F N F > I. + Alimentation. Courant (I) et tension (U) continus. Le couple utile (Cu) et la fréquence de rotation (ω) 1 PRÉSENTATION 3 SYMBOLE

Documents pareils
Electrotechnique. Fabrice Sincère ; version

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Cahier technique n 207

Electrotechnique: Electricité Avion,

M HAMED EL GADDAB & MONGI SLIM

Electricité Générale

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Sujet. calculatrice: autorisée durée: 4 heures

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

NO-BREAK KS. Système UPS dynamique PRÉSENTATION

Les schémas électriques normalisés

Relais d'arrêt d'urgence, protecteurs mobiles

Références pour la commande

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

INSTALLATIONS INDUSTRIELLES

DISQUE DUR. Figure 1 Disque dur ouvert

Systèmes de distributeurs Systèmes de distributeur selon la norme ISO , taille 2, série 581. Caractéristiques techniques

L exclusion mutuelle distribuée

Multichronomètre SA10 Présentation générale

Programmation linéaire

Machine à courant continu

COMMANDER la puissance par MODULATION COMMUNIQUER

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

CHARGE ACTIVE. Banc d'essais de machines tournantes. Notice d'instruction. Cette notice doit être transmise. à l'utilisateur final

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Test : principe fondamental de la dynamique et aspect énergétique

PRINCIPE, REGULATION et RECHERCHE de PANNES

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

Chapitre 02. La lumière des étoiles. Exercices :

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CONTRÔLE DE BALISES TYPE TB-3 MANUEL D'INSTRUCTIONS. ( Cod ) (M H) ( M / 99G ) (c) CIRCUTOR S.A.

Système M-Bus NIEVEAU TERRAIN NIVEAU AUTOMATION NIVEAU GESTION. Domaines d'application

Les résistances de point neutre

MATIE RE DU COURS DE PHYSIQUE

DYNTEST AML (Alarme/Moniteur/Logger) Surveillance du filtre à particules

Caractéristiques techniques

Relais statiques SOLITRON MIDI, Commutation analogique, Multi Fonctions RJ1P

Relais d'arrêt d'urgence, protecteurs mobiles

Charges électriques - Courant électrique

CONCOURS COMMUNS POLYTECHNIQUES

Physique : Thermodynamique

CONSTRUCTION D UN CHAUFFE EAU SOLAIRE

4.14 Influence de la température sur les résistances

TPG 12 - Spectrophotométrie

«LES ALTERNATEURS DE VOITURES»

UNIVERSITE D'ORLEANS ISSOUDUN CHATEAUROUX

LES CAPTEURS TOUT OU RIEN

K16 CARACTERISTIQUES GENERALES PUISSANCES ENCOMBREMENT VERSION COMPACT ENCOMBREMENT VERSION INSONORISEE DEFINITION DES PUISSANCES

ELEC2753 Electrotechnique examen du 11/06/2012

Les puissances La notion de puissance La puissance c est l énergie pendant une seconde CHAPITRE

DETERMINATION DE LA CONCENTRATION D UNE SOLUTION COLOREE

500 W sur 13cm avec les modules PowerWave

Catalogue de machines. CNC-Carolo. Edition de juillet 2011

RELAIS STATIQUE. Tension commutée

Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Remplacement de composants de régulateurs RETROFIT

Equipement d un forage d eau potable

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

TP 3 diffusion à travers une membrane

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

véhicule hybride (première

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Magnum vous présente ses nouvelles gammes d'armoires électriques. Gamme Auto de 125A à 400A

TP 7 : oscillateur de torsion

CHAÎNES ÉNERGÉTIQUES I CHAÎNES ÉNERGÉTIQUES. II PUISSANCE ET ÉNERGIE

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

CIRCUIT DE CHARGE BOSCH

S20. Balayeuse autoportée compacte. De taille compacte, sans faire de concession en termes de performance et de fiablilité

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Multitension Monofonction. Multitension Multifonction

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1

Comment suivre l évolution d une transformation chimique? + S 2 O 8 = I SO 4

Centre de tournage. et de fraisage CNC TNX65/42

ventilation Caisson de ventilation : MV

Electricité. Electrostatique

Nouveautés ligne EROUND

Réseau électrique. Le transport de l énergie électrique depuis la centrale électrique jusqu à la maison de Monsieur Toulemonde

Vannes PN16 progressives avec corps en acier inox et

Solutions pour la mesure. de courant et d énergie

Choix du régime de travail. Module 1. Module d information. Code de sécurité des travaux Chapitre Postes. Activité 1 - Domaine d'application

Identifier les défauts du moteur à travers l analyse de la zone de défaut par Noah P.Bethel, PdMA Corporation.

CRM. Registre d équilibrage et de mesure du débit, classe d étanchéité 0 ou 4.

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

CESAB P200 1,4-2,5 t. Transpalettes accompagnant. Spécifications techniques. another way

CHARGEUSES COMPACTES À PNEU

COB supports pour connecteurs multibroches

Driver de moteurs pas-à-pas DM432C

CH 11: PUIssance et Énergie électrique

Savoir lire une carte, se situer et s orienter en randonnée

Louis-Philippe Gagnon Auditeur De Système D Alarme LABORATOIRES DES ASSUREURS DU CANADA 12 Novembre, 2014

Caractéristiques techniques

Chapitre 1 - Les circuits électriques

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

Transcription:

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéristique couple/vitesse de pente importante, ce qui permet de vaincre un couple résistant élevé et d'absorber les à coups de charge : la vitesse du moteur s'adapte à sa charge. D'autre part, la miniaturisation recherchée par les concepteurs trouve dans le moteur à courant continu une solution idéale, car il présente un encombrement réduit grâce à un bon rendement. Le moteur à courant continu est utilisé quand on dispose d'une source d'alimentation continue (batterie par ex). Il se caractérise par des lois de fonctionnement linéaires qui rendent l'exploitation de ses caractéristiques faciles d'emploi. Exemple d'un moteur à courant continu : - Puissance utile : 55 W. - Poids : 300 g. - Longueur : 83 mm. - Diamètre : 47 mm. 3 SYMBOLE M 4 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 4.1 PRINCIPE DE FONCTIONNEMENT Le schéma de principe donné ci-après pour une spire permet de comprendre le fonctionnement d'un moteur à courant continu : B > 2 IDENTIFICATION DE LA FONCTION TECHNIQUE RÉALISÉE Les moteurs à courant continu réalisent la fonction CONVERTIR de la chaîne d'énergie : Grandeurs physiques à acquérir Chaîne d'information S F > I > F N ACQUERIR TRAITER COMMUNIQUER Consignes Ordres Frottement entre balais et collecteur + Alimentation Energie d'entrée ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE Puissance électrique Chaîne d'énergie La puissance absorbée est de type électrique caractérisée par : Courant (I) et tension (U) continus. Puissance mécanique La puissance utilisable est de type mécanique (rotation) caractérisée par : Le couple utile (Cu) et la fréquence de rotation (ω) ACTION Les pôles Nord et Sud des aimants permanents créent un flux (champ magnétique ) dans le moteur. La spire est alimentée et plongée dans ce flux. Elle est soumise à un couple de forces (force de Laplace). Le moteur se met en rotation. On dit qu'il y a création d'un couple moteur. Les points représentent les balais (solidaires de la carcasse) qui frottent sur le collecteur. Compte tenu de la disposition des balais et du collecteur, le sens du courant I dans la spire change à chaque demi-tour, ce qui permet de conserver le même sens de rotation (sinon, la spire resterait en position d'équilibre). En permutant les fils d'alimentation du moteur le courant dans la spire est inversé. Le couple qui s'applique est alors de sens contraire au précédent : le moteur change de sens de rotation. Par nature, le moteur à courant continu est un moteur à deux sens de rotation.

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 2 / 6 4.2 CONSTITUTION D'UN MOTEUR À COURANT CONTINU 4.3.2 FORCE ÉLECTROMOTRICE (FEM) E Dans chaque spire alimentée, il se crée une force électromotrice. On définit E la somme de toutes les forces électromotrices des spires. Cette f.e.m est proportionnelle à la vitesse de rotation : E = k ω - E : force électromotrice en V - k : constante de couple en V/rad.s -1 - ω : vitesse angulaire en rad/s Cas particulier, au moment du démarrage : La vitesse est nulle, la FEM E est nulle aussi. k est une constante qui dépend du nombre de spires et du nombre de pôles de l'inducteur. Elle peut être exprimée en N.m/A ou en V/rad.s -1 4.3.3 COUPLE ÉLECTROMAGNÉTIQUE Ce Le couple électromagnétique Ce est proportionnel au courant dans le moteur : Le moteur est constitué d'une partie fixe : le stator (ou inducteur) et d'une partie tournante : le rotor (aussi appelé induit). Le stator est formé d'une carcasse métallique et d'un ou plusieurs aimants créant un champ magnétique à l'intérieur du stator. Il porte également la partie porte-balais et balais qui assure les contacts électriques avec le rotor. Le rotor est constitué d'une carcasse métallique. Il porte dans ses encoches les spires (faisceaux de fils ou bobines) reliées entre elles au niveau du collecteur. Le collecteur est une bague constituée de plusieurs lamelles en cuivre qui frottent sur les balais pour alimenter les bobines. Dès que le rotor se met à tourner, les balais changent de lame de collecteur (pour que le moment du couple de force produit soit toujours maximum). 4.3 DÉFINITIONS / RELATIONS 4.3.1 FRÉQUENCE DE ROTATION, VITESSE ANGULAIRE La fréquence de rotation N de l'arbre moteur est liée à la vitesse angulaire ω : ω = N 2 π 60 - N : fréquence de rotation en tr/min - ω : vitesse angulaire en rad/s Ce = k - Ce : couple électromagnétique en N.m - k : constante de couple en N.m/A - : courant dans l'induit du moteur en A Attention : Le couple électromagnétique Ce n'est égal au couple utile disponible sur l'arbre moteur Cu que si la pertes constantes (pertes par frottement et pertes magnétiques) sont négligées. 4.3.4 SCHÉMA ÉQUIVALENT I Le schéma électrique équivalent permet de modéliser l'induit du moteur : Um R E (fem) A partir du schéma équivalent, on établit l'équation électrique : Um = E + R - Um : tension aux bornes du moteur en V - E : Force électromotrice en V - R : Résistance d'induit en Ω - : courant dans l'induit en A

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 3 / 6 4.4 BILAN DES PUISSANCES / RENDEMENT 4.4.1 PUISSANCE UTILE Pu N (tr/min) 7000 Fréquence de rotation Rendement η 70% C'est la puissance mécanique produite par le moteur pour entraîner la charge : 6000 Pu = Cu ω - Pu : puissance utile en W - Cu : couple utile en N.m - ω : vitesse angulaire en rd/s 5000 4000 3000 Cas particulier, à vide : La puissance utile Pu est nulle. 4.4.2 PUISSANCE ABSBORBÉE PAR LE MOTEUR Pa 4.4.3 PERTES Pa = Um Pertes joules Pj, puissance dissipée par effet joule : Pj = R 2 - Pa : puissance absorbée en W - Um : tension aux bornes de l'induit en V - : courant dans l'induit en A 2000 1000 P (W) 500 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Couple (N.m) Le couple fourni par le moteur et sa fréquence de rotation sont dépendants. cette caractéristique est linéaire. Elle permet de connaître la vitesse à vide et le couple de démarrage du moteur. Pertes constantes Pc : ces pertes sont la somme des pertes mécaniques (puissance perdue par frottement) et magnétiques (saturation magnétique et courant de Foucault). Ces pertes peuvent se déterminer à vide. 400 Puissance électrique (Pa) 4.4.4 RENDEMENT η 300 Puissance mécanique (Pu) η Pu Cu = = ω Pa Um Pu = Pa - Pj - Pc 200 100 4.5 COURBES CARACTÉRISTIQUES On donne ci-contre, les courbes caractéristiques d'un moteur à courant continu (Johnson Electric HC971 utilisé pour une tondeuse électrique). Les grandeurs : fréquence de rotation, rendement, puissance électrique et puissance mécanique sont données en fonction du couple résistant sur l'arbre moteur pour une tension d'alimentation constante. 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 La Puissance utile se déduit de la courbe vitesse-couple du moteur. Les caractéristiques nominales du moteur sont définies pour ηmax. Couple (Nm) La puissance absorbée augmente avec le couple car I est proportionnel à C.

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT 4.6 MODES DE FONCTIONNEMENT page 4 / 6 5.1 CONSTITUTION D'UN RÉDUCTEUR Un moteur à courant continu est réversible : il peut fonctionner en génératrice. En faisant tourner le rotor du moteur sous l'action d'une force extérieure, on récupère une puissance électrique aux bornes des spires de l'induit du moteur (dynamo). Les dessins suivants illustrent les différents modes de fonctionnement du moteur (fonctionnement dans les quatre quadrants) : 5.2 RAPPORT DE RÉDUCTION R Dans les quadrants 1 et 3 : fonctionnement en moteur C'est le rapport entre la fréquence de rotation Nr en sortie du réducteur et la fréquence de rotation du moteur Nm : (le moteur fournit une puissance mécanique). Dans les quadrants 2 et 4 : fonctionnement en freinage ou génératrice. (le moteur absorbe une puissance mécanique). 5 ASSOCIATION MOTEUR + RÉDUCTEUR Les moteurs à courant continu sont construits pour fonctionner en permanence à une vitesse proche de leur vitesse à vide. Pour la plupart des applications, cette vitesse est trop élevée. Pour la réduire, un réducteur mécanique est associé au moteur et l'ensemble ainsi constitué est nommé motoréducteur. Les constructeurs proposent généralement une gamme de motoréducteurs dotés chacun d'une série de rapports, ce qui permet de couvrir une multitude d'applications. R= Nr Nm - R : rapport de réduction - Nr : fréquence en sortie du réducteur - Nm : fréquence de rotation du moteur Pour éviter d'avoir à manipuler des nombres inférieurs à 1, l'usage veut que quand on parle du rapport de réduction d'un réducteur, on emploie le nombre 1/R. Le fait que ce soit un réducteur et non un multiplicateur lève toute ambiguité sur la signification du nombre employé. 5.3 CHOIX D'UN MOTORÉDUCTEUR En fonction de la fréquence de rotation recherchée, on opte pour un moteur direct ou un motoréducteur : - fréquence de rotation de1000 à 5000 tr/min moteur direct ; - fréquence de rotation inférieure à 1000 tr/min motoréducteur. 5.3.1 CHOIX DU MOTEUR La partie moteur est choisie en fonction de la puissance utile nécessaire pour l'application. Le motoréducteur doit posséder une puissance utile supérieure ou égale à la puissance voulue. Ce choix s'effectue en vérifiant que le point de fonctionnement (couple et fréquence de rotation en sortie du motoréducteur) se trouve en dessous de la caractéristique nominale du motoréducteur choisi. 5.3.2 CHOIX DU RAPPORT DE RÉDUCTION Le principal critère de choix ne fait intervenir que la fréquence de rotation souhaitée en sortie du réducteur. Il satisfait à la majorité des applications rencontrées.

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 5 / 6 6 APPLICATIONS 6.1 DÉTERMINATION DES CARACTÉRISTIQUES TECHNIQUES D'UN MOTEUR À PARTIR DES COURBES On souhaite déterminer les caractéristiques techniques principales du moteur à courant continu Johnson Electric HC971 à partir des courbes de fonctionnement données page 3. 6.1.1 CARACTÉRISTIQUE COUPLE-VITESSE Repérer sur la courbe la vitesse de rotation à vide No du moteur. Donner sa valeur : No = 6200 tr/min 6A 5A 4A 3A 2A (1) (3) Repérer sur la courbe le couple de démarrage Cmax du moteur. Donner sa valeur : Cmax = 0,62 N.m 1A 0A (2) (2) 6.1.2 CARACTÉRISTIQUES NOMINALES DU MOTEUR (AU RENDEMENT MAX) Repérer les courbes le point de fonctionnement nominal. compléter le tableau suivant en donnant la valeur nominale de chacune des caractéristiques : Vitesse de rotation (tr/min) 5 100 Couple utile (N.m) 0,1 Puissance utile (W) 55 Puissance absorbée (W) 90 Rendement (%) 62 6.2 IDENTIFICATION DES PHASES DE FONCTIONNEMENT D'UN MOTEUR Le graphe ci-contre donne la valeur du courant lors des différentes phases de fonctionnement d'un moteur d'entraînement d'une broche de machine à graver. Repérer sur le graphes les différentes phases : - démarrage (1) ; - fonctionnement à vide (2) ; - usinage (3) ; - freinage (4). 6.3 DÉTERMINATION DES ÉLÉMENTS DU MODÈLE ÉQUIVALENT AU MOTEUR Le moteur utilisé dans l'exercice 4.2 est alimenté sous une tension continue de 24V. 6.3.1 VALEURS DU COURANT POUR LES DIFFÉRENTES PHASES En utilisant le graphe ci-dessus, déterminer : - Id, la valeur du courant de démarrage. Id = - Io, le courant absorbé à vide. Io = -, le courant en phase d'usinage. = 6 A 0,5 A 1,7 A (4)

COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 6 / 6 6.3.2 CALCUL DES ÉLÉMENTS DU MODÈLE ÉQUIVALENT On rappelle le schéma électrique équivalent au moteur : Um R E (fem) 6.3.4 CALCUL DU RENDEMENT DU MOTEUR On donne la valeur des pertes constantes : Pc = 8 W Calculer la puissance utile Pu : Pu = Pa - Pc - Pj = 24 x 1,7-8 - 4 x 1,7 2 Pu = 40,8-8 - 11,6 = 21,2 W Quelle est la valeur de la fem E du moteur au moment du démarrage (justifier la réponse) : E = k. Au démarrage, la vitesse est nulle donc E = 0 A l'aide du résultat précédent et des valeurs trouvées à la question 1, calculer R la résistance d'induit du moteur (présenter le détail des calculs) : U = E + R I U = R. I R = U R = 24 = 4 Ω I 6 6.3.3 CALCUL DE LA VITESSE DE ROTATION DU MOTEUR La constante de couple k vaut 0,0527 Nm/A. Elle peut aussi être exprimée en V/rad.s -1. Calculer la valeur de la fem E lors de la phase d'usinage : U = E + R I E = U - R. I E = 24-4. 1,7 = 17,2V Calculer la vitesse de rotation du moteur (en tr/min) lors de la phase d'usinage : E = k. ω = E k = 326 rd/s 326. 60 ω N = 2 π = 3116 tr/min Calculer le rendement η du moteur : η = Pu = 21,2 = 52 % Pa 40,8 6.4 CHOIX D'UN MOTORÉDUCTEUR Soit le système à tapis roulant suivant : L'arbre de sortie du motoréducteur est solidaire de l'axe de la roue entraîneuse. Le tapis doit avancer à une vitesse de 0,5 m/s. Calculer la vitesse de rotation Nr en sortie du motoréducteur en tr/min : V = r. ω ω = V r Nr = 10. 60 2 π = 95 tr/min = 10 rd/s r = 5cm On utilise un moteur RE 540/1 (doc. page 4) ayant une vitesse de rotation de 13360 tr/min auquel on associe un réducteur. Calculer le rapport de réduction R que doit avoir ce réducteur : Nr R = R = 95 = 0,007 Nm 13360 Le rapport de réduction (1/R) sera de 140 Choisir le rapport de réduction adapté parmi ceux disponibles (page 4) : On prendra le motoréducteur ayant le rapport de réduction de 148