DOSSIER LA MESURE DU TEMPS

Documents pareils
HORLOGE ET MONTRE IN SITU : MÉCANIQUE 2

HISTOIRE LES GRANDES DATES DE L'HORLOGERIE

La Mesure du Temps. et Temps Solaire Moyen H m.

CALIBRES OMEGA CO-AXIAL DESCRIPTION ECHAPPEMENT CO-AXIAL REGLAGE OMEGA

La mesure du temps. séance 1 Les calendriers. séance 2 Je me repère dans la ronde des mois et des saisons.

MESURE DE LA MASSE DE LA TERRE

Celestia. 1. Introduction à Celestia (2/7) 1. Introduction à Celestia (1/7) Université du Temps Libre - 08 avril 2008

Le second nuage : questions autour de la lumière

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

Chapitre 02. La lumière des étoiles. Exercices :

TP 7 : oscillateur de torsion

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Huygens et le ressort spiral Fiche professeur

FORMATION DES PERSONNES-RESSOURCES EN SCIENCE ET TECHNOLOGIE LE CYCLE DU JOUR ET DE LA NUIT (CYCLE DIURNE)

Rayonnements dans l univers

TP 03 B : Mesure d une vitesse par effet Doppler

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

LA MESURE DE LA PRESSION

Principes généraux de la modélisation de la dispersion atmosphérique

Savoir lire une carte, se situer et s orienter en randonnée

Le Soleil. Structure, données astronomiques, insolation.

Caractéristiques des ondes

- affichage digital - aiguille

Chapitre 2 Caractéristiques des ondes


TEMPÉRATURE DE SURFACE D'UNE ÉTOILE

Application à l astrophysique ACTIVITE

Mesures et incertitudes

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Notes sur le temps en physique (classique)

Comprendre l Univers grâce aux messages de la lumière

METEOROLOGIE CAEA 1990

TSTI 2D CH X : Exemples de lois à densité 1

Fiche 2 Voici un tableau donnant les mesures du rythme cardiaque de trois personnes avant et après une activité sportive (footing ).

LE COSMODETECTEUR : UN EXEMPLE DE CHAÎNE DE MESURE

TP 2: LES SPECTRES, MESSAGES DE LA LUMIERE

Chapitre 7 - Relativité du mouvement

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

Oscillations libres des systèmes à deux degrés de liberté

Champ électromagnétique?

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

s a v o i r c o mprendre transmet tre

Objectifs pédagogiques : spectrophotomètre Décrire les procédures d entretien d un spectrophotomètre Savoir changer l ampoule d un

Magnitudes des étoiles

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Les mathématiques du XXe siècle

TP Détection d intrusion Sommaire

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

LP 01. Echelle et mesure des longueurs, de l atome aux galaxies

DIFFRACTion des ondes

C91/1 CHAPITRE 91 HORLOGERIE. Notes

L histoire de la Physique, d Aristote à nos jours: Evolution, Révolutions

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

Statistique : Résumé de cours et méthodes

LYCEE TECHNIQUE PIERRE EMILE MARTIN BOURGES ETUDE D UN TRAITEMENT DE SURFACE

Observer TP Ondes CELERITE DES ONDES SONORES

Le nouveau programme en quelques mots :

Résonance Magnétique Nucléaire : RMN

CARACTERISTIQUES: Le Poste de Température

Qu est-ce qui cause ces taches à la surface du Soleil?

ANALYSE SPECTRALE. monochromateur

GENERALITES SUR LA MESURE DE TEMPERATURE

METHODOLOGIE LE CAHIER EST UN OUTIL DE TRAVAIL, MIEUX IL SERA TENU, PLUS TU AURAS DE PLAISIR A L OUVRIR POUR RETRAVAILLER LE COURS

Correction ex feuille Etoiles-Spectres.

DYNAMIQUE DE FORMATION DES ÉTOILES

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Panneau solaire ALDEN

Systèmes de transmission

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Baccalauréat ES Amérique du Nord 4 juin 2008

DM 1 : Montre Autoquartz ETA

INTRODUCTION À LA SPECTROSCOPIE

Reverso Gyrotourbillon 2. Introduction 6-8. Le tourbillon sphérique. La quête de la précision. La réserve de marche. Décoration horlogère

Annexe commune aux séries ES, L et S : boîtes et quantiles

Notions de base sur l énergie solaire photovoltaïque

Le jour et ses divisions

Le satellite Gaia en mission d exploration

CLUB DE MARCHE Ballade et Randonnée

Document d Appui n 3.3. : Repérage ou positionnement par Global Positionning System G.P.S (extrait et adapté de CAMELEO 2001)

DÉCOUVREZ LA FABRICATION DES LEGENDAIRES MONTRES SUISSES

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

JUNGHANS DIE DEUTSCHE UHR

TD: Cadran solaire. 1 Position du problème

Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

DISQUE DUR. Figure 1 Disque dur ouvert

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

TABLE DES MATIÈRES. Page

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Rosemont- La Petite-Patrie. Îlots de chaleur urbains. Tout. savoir! ce qu il faut

Spectrophotométrie - Dilution 1 Dilution et facteur de dilution. 1.1 Mode opératoire :

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

Parcours Astronomie. Cher Terrien, bienvenue à la Cité des sciences et de l industrie! Voici tes missions :

Transcription:

Terminale S DOSSIER LA MESURE DU TEMPS Objectif : Extraire et exploiter des informations relatives à la mesure du temps pour justifier l évolution de la définition de la seconde et l utilisation des horloges atomiques

Le temps est une grandeur physique. De nos jours son unité légale est la seconde. Le temps est un phénomène périodique qui se reproduit identique à lui-même à intervalles de temps réguliers. C est dès la plus haute antiquité que l homme a senti le besoin de mesurer le temps ; cela a toujours été une des préoccupations majeures de l humanité dès qu elle réussit à organiser des institutions religieuses, sociales et économiques. Au début, on mesurait le temps à l aide des étoiles et des astres pour évaluer approximativement les différents moments de la journée. Depuis, l Homme invente continuellement des moyens précis pour se situer dans le temps. Afin d assurer leur bonne marche, il était indispensable que l écoulement du temps pût être déterminé et contrôlé. On établit alors des calendriers pour définir la succession des jours, des mois et des années, et l on inventa des systèmes variés pour diviser le temps compris dans une journée c est-à-dire entre le lever et le coucher du soleil. 1. Evolution historique de la définition de la seconde Trois définitions de la seconde se sont succédé, liées aux progrès des instruments de mesure du temps et à l évolution des besoins en précision. Date Avant 1956 Entre 1956 et 1967 Depuis 1967 Définition La seconde est égale à 1/86400 du jour solaire terrestre moyen Commentaire Le jour solaire fluctue, ce qui rend instable sa moyenne La seconde est égale à 1/31556925,9747 de l année tropique 1900, c est-à-dire la durée écoulée entre deux équinoxes de printemps en 1900 Cette échelle, très stable, fut rapidement supplantée La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre deux niveaux de l état fondamental de l atome de césium 133 Des horloges atomiques disséminées dans le monde entier donnent une référence universelle du temps 2. Les premiers instruments de mesure Le cadran solaire L extrémité de l ombre d un bâton planté verticalement parcourt un arc : on fabrique un instrument formé d une tige, et un cadran, horizontal ou vertical, sur lequel sont gravés des traits indiquant l heure. Le cadran solaire est considéré comme un des tout premiers objets utilisés par l homme pour mesurer l écoulement du temps. La première

«horloge», le gnomon, une sorte de cadran solaire rudimentaire, fut créée au IIIème millénaire avant J.C. Le cadran solaire le plus ancien est égyptien et date de 1500 avant JC. Ce système est connu dans toutes les civilisations, mais il est imprécis. La clepsydre Une clepsydre (étymologiquement, il s agit d une voleuse d eau) inventé par le grec Ctésibios, est un récipient percé dont de l eau s écoule. À l intérieur du récipient, des graduations permettent de mesurer des intervalles de temps, l heure était indiquée par le niveau d un flotteur. Parties d Égypte, en -1530 les clepsydres se sont répandues chez les Grecs à partir de la seconde moitié du Ve siècle avant J-C puis chez les Romains en 159 avant J-C. C est le cadran solaire qui a été utilisé pour les graduer. Ces horloges à eau furent les premiers réveils : elles étaient utilisées dans les monastères pour déclencher une sonnerie aux heures de prière. Les Grecs et les Romains l utilisaient pour limiter le temps de parole dans les tribunaux ou pour limiter des horaires dans les règlements concernant les services publics. Elle fut maintes fois perfectionnée jusqu au XVIIIe siècle pour donner naissance à de véritables horloges à eau. Le sablier Le premier sablier apparaît vers l an 1000, la légende raconte qu ils ont été inventés afin de limiter le temps de parole des orateurs trop bavards. Le sablier était peu pratique pour mesurer des longues durées car il fallait le retourner souvent, le bulbe rempli de sable qui était constitué de coquilles d œufs pulvérisées (car utiliser du vrai sable était trop grossier), est placée en haut et par l effet de la gravité, le sable s écoule lentement et régulièrement dans l autre. Une fois que tout le sable est dans le bulbe du bas, on peut retourner le sablier pour mesurer une autre période de temps Il est fiable, précis et peu coûteux ; c est l instrument le plus répandu du XIVe au XVIIIe siècle. Il est utilisé essentiellement pour des durées courtes (pour des fractions d heures) dans la marine. 3. Les horloges mécaniques Pour mesurer des durées plus petites, les dispositifs mécaniques perfectionnés à partir du XVII e siècle utilisent des oscillateurs mécaniques :

- des pendules pesants (balanciers) pour les horloges mécaniques - des systèmes masse-ressort dans les montres mécaniques - un cristal oscillant dans les montres à quartz. Mais les oscillateurs mécaniques sont soumis à la force des frottements, responsables de la dissipation de leur énergie mécanique au cours du temps, donc de la diminution de l amplitude de leurs oscillations. Il faut donc entretenir ces oscillations par un apport d énergie : il est nécessaire de prévoir un mécanisme d entretien des oscillations qui fournit de l énergie à l oscillateur mécanique. Les dissipations énergétiques que subit un pendule simple utilisé comme étalon de temps présentent un autre inconvénient : sa période T est légèrement différente de sa période propre T0. La variabilité des périodes d oscillations en fonction des conditions atmosphériques ou du lieu, l usure des mécanismes, rendent l utilisation de tels dispositifs incompatible avec un besoin de grande précision. Les montres à quartz commercialisées à partir des années 1960, utilisent des cristaux oscillant à 32 768 Hz et ne se décalent que d une seconde tous les six ans environ : en vieillissant, le quartz s abîme et change progressivement de fréquence d oscillation. 4. Les horloges atomiques

Qu est-ce-qu une horloge atomique? Quel est son principe de fonctionnement? Prenons l exemple de l horloge au césium sur laquelle s appuie la définition de la seconde. Cette horloge atomique comporte un oscillateur à quartz dont la fréquence f est contrôlée par un dispositif de régulation qui repère et corrige en temps réel les fluctuations de la fréquence afin que celle-ci soit stable et la plus exacte possible. Ce dispositif s appuie sur une transition électronique atomique du césium 133 entre deux états nommés ici E 1 et E 2 (voir document page suivante). C'est donc un oscillateur à quartz qui est à la base d'une horloge atomique à jet de césium, les atomes de césium n'étant là que pour contrôler et ajuster la fréquence du signal généré par le quartz : c'est un étalon passif. Qu apportent les horloges atomiques dans la mesure du temps? Il est difficile de réaliser deux horloges mécaniques ou deux horloges à quartz identiques car leur fréquence d oscillation dépend de leur géométrie (construction des balanciers, taille du quartz) : elles ne sont pas exactes. Par ailleurs la fréquence de ces horloges varie au cours du temps (modification de leur forme par l usure, changement de température) : de telles horloges manquent de stabilité. Pour l horloge atomique au césium, les atomes de césium 133 sont tous identiques, ils ont et gardent les mêmes propriétés (ils ne s usent pas). L énergie des photons émis lors de la transition est universelle et immuable comme la fréquence ν0= E 2-E 1 du rayonnement h électromagnétique associé. Ceci explique, en partie, l évolution de la précision entre les meilleures horloges atomiques au césium (10 ps/jour). Comment améliore-t-on la précision des horloges atomiques? Plusieurs voies sont explorées actuellement : - Augmenter la fréquence du rayonnement électromagnétique dans l horloge, en utilisant une fréquence proche du visible (f=10 15 Hz) au lieu de la fréquence microonde du césium (f=10 10 Hz). Ainsi, les horloges à atomes de strontium utilisent un rayonnement dans le rouge et les horloges à atomes de mercure un rayonnement dans l ultra violet ; - Augmenter la durée d interaction entre les atomes et le rayonnement car plus cette durée d interaction est longue, plus la précision est améliorée (la détection des atomes ayant subi la transition est améliorée)

5. Exemples de sujets L horloge à balancier En 1657, Huygens a dessiné la première horloge à balancier du monde, la faisant fabriquer par un horloger de La Hague. Après Galilée, Huygens a réalisé qu un pendule permet de mesurer le temps avec régularité, et serait donc plus fiable que les horloges existantes. Il y ajoute un dispositif constitué d une masse et d un système d engrenage pour entretenir les oscillations qui ont tendance à s amortir. Meilleur mathématicien que Galilée, Huygens a établi la formule d une oscillation complète: dans une horloge à balancier, la pseudo-période T 0 vérifie la relation T 0 = l 2. g Les horloges à balancier sont restées les plus précises du monde pendant presque 300 ans et ont changé la face de la science et de l astronomie en particulier. 1-1) Schématiser un pendule à l équilibre, représenter et nommer les forces appliquées. 1-2) Que peut-on dire de ces forces à l équilibre? Justifier. 1-3) Pseudo-période T 0 du pendule. 1-3-1) Que représente la grandeur l dans l expression de T 0? 1-3-2) Montrer que T 0 est homogène à un temps. 1-4) Expliquer la phrase «pour entretenir les oscillations qui ont tendance à s amortir». D après «le livre du temps» d Adam Hart-Davis Un pendule qui bat la seconde Des élèves d une terminale S procèdent à une série de mesures. Le protocole établi par les élèves est le suivant : «écarter le pendule de sa position d équilibre et faire osciller le pendule avec une amplitude initiale égale ou inférieure à 20 et sans vitesse initiale. A l aide d un chronomètre, mesurer la durée t de 10 oscillations» Les résultats expérimentaux et un traitement informatique conduisent à la courbe suivante : T 0 = f( l ). T 0 en s T (s) 1.2 1 0.8 0.6 0.4 0.2 0.1 0.2 0.3 0.4 0.5 0.6 a l en m 1/2

D après le «compte-rendu de TP» d un groupe de TS du lycée Flaubert Donnée : g = 9,8 m.s -2 2-1) Définir la période d un pendule. 2-2) Pourquoi est-il préférable de mesurer la durée de 10 oscillations? 2-3) A partir de la courbe obtenue, montrer que l expression théorique donnée par Huygens pour la période propre d un pendule est vérifiée. 2-4) Pour mesurer le temps, on utilise un pendule qui «bat la seconde». Quelle doit être la longueur du pendule utilisé? 2-5) Un élève reprend l expérience en écartant un pendule de longueur l = 20 cm d une amplitude initiale A mais en lui communiquant une vitesse va = 1,0 m.s -1. Le pendule atteint alors le point B avec une vitesse nulle. Les frottements sont supposés négligeables. 2-5-1) Etablir l expression de l altitude z en fonction de l et. 2-5-2) En déduire l expression de l énergie potentielle du pendule, le niveau de référence étant placé en O. 2-5-3) Donner l expression de l énergie mécanique du pendule. 2-5-4) En déduire l expression de l amplitude maximale B de ce pendule en fonction de l, g, A et B. Horloge et GPS Le GPS comprend une constellation de 24 satellites. A l aide d un calculateur électronique, à partir de l heure d émission et de l heure de réception, le système détermine la position de l utilisateur. Les horloges atomiques embarquées dans les satellites GPS sont extrêmement précises mais il faut cependant tenir compte de la dilatation des durées Si l on considère n importe quel phénomène se produisant dans le satellite en mouvement, sa durée telle qu elle est mesurée par l horloge du satellite est inférieure à la durée du même phénomène telle que la mesurent les horloges terrestres. C est la fameuse dilatation du temps prévue par la relativité restreinte. Ces satellites se déplacent à plus de 20 000 km d altitude, à la vitesse de 3 874 m.s -1. Leurs horloges retardent alors par rapport aux horloges terrestres de 7,1 s par jour ce qui correspondrait à une erreur de position de 2 km par jour si elle n était pas corrigée. D après Courty et Kierlik, «Connaître sa position, un problème de relativité». Données : - La relation entre durée propre tp et durée mesurée tm est : tm = tp - c = 3,00.10 8 m.s -1 avec 1 1 ( v c 2 ) 3-1) Expliquer brièvement ce qu est «la fameuse dilatation des temps prévue par la relativité restreinte».

On dispose de 2 horloges atomiques : l horloge 1 reste sur Terre et l horloge 2 est embarquée sur le satellite GPS. On s intéresse à la durée séparant 2 évènements se produisant à bord du satellite. 3-2) Définir le référentiel propre associé à ces évènements. L horloge 1 sur Terre mesure une durée de 1 jour. 3-3) Exprimer puis calculer la durée mesurée par l horloge 2 du satellite et retrouver la valeur du retard indiquée dans le texte. 3-4) Pourquoi est-il nécessaire de corriger ce retard?

Principe de l horloge atomique au césium Oscillateur à quartz Fréquence de l horloge stable, exacte Avertissement La détection du nombre d atomes passés du niveau E 1 au niveau E 2 (nombre d autant plus grand que la fréquence ν est proche de ν 0) permet de corriger les écarts de fréquence du Multiplicateur de fréquence La fréquence de l oscillateur à quartz est multipliée pour obtenir une fréquence ν, très voisine de ν 0, fréquence de transition de l atome de césium Référence atomique Certains atomes de césium passent du niveau E 1 au niveau E 2 en absorbant un photon d énergie hν 0 E 2 hν 0 E 1 hν 0=E 2 - E 1