objet détecté. Plusieurs tests on été effectués sur trois types de séquences d'images : synthétiques, biologiques et échocardiographique Mots clés Détection de contours, suivi d'objet, séquence d images, imagerie échocardiographique, contour actif. 1 Introduction Les contours actifs tirent leur origine des modèles élastiques [1], mais la communauté s'accorde à les attribuer à l'équipe Kass, Witkin et Terzopoulos [2] qui introduisirent les snakes ou courbes minimisant [3]. Les snakes tiennent leur nom de leur aptitude à se déformer comme des serpents. Depuis la publication de cette équipe, les modèles déformables sont devenus un sujet très important pour la communauté du traitement d'images. De très nombreuses équipes s'y sont intéressées de manière plus ou moins approfondie [4][5]. Les domaines d'utilisation sont nombreux tant en 2D qu'en 3D tels : la reconnaissance de formes, le suivi de scènes, la segmentation d'images. [6][7][8] Dans cet article, nous proposons une méthode de détection et de suivi des contours dans une séquence d images. Elle est basée sur le modèle du contour actif. Alors, notre papier est organisé comme suit : Dans la section 2, on présente en détail le contour

actif. Après, on décrit dans la section 3 notre approche proposée. Quelques résultats pratiques sont présentés dans la section 4. 2 Contour actif Les contours actifs sont définis par une courbe paramétrique pouvant être fermée ou non. Un snake consiste à placer aux alentours de la forme à détecter une ligne initiale de contour. Cette ligne va se déformer progressivement selon l'action de plusieurs forces qui vont la tirer ou la pousser vers la forme. Ces forces sont représentées par trois énergies associées au snake [3] : Une énergie propre, due uniquement à la forme du contour, dite énergie interne. Une énergie potentielle imposée par l'image dite énergie externe. C'est elle qui va attirer la ligne du snake vers les contours réels présents sur l'image Une énergie de contexte qui exprime certaines contraintes supplémentaires qui peuvent être imposées par l'utilisateur vu le snake qu'il veut obtenir. Puisque le snake peut former un graphe composé, nous pouvons le représenter sous forme paramétrique [7] par: V : = [0,1] R 2 Le contour actif peut être décrit par une courbe C, fonction du temps t et de l'abscisse curviligne s par la formule 1 suivante : C = { v(s, t) = (x(s, t), y(s, t)) / s є [a,b] et t є [0,T] } (1) (voir Fig. 1, Où a et b représentent les extrémités du snake) Fig. 1. La courbe C Donc, le contour actif est formé d'une série de points mobiles et répartis sur une courbe en deux dimensions. La courbe est placée dans la zone d'intérêt de l'image ou autour d'un objet. Plusieurs équations décrivent son évolution : la courbe se déplace et épouse lentement les contours des objets en fonction de divers paramètres comme l'élasticité, la tolérance au bruit, etc. Cette dynamique est basée sur la notion d'énergies interne et externe, le but étant de minimiser l'énergie totale présente le long de la courbe. Des contraintes permettent de conserver une courbe lisse avec des points équidistants tout en laissant un certain champ libre pour les déformations (voir Fig. 2).

Courbe initiale Courbe à l instant t Courbe à l instant t+1 Objet à détecter Fig. 2. Evolution du contour actif 2.1 Energies La fonctionnelle d'énergie attachée au contour est composée de trois types d énergies : énergie interne, énergie externe et énergie du contexte. ϕ(v) : v E interne (v) + E externe (v) + E contexte (v) (2) Energie interne Les énergies internes gèrent la cohérence de la courbe. Elles définissent la raideur de la courbe et la cohésion des points. Alors, elle est intrinsèque au snake. L'énergie interne est calculée à partir de deux forces appelées continuité et courbure : E interne = E continuité + E courbure (3) La force de continuité influe sur le rayon de courbure du contour en conduisant les points du contour à se positionner de manière à être équidistants. La deuxième force utilisée pour l'énergie interne est celle de courbure. Son but est d'éviter que le contour contienne des points isolés qui ne seraient pas cohérents avec la forme. Energie externe Les énergies externes prennent en compte les caractéristiques des images traitées. Parmi les énergies externes existantes, nous citons l énergie de gradient (la dérivée première de l'image). Cette énergie externe est d'une importance première pour la détection du contour. En effet, un contour est généralement caractérisé par une forte différence entre les valeurs de plusieurs pixels.

Energie de contexte L énergie de contexte, permet d'introduire des connaissances a priori sur ce que nous cherchons. Entre autres, nous introduisons l'énergie ballon introduite par Laurent D. Cohen [9]. L'énergie de Ballon est l'énergie qui décide du sens de propagation du contour actif. Un coefficient d'énergie de ballon positif va concentrer le snake, alors qu'un coefficient négatif va rendre le snake expansif. C'est à partir de ces différentes énergies et de leur combinaison que l'on peut définir un problème dont la solution est le contour recherché. La mise en œuvre d'une telle approche a donné lieu à de nombreuses implémentations. Parmi ces implémentations les plus utilisées, on trouve l algorithme glouton ou l algorithme de Greedy proposé par Williams et Shah [10]. 3. Description de l'approche proposée Les étapes de la méthode proposée peuvent être schématisées par la figure 3 : 3.1 Prétraitement de la séquence C'est une étape nécessaire qui permet de réduire l'effet du bruit présent dans la plupart des images médicales. Ce prétraitement dépend du type de la séquence utilisé et de l'effet de bruit. 3.2 Initialisation du snake dans la première image On initialise notre contour actif à l intérieur de l objet ou de telle sorte qu il englobe l objet dont on veut détecter ses contours. Ce contour actif est composé d'un ensemble des points (snaxels), et il est initialisé sous forme d'un cercle (voir la figure 4 ). Pour cela, on doit initialiser seulement le centre du cercle et son rayon. Les coordonnées du snaxels sont calculées par la formule (4) suivante : où x i = x c r * sin (2πi/N) y i = y c r * cos (2πi/N) x i, y i les coordonnées du point i du snake x c, y c les coordonnées du centre de cercle r le rayon du cercle N le nombre des points du snake pour i=0..n-1 (4)

Début Prétraitement de la séquence d'images Initialisation du snake dans la première image de la séquence Minimisation d'énergies et déplacement des points de snake Initialisation automatique de snake dans l'image suivante Non Stabilité des points de snake Objet détecté Oui Dernière image de la séquence? Non Oui Fin Fig. 3. Etapes de l'approche proposée

Fig. 4. Les deux cas d initialisation du snake 3.3 Contour actif utilisé : Comme on a décrit dans la section 2, nous avons utilisé le modèle paramétrique. Notre fonctionnelle d'énergies est donnée par la formule (5) suivante : Etotale =Σ i=1,n ( a Econtinuité (Pi) + b Ecourbure (Pi) + c Egradient(Pi) + d Eballon(Pi)) P i = t ( x i, y i ) i=1..n les points du snake a, b, c et d sont coefficients attribués à chaque énergie. Ces énergies sont déterminées comme suit : (5) Energie de continuité L'énergie de continuité est définie par la formule (6) suivante : E 2 2 continuité ( Pi ) = dis tance _ moyenne ( xi xi 1 ) + ( yi yi 1) (6) Où distance_moyenne est la moyenne des distances entre deux points successives du contour actif. Il est clair que si on minimise cette énergie, le point P i doit se positionner à une distance égale à distance_moyenne du point P i-1. Energie courbure L'énergie de courbure est donnée par la formule (7) suivante E 2 2 courbure ( Pi ) = ( xi 1 2xi + xi+ 1) + ( yi 1 2yi + yi+ 1) (7)

Energie de gradient Elle est estimée en se basant sur le gradient de Sobel. Notons que d'autres méthodes d'estimations ont été testées pour évaluer cette énergie. Energie de ballon L'énergie d'un voisin v j = t (x v, y v )du point du snake P i est estimée, dans ce travail, par la formule (8) suivante : E ballon = (x v x c )*( x v x i ) + (y v y c )*( y v y i ) (8) Où ( x c, y c ) représentent les coordonnées du barycentre de snake. Algorithme de minimisation Pour chaque point P i, on choisit un nombre de voisins pour lesquels on va calculer l'énergie; le point se déplacera alors sur le voisin possèdant l'énergie la plus faible. On cherche donc l'ensemble des points pour laquelle l'énergie est minimale. Notre algorithme de minimisation est donné comme suit : Algorithme 1 : Algorithme de Greedy Début Répéter pour tous les points du snake faire pour tous les points du voisinage faire Calculer les énergies Fin pour pour tous les points du voisinage faire Normalisation Fin pour Jusqu'au Critère d'arrêt Fin Minimiser pour obtenir le nouveau point Fin pour Le critère d'arrêt dans cet algorithme est la stabilité des points du snake (citée dans la figure 3 ). Il est représenté par le pourcentage du nombre des points qui ne bougent pas pendant un certain nombre d'itérations. Après l'arrêt du mouvement du snake, normalement les contours de l'objet sont bien détectés dans l' image courante, alors on doit traiter l'image suivante afin de suivre cet objet.

3.4 Initialisation automatique de snake dans l'image suivante Après la détection des contours de l'objet dans la première image, une étape de suivi de cet objet est lancée dans les images ultérieures. Comme le montre la figure 3, les traitements de toutes les autres images sont identiques à ceux de la première sauf l'initialisation manuelle du snake. Cette initialisation manuelle est remplacée par une initialisation automatique qui utilise des informations obtenues à partir des traitements précédents. Pour cela, le barycentre de notre objet ( c'est le barycentre du contour actif final dans l'image précédente) est calculé. Il représente, dans l'image courante, le centre du cercle d'initialisation du snake (voir la figure 5). Dans cette initialisation, on garde les autre propriétés utilisées dans la première initialisation, c-à-d la forme du snake initial dans l'image courante (un cercle), le rayon du cercle d'initialisation et la position de ce snake initial par rapport à l'objet à suivre (l'intérieur ou alentour de l'objet, comme il est présenté dans la figure 4 précédente) (a) (b) (c) Fig. 5. Initialisation automatique du snake dans la deuxième image a) Initialisation manuelle du snake dans la première image de la séquence, (xc, yc )=(58,74) & rayon = 15 b) Snake final dans la première image (objet détecté) : barycentre égale (67,74) c) Initialisation du snake dans l'image suivante de la séquence (xc, yc )=(67,74) & rayon=15 4 Résultats pratiques & discussions: On présente dans cette section, quelques résultats obtenus, afin de valider notre approche proposée. On présente ici trois types de séquences d'images : une séquences d'images synthétiques, une séquence d'images d'une cellule biologique en mouvement et une séquence d'images échocardiographiques. Dans tous les tests présentés, nous avons utilisé un voisinage de 3x3. Le critère de stabilité (de la figure 3) ou bien le critère d arrêt d algorithme de greedy (voir l'algorithme 1) est la stabilité de 90% des points du snake. On a limité les résultats présentés à huit images pour chaque séquence. Les différents paramètres sont résumés dans la table 1 et les résultats obtenus sont illustrés par les figures 6, 7 et 8.

Table 1. Les différents paramètres des tests Paramètres Séquence Séquence synthétique Séquence biologique Séquence échocardiographique Coefficients d'énergies (a,b,c,d) Nombre des points du snake Centre & rayon du snake initiale (1, 0.15, 1, -0.1) (1, 0.12, 1, 0.1) (0.8, 0.14, 1, -0.1) 40 40 20 (80,80) & 20 (174,125) & 70 (170,166) &15 Fig. 6. Résultats de la séquence synthétique

Fig. 7. Résultats de la séquence biologique Fig. 8. Résultats de la séquence échocardiographique

Nous remarquons que dans la séquence synthétique, on a obtenu un très bon résultat de détection et de suivi de l'objet : une stabilité totale des 40 points du snake après 59 itérations, au maximum, de l'algorithme 1 dans toutes les images. C'est une conséquence de la simplicité de la séquence et de l'absence de bruit. En plus, L'effet du coefficient élevé de la continuité est très clair dans les résultats : l'équidistance entre les 40 points est bien respecté. Dans la deuxième séquence (la cellule en mouvement), nous avons pris presque les mêmes paramètres. (Le signe de coefficient de ballon suivre la position initiale du snake illustrée par la figure 4 ). On est arrivé à bien suivre la cellule. Mais une petite comparaison entre les résultats de la première séquence (synthétique) et la deuxième (biologique) montre les différences entre ces deux résultats. La stabilité n'est pas totale dans la séquence biologique ( 90% choisi ). Ceci est dû à la présence du bruit dans cette séquence biologique réelle malgré les prétraitements qui ne peuvent pas supprimer tous les effets de bruit ; On remarque la présence des fausses régions aux alentours des cellules. Dans la séquence échocardiographique, le nombre des points choisi égale la moitié de ceux des deux tests précédents (20 points). Nous avons fait ce choix pour réduire le temps de calcul et d'optimisation de la fonctionnelle d'énergies parce que ces images restent plus bruitées par rapport aux précédentes quelque soit le prétraitement choisi. Ces difficultés justifient la présence de deux à trois points du snake qui ne sont pas bien placés. Malgré ça, on peut dire que la détection et le suivi obtenus sont assez satisfaisants pour ce type d'images. 5 Conclusion et perspectives Dans ce travail, nous avons présenté notre approche de détection de contours et de suivi d'objet basée sur le modèle du contour actif. Après la première initialisation, on détecte les contours et on exploite ce résultat pour initialiser automatiquement notre snake dans l'image suivante. Cela nous permet de suivre l'objet détecté. Cette approche a été testée sur trois types de séquence : synthétique, biologique et échocardiographique. Le travail est loin d'être achevé, comme perspective, on envisage de réduire le temps de suivi. Après la détection, au lieu de réinitialiser le contour actif et de répéter les mêmes traitements (de l'algorithme 1) nous prévoyons l'utilisation de l'information du mouvement. Alors, On essaye de suivre les points du snake directement après la détection au lieu de faire un retour à l'intérieur ou à l'extérieur de l'objet pendant l'initialisation automatique. Cela va réduire d'une manière considérable le temps de suivi car au lieu de déplacer chaque point du snake 40 où 50 fois dans l'algorithme de greedy, on le déplace deux où trois fois seulement (selon la rapidité de l'objet à suivre). Remerciements. Les auteurs tiennent à remercier H. meddeber et K. Arabi pour avoir contribuer à l'implémentation de cette approche.

Références [1] D.J. Burr Elastic Matching of line drawings, IEEE transaction on Pattern analysis and machine intelligence, vol. 3, n 6, pp 708-713, novembre 1981. [2] M. kass, A. Witkin et D. Terzopoulos : Snakes : Active contour models. International journal of computer vision, vol. 55, pp 321-331, 1988 [3] J. Rousselle : Les contours actifs, une méthode de segmentation. Application à l imagerie médicale. Thèse de doctorat, Université de François Rabelais de Tours, Soutenue le 9 juillet 2003. [4] T. McInerney et D. Terzopoulos : Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, 1(2), pp 91 108, 1996 [5] L. He et al. : A comparative study of deformable contour methods on medical image segmentation. Image and Vision Computing 26, pp 141 163, 2008 [6] H. Chang et D. J. Valentino : An electrostatic deformable model for medical image segmentation. Computerized Medical Imaging and Graphics 32, pp 22 35, 2008 [7] P. Delmas : Extraction des contours de lèvres d un visage parlant par contours actifs. Thèse de doctorat de l Institut Polytechnique de Grenoble, 2000 [8] J. Xu, O. Chutatape et P. Chew : Automated Optic Disk Boundary Detection by Modified Active Contour Model. IEEE Transaction on biomedical engineering, vol. 54, N. 3, pp 473-482, MARCH 2007 [9] L. Cohen : On active contour models and balloons. Computer vision, graphic, and image processing : Image Understanding, Vol. 53, N 2, pp 211-218, Mars 1991. [10] D. Williams et M. Sham : A fast algorithm for active contour and curvature estimation. Computer vision graphic image process : Image understanding, vol. 55, n 1, pp 14-26, 1992.