Ventilation artificielle en préhospitalier

Documents pareils
Ventilateur pulmonaire pour soins intensifs, réanimation et premier secours. 360 x 245 x 300 mm (sans moniteur) Cycle à temps et volume constant

Groupe 1 somnovni 12/12/14

A. ANDRO 1, C. MESTON 2, N. MORVAN 3

La ventilation non invasive aux soins intensifs

8/28/2013. L inhalothérapie aux soins critiques. Objectifs. Rôles de l inhalothérapeute. Objectifs

Ventilation mécanique à domicile

Manuel utilisateur. Français

NAVA pourquoi pas. Stéphane Delisle RRT, PhD, FCCM Mohamed Ait Si M Hamed, inh. BSc.

Le sevrage de la trachéotomie

Le Test d effort. A partir d un certain âge il est conseillé de faire un test tous les 3 ou quatre ans.

Elisée 150 Manuel patient Français

LISTE DES PRODUITS ET DES PRESTATIONS REMBOURSABLES (LPPR) POUR LE TRAITEMENT DE L INSUFFISANCE RESPIRATOIRE

La fonction respiratoire

Actualité sur la prise en charge de l arrêt cardiaque

quelques points essentiels

Les solutions en Kiné Respiratoire par Portex. Améliorer la qualité de vie THÉRAPIE RESPIRATOIRE

THEME 2 : CORPS HUMAIN ET SANTE : L EXERCICE PHYSIQUE

Contenu de la formation PSE1et PSE2 (Horaires à titre indicatif)

Monitoring du SDRA Simple ou compliqué? Jean-Christophe M Richard, MD PhD

Vous intervenez en équipage SMUR sur un accident de la voie publique : à votre arrivée sur les lieux, vous trouvez un homme d environ 30 ans au sol à

Référentiel de compétences et d aptitudes du masseur kinésithérapeute de réanimation (MKREA) en secteur adulte

DEMONSTRATION DE FONCTIONNEMENT DU DÉFIBRILLATEUR

L'oxygène. Rappel. plus d informations au : ou par mail à : gaz-medicaux@spengler.fr

Consignes de remplissage - Grille de recueil - Thème DAN2

Mesure et détection de substances dangereuses : EX-OX-TOX (IS-013) Version CT-Q

Fonctions non ventilatoires

3.1 Nouveau profil de patient

Transport des gaz dans le sang

Transport des gaz dans le sang

Défibrillateur Cardiaque Automatisé

Systèmes de ventilation AVEA. Manuel de l opérateur

Formation à l utilisation du défibrillateur semi-automatique (DSA)

Formation des enseignants. Le tensiomètre. Objet technique modélisable issu de l environnement des élèves

Oxygénothérapie à domicile

URGENCES MEDICO- CHIRURGICALES. Dr Aline SANTIN S.A.U. Henri Mondor

EVALUATION DES SIGNES VITAUX REANIMATION DU NOUVEAU-NE EN SALLE DE NAISSANCE

2 Trucs et Astuces 2

Les différentes maladies du coeur

A b 3 1a 6 B C 1b 1a 3

Insuffisance cardiaque

Equipe de Direction : -Docteur Christine BOURDEAU Responsable médical. - Annie PAPON Cadre responsable

Programme de réhabilitation respiratoire

UNE PRISE DE DÉCISION INFORMÉE PAR DES RÉSULTATS

Accueil du nouveau-né en cas d accouchement extra-hospitalier

Une solution simple pour vos patients complexes

Tronc Artériel Commun

Consignes de sécurité Manipulation du dioxyde de carbone CO 2

Guide. du trachéotomisé. P i o n n i e r e t spécialiste. CREA GUIDE ANTADIR 3 Paulo.indd 1 11/09/08 15:46:10

GUIDE D'INSTALLATION Lave-Vaisselle

La Broncho-Pneumopathie chronique obstructive (BPCO)

GASMAN II MANUEL D UTILISATION

Bienvenue aux Soins Intensifs Pédiatriques

Chapitre 1. - Dispositifs médicaux, matériels et produits pour le traitement de pathologies spécifiques.

TEPZZ 8758_8A_T EP A1 (19) (11) EP A1 (12) DEMANDE DE BREVET EUROPEEN. (51) Int Cl.: A61K 33/00 ( ) A61P 25/06 (2006.

o Non o Non o Oui o Non

1. Les barotraumatismes

Stellar 100 Stellar 150

MEDIACLAVE. La stérilisation rapide, reproductible et sûre des milieux

GUIDE D'INSTALLATION. Lave-Vaisselle

SADIR assistance, Prestataire de Santé à Domicile (PSAD)

INSUFFISANCE CARDIAQUE DROITE Dr Dassier HEGP

L énergie de l air extérieur pour une eau chaude sanitaire naturellement moins chère

QUI PEUT CONTRACTER LA FA?

APRES VOTRE CHIRURGIE THORACIQUE OU VOTRE PNEUMOTHORAX

La pompe cardiaque, le débit cardiaque et son contrôle

Notions physiques Niveau 2

Prise en charge du patient porteur d un dispositif implantable. Dr Philippe Gilbert Cardiologue CHU pavillon Enfant-Jésus

VNI: Pratiques actuelles et futures, monitoring

Chapitre 2 : Respiration, santé et environnement.

Activité 38 : Découvrir comment certains déchets issus de fonctionnement des organes sont éliminés de l organisme

Choisir et utiliser un détecteur de gaz pour le travail en espace clos.

BPCO * La maladie respiratoire qui tue à petit feu. En France, 3,5 millions de personnes touchées dont 2/3 l ignorent morts chaque année...

COMPRESSEURS DENTAIRES

Spirométrie/Débit-Volume

Manuel d utilisation pour la Presse à Transfert Grand Format Pneumatique Double Poste

Chapitre 7: Dynamique des fluides

Défibrillation et Grand Public. Méd-Cl JAN Didier Médecin chef Méd-Cne PIVERT Pascaline

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

08/07/2015

FICHE TECHNIQUE CARACTERISTIQUES TECHNIQUES DE L'AEDPLUS

Fauteuil dentaire monté vers le haut, Modèle CARE-22

Urgence de terrain : conduite à tenir Actualisation de la réanimation cardio-pulmonaire

COMPÉTENCES RELATIVES À L ENTRÉE DANS LA PRATIQUE

Caractéristiques techniques

Les fiches repères d INTEGRANS sont réalisées par ARIS Franche-Comté dans le cadre du programme INTEGRANS. Plus d infos sur

Conseil Français de Réanimation Cardio-pulmonaire (CFRC) Recommandations pour l organisation de programmes de défibrillation

Demande d attestation de capacité sur Guide de prise en main

Ensemble à équilibrage de pression universel MultiChoice MC pour baignoire et douche

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

CARACTÉRISTIQUES COMMUNES À TOUS LES MODÈLES

Chapitre VI : Gestion des risques épidémiques

LE FILTRE A PARTICULES : SES PROBLEMATIQUES ET NOS SOLUTIONS

Don d organes et mort cérébrale. Drs JL Frances & F Hervé Praticiens hospitaliers en réanimation polyvalente Hôpital Laennec, Quimper

pur et silencieux dentaire

NOTICE D INSTALLATION

Prévenir et Indemniser la Pénibilité au Travail : le Rôle des IRP

Interface MédiaPrime

Soins Inrmiers aux brûlés

RECOMMANDATIONS OFFICIELLES - DEFIBRILLATEURS AUTOMATISES EXTERNES

BASES DE L ENTRAINEMENT PHYSIQUE EN PLONGEE

Transcription:

Ventilation artificielle en préhospitalier SMUR Saint Germain en Laye 25 octobre 2002 Table des matières 1 Structure et principe d un ventilateur 3 1.1 Principe de fonctionnement du ventilateur........... 3 2 Nettoyage et stérilisation d un ventilateur à la base 4 3 Préparation d un ventilateur sur intervention 4 4 Monitorage de la ventilation mécanique 5 4.1 La fraction inspirée d oxygène (F io 2 )............. 5 4.2 La fréquence (F)......................... 5 4.3 Volume courant (Vt)....................... 5 4.4 La pression des voies aériennes................. 6 4.5 Le rapport I/E.......................... 6 4.6 La pause inspiratoire....................... 6 4.7 La capnographie......................... 6 5 Réglage des paramètres de ventilation 7 5.1 Exemples de réglage des paramètres sur le BREAS LVT100 c 8 6 Réglage des alarmes 8 7 Surveillance d un ventilateur 8 8 Branchement du patient 9 basé sur un texte de la Réanimation Médicale CHU Bichat 1

9 Surveillance d un patient ventilé 10 9.1 Clinique.............................. 10 9.2 Para-clinique........................... 10 9.3 Biologique:............................ 10 9.3.1 Normes physiologiques des gaz du sang artériel.... 11 10 Adaptation du patient à son ventilateur 11 10.1 La fréquence totale:....................... 11 10.2 La spirométrie:.......................... 11 10.3 La pression des voies aériennes:................. 11 10.4 Signification de la désadaptation................ 12 11 Principaux modes de ventilation 12 11.1 VC Ventilation contrôlée..................... 12 11.2 VAC Ventilation assistée contrôlée............... 13 11.3 VS Ventilation spontanée.................... 13 11.4 PEP Pression expiratoire positive................ 13 11.5 VS-PEP Ventilation spontanée avec pression expiratoire positive................................ 13 11.6 VM-PEP Ventilation mécanique avec pression expiratoire positive................................ 14 11.7 Aide inspiratoire......................... 14 2

1 Structure et principe d un ventilateur Un ventilateur se compose de trois éléments essentiels: une unité pneumatique: les gaz y sont mélangés et emmagasinés dans un soufflet; une unité électronique: pour régler et contrôler la ventilation; le circuit patient (tuyauterie), qui véhicule les mélanges gazeux inspirés et expirés, et qui relie la machine au malade. Le ventilateur fonctionne à partir d une énergie extérieure: électricité (Breas c ), gaz comprimé (Oxylog c ). 1.1 Principe de fonctionnement du ventilateur de façon schématique: Les gaz d inspiration sont envoyés dans un soufflet, où ils sont mélangés et emmagasinés à une pression constante qui peut être réglée entre 10 et 100cm d eau. À partir du soufflet, le gaz est conduit au patient à travers un système contrôlant le processus d insufflation de façon à obtenir le volume/minute et le type de débit désirés. Un système identique contrôle l expiration. de façon plus élaborée: Le moteur du ventilateur, fait circuler de façon rythmée les gaz dans la tuyauterie. La tuyauterie comprend, en suivant le circuit des gaz, un certain nombre d éléments indispensables: l admission des gaz (oxygène, air) réglée le plus souvent par des débitmètres. Sur le BREAS c, l air est pris dans l atmosphère et comprimé par une turbine; une prise d air additionnelle permettant au malade de ventiler spontanément si l appareil ne lui fournit pas une ventilation suffisante; une soupape de sécurité pour éviter les surpressions; un humidificateur, qui doit réchauffer et humidifier les gaz avant leur arrivée dans la trachée; Il est nécessaire soit d utiliser des gaz stériles et dépoussiérés, soit de les filtrer pour éviter les infections de l arbre trachéo-bronchique; Un ajustage à trois voies (raccord en Y ou en T) relie au malade la branche de la tuyauterie amenant les gaz frais et la branche permettant l expiration; La branche permettant l expiration comprend un spiromètre et divers dispositifs permettant d agir sur la vitesse et le débit expiratoire du malade (valve de PEEP) qui normalement se fera passivement à l air 3

libre. Pendant la durée de l insufflation, cette branche de la tuyauterie est fermée. La machine va déclencher successivement et toujours dans le même ordre: la fermeture de la branche expiratoire; l insufflation; l arrêt de l insufflation, avec parfois une pause (valve expiratoire et insufflatoire fermée); l ouverture de la branche expiratoire. Par suite des résistances opposées par la tuyauterie, l humidificateur et le malade lui-même, l insufflation doit se faire sous pression positive (supérieure à la pression atmosphérique); la pression retombe à la pression atmosphérique lors de l expiration. Ceci inverse donc le régime des pressions physiologiques et retentit sur le retour veineux thoracique et la circulation pulmonaire. Pour pallier cet inconvénient, la durée du temps inspiratoire doit être inférieure à celle du temps expiratoire. 2 Nettoyage et stérilisation d un ventilateur à la base Le ventilateur est dirigé vers le local de nettoyage prévu à cet effet. On pratique alors le démontage complet et le nettoyage du circuit patient. Ces pièces sont alors stérilisées à l autoclave. L appareil doit également subir un nettoyage extérieur complet. Le fonctionnement du ventilateur est vérifié, et signalé par écrit (papier ou collant sur l appareil). Ainsi nettoyé, le ventilateur peut alors être immédiatement rééquipé. Une fois le montage effectué, il convient de contrôler le fonctionnement du ventilateur et d effectuer un préréglage standard. L étanchéité du circuit et l exactitude de l affichage des valeurs mesurées sont vérifiées, les alarmes sont testées. Ce test de fonctionnement est réalisé en laissant fonctionner le ventilateur sur un ballon durant 10 minutes. Dans cette pièce est rangé le matériel nécessaire, stérile sous sachet ou en boite métallique. Il est ainsi possible de préparer rapidement un appareil. 3 Préparation d un ventilateur sur intervention Avant toute chose, s assurer que le ventilateur a été nettoyé et que son fonctionnement a été vérifié. 4

Vérifier la machine : aspect extérieur, batterie, test à la mise en route. Se procurer un circuit patient (stérilisé sous sachet), un filtre à usage unique (filtre anti-bactérien). S assurer de la présence d un circuit de ventilation manuelle, d un ballon type Ambu c et de son masque. 4 Monitorage de la ventilation mécanique Tous les ventilateurs comportent les mêmes grandes fonctions de base, seule la présentation change d un appareil à l autre. Tous les ventilateurs mesurent le volume courant (Vt), la fréquence respiratoire (F), (et donc la ventilation/minute VE), et la pression des voies aériennes (PAW). Seul change d un appareil à l autre le mode l affichage. 4.1 La fraction inspirée d oxygène (F io 2 ) Elle se règle empiriquement en fonction de l existence ou non d une hypoxémie et de sa gravité entre 21% (air ambiant) et 100% (oxygène pur). 4.2 La fréquence (F) Elle correspond au nombre de cycles effectués par le ventilateur en une minute. Celle-ci est très variable (entre 14 et 20 cycles/minutes). Le produit de la fréquence par le volume courant (Vt = entre 8 et 12ml/kg de poids corporel) donne un volume total insufflé par minute ou ventilation minute (8 à 16 litres/minute). Il est également essentiel de dissocier les cycles mécaniques et spontanés. le monitorage des modes de support partiel doit en effet permettre d apprécier l activité spontanée des patients. Les cycles spontanés sont souvent détectés parce qu ils donnent une pression négative. 4.3 Volume courant (Vt) La mesure des volumes expirés (spirométrie) utilise de nombreuses techniques. Leur précision est en général suffisante pour le monitorage. Lorsqu on utilise des modes de support ventilatoire partiel, il est essentiel de mesurer les Vt cycle par cycle, en séparant les cycles mécaniques et spontanés. 5

4.4 La pression des voies aériennes C est un élément essentiel de surveillance d un patient ventilé. On peut monitorer: la pression de crête, en rapport avec la vitesse d insufflation ( ou débit inspiratoire instantané ). La pression de crête maximale est en général inférieure à 60 cm d eau. Il faut savoir que lorsque la pression des voies aériennes atteint cette pression maximale (préréglée), une valve s ouvre, et ce qui reste du Vt s échappe dans l air ambiant. Une Pmax réglée trop bas va donc empêcher le patient de recevoir le Vt affiché. les résistances des voies aériennes et la compliance thoraco-pulmonaire, et l importance du Vt. la pression moyenne PAW permet d approcher la pression intra-thoracique moyenne. la pression de fin d expiration (ou de pause inspiratoire). pression expiratoire: mesure la PEP. 4.5 Le rapport I/E Ou durée de l inspiration par rapport à l expiration (habituellement inférieur à 1/1), ou durée inspiratoire (Ti) inférieure ou égale à 50% de la durée totale du cycle. Sur certains appareils, on règle un débit inspiratoire par minute (de 15 à 60 l/ minute). Si l on a par ailleurs fixé le Vt et la fréquence, la durée de l inspiration et donc le rapport I/E en sont automatiquement déduits. La pression des voies aériennes dépend aussi de l importance de ce débit inspiratoire. A Vt équivalent, un débit élevé augmentera plus vite et de façon plus importante la pression des voies aériennes qu un débit lent. 4.6 La pause inspiratoire Temps d insufflation maintenue, la valve expiratoire étant fermée, permettant une homogénéisation des gaz inspirés à l intérieur du thorax. En général, moins de 20% de la durée du cycle total. 4.7 La capnographie Le CO 2 expiré est analysé à l aide d une technique infrarouge. 6

5 Réglage des paramètres de ventilation Le réglage des paramètres de ventilation se fait uniquement sur prescription médicale. Les préréglages standards concernent: le mode de ventilation : mode contrôlé, assité-contrôlé(confondu avec le précédent), spontané; Mélange gazeux: composé d air et d oxygène. Sur un ventilateur, le pourcentage en oxygène se règle de 21% (air ambiant) à 100%. Ce pourcentage en oxygène s appelle la F io 2 (fraction en oxygène). Au-dessus de 60%, l oxygène peut être toxique pour le tissu bronchique et les centres respiratoires; la fréquence respiratoire: elle correspond au nombre de cycles effectués par le ventilateur en une minute. celui-ci est très variable. Le produit de la fréquence par le volume courant donne un volume total insufflé par minute; la ventilation minute (ou le volume courant) : le volume courant (Vt:de l anglais Tidal Volume ) correspond au volume des gaz insufflés à chaque cycle machine. Ce volume se définit en fonction de l âge, du poids et de la pathologie du patient. Chez l adulte: la valeur de base est de 10 à 15 ml par kg de poids. Un homme de 70 kg recevra un volume courant de base de 700 ml ( 70 kg x 10 ml ). Chez l enfant : la valeur de base est de 7 à 9 ml par kg de poids; l alarme de spirométrie (VME); l alarme de pression maximale d insufflation admise; le rapport I/E ou rapport Insufflation / Expiration (I/E) : il correspond au temps de la phase d insufflation par rapport à la phase d expiration. Un rapport I/E standard est de 1/2 (la phase d expiration est deux fois plus longue que la phase d insufflation). Celui-ci peut varier selon le type de ventilation désiré; Les autres réglages (pression expiratoire positive (PEP), soupir, effort inspiratoire, aide inspiratoire) dépendent du prescripteur et du mode de ventilation; Filtre bactérien (nez artificiel) à placer juste avant le raccord annelé. Lors de la ventilation spontané, l air inspiré subit un conditionnnement important: dépoussiérage, humidification et réchauffement. Dans le cas de la ventilation artficielle, les patients sont exposés à des gaz secs à température ambiante. L utilisation d un nez artificiel permet de pallier ces inconvénients. En effet, lors de l expiration, les gaz qui sortent 7

de la sonde d intubation ou de trachéotomie ont une température voisine de 32 degrés Celsius et une saturation à 100%. En passant à travers l échangeur de chaleur et d humidité, ils se refroidissent et la vapeur d eau se condense. Lors de l insufflation suivante, les gaz froids et secs se réchauffent en passant à travers le nez artificiel ; l eau s évapore et les gaz se chargent en vapeur d eau. Au total, les gaz insufflés récupèrent la chaleur et la vapeur d eau déposés par les gaz expirés. 5.1 Exemples de réglage des paramètres sur le BREAS LVT100 c mode de ventilation VC/VAC fraction inspirée d oxygène (F io 2 ) 40 % fréquence 20 cycles / minute volume insufflé 10 litres / minute temps de pause 10 % temps d insufflation 25 % spirométrie min=6l/min. et max=15l/min limite supérieure de pression 5 cm d eau pression expiratoire positive (pep) 0 trigger 0 6 Réglage des alarmes Régler les alarmes limites inférieure et supérieure du volume expiré/minute : Régler les alarmes à +5 l/mn et - 5 l/min par rapport au Vi. Si Vi=10 l/mn : alarme basse à 5 l/min et alarme haute à 15 l/min; Régler l alarme limite supérieure de pression des voies aériennes: Régler l alarme entre 40 et 5O cm H 2 O. 7 Surveillance d un ventilateur Celle-ci regroupe une action routinière et une action préventive. Des instruments de mesure, d alarme et de sécurité donnent à l équipe médico-infirmière des informations sur le fonctionnement propre du ventilateur et sur le couple ventilateur-patient. 8

En règle générale, un ventilateur comporte un bruiteur unique, mis en action quelle que soit l alarme en cause et des voyants lumineux, ou tout autre système visuel permettant d identifier l anomalie responsable de l alarme. L inhibition temporisée du bruiteur durant une à deux minutes est possible pour permettre une aspiration, par exemple, sans déclencher un bruit inutile. Les tâches quotidiennes de surveillance regroupent la vérification des points suivants: Le circuit patient : L étanchéité du circuit. Le réglage du ventilateur, en accord avec la prescription médicale : Mode de ventilation (VC/VAC, VS-AI... ); PEP; Trigger; Fréquence demandée; F io 2 ; Volume courant; Toute modification de paramètre doit être inscrite sur la feuille de surveillance. Le réglage des seuils d alarme : Spirométrie basse et haute; Pression maximum des voies respiratoires; Le bon fonctionnement du ventilateur : Contrôle des capteurs de pression, de débits, de F io 2, de température; Vérification des alimentation en fluides (pression O 2 ) et énergie (batterie). 8 Branchement du patient Le confort du malade est primordial surtout si celui-ci est conscient. Le positionnement du ventilateur par rapport au malade doit être réalisé de façon à entraver le moins possible la liberté de mouvement de celui-ci et les manipulations. Les cadrans doivent être néanmoins toujours être visibles à distance. Les tuyaux de raccordement à la sonde d intubation ne doivent pas entraîner de traction ni de mobilisation de celle-ci. Les tuyaux ne doivent pas non plus entraîner un risque de débranchement accidentel. 9

9 Surveillance d un patient ventilé Sur la feuille de surveillance doivent être consignés tous les paramètres de ventilation ainsi que toute la surveillance s y rapportant. 9.1 Clinique surveillance horaire ou plurihoraire le malade se laisse aisément ventiler, il ne lutte pas contre l appareil; état de conscience; observation du faciès, des extrémités, de l état cutané: sueurs, marbrures, cyanose... mouvement de la cage thoracique: symétrie, amplitude, rythme, fréquence. Cette observation permet de vérifier la bonne adaptation du patient au ventilateur et valide les paramètres de ventilation choisis; auscultation pulmonaire des sommets et des bases; aspirations trachéales: sonde d intubation ou canule de trachéotomie: positionnement, fixation, état cutané; fréquence cardiaque; 9.2 Para-clinique l oxymètre de pouls (saturomètre) mesure la saturation de l hémoglobine en oxygène (% desao 2 ). Il permet une détection rapide de l hypoxie et une alerte; la capnographie mesure le pic expiratoire de CO 2 qui est un reflet de la P aco 2 ce qui eprmet d affiner les réglages du ventilateur. C est aussi l alarme de débranchement la plus sensible; la pression artérielle. 9.3 Biologique: les gaz du sang: la persistance d une hypoxémie conduit à augmenter la F io 2 en essayant, si possible, de ne pas dépasser 60%, seuil au-delà duquel se manifesterait la toxicité de l oxygène. Une P aco 2 supérieure à 40mm Hg fait augmenter le Vt. 10

9.3.1 Normes physiologiques des gaz du sang artériel P O 2 95 mmhg ou 12,7 kpa P CO 2 40 mmhg ou 5,3 kpa ph 7,40 Bicarbonates 22-24 mmol/l SaO 2 0,95 à 0,97 10 Adaptation du patient à son ventilateur Elle s évalue sur le monitorage du ventilateur: 10.1 La fréquence totale: Si le patient ventile spontanément, Ftot sera supérieure à F mécanique. 10.2 La spirométrie: Elle mesure la ventilation effectivement reçue par le malade (volumes expirés ), exprimés en Vt et en VE (l/min). Celle-ci doit être comparée à la ventilation affichée. Régler les alarmes de spirométrie basse et haute, et de pression maximum en fonction des paramètres de la machine et du malade. 10.3 La pression des voies aériennes: Elle doit refléter les pressions des voies intra-thoraciques et également celles qui règnent dans le circuit du ventilateur. La pression maximale normale ne doit pas dépasser 40cm d eau. Une pression supérieure doit être signalée car elle peut être le témoin d un pneumothorax, d un bronchospasme, mais aussi d un bouchon, d une coudure de tuyau... La pression minimale à la fin de l expiration est de 0 sauf avec une PEP où elle doit être au niveau de la PEP. Des pressions élevées indiquent: une obstruction du tube trachéal (sécrétions insuffisamment aspirées). une obstruction au niveau du circuit respiratoire (humidificateur, valves, tuyau coudé, déréglage du capteur de spirométrie, noyade du circuit expiratoire,... ). un mode de ventilation inadaptée au malade. 11

Au niveau du malade, des pressions élevées indiquent: augmentation des résistances bronchiques et alvéolaires: asthme, bronchospasme, atélectasie, embolie pulmonaire, œdème pulmonaire, syndrome de Mendelson (vomissement et inhalation),... diminution de l élasticité thoraco-pulmonaire: BPCO, thoracoplastie, fibrose pulmonaire, pneumothorax, épanchement pleural, crises convulsives, tuberculose... douleur, angoisse, distension abdominale, toux, hoquet, désadaptation. Des pressions basses indiquent: une alarme de pression maximale réglée trop bas, une fuite dans le circuit insufflatoire ou une déconnection du patient, une ventilation/minute insuffisante, une intense ventilation spontanée du patient, abaissant les pressions dans le circuit. au niveau du malade: ballonnet insuffisamment gonflé ou percé, fistule trachéo-œsophagienne, sonde dans une bronche (intubation sélective). 10.4 Signification de la désadaptation (Un patient qui lutte contre le ventilateur) réglages défectueux: hypo ou hyperventilation mécanique; perturbation de la commande respiratoire: choc, fièvre, encéphalopathie,... ; existence d une ventilation spontanée: il faut alors discuter le passage aux modes de support partiel (VS-AI). Si l on ne souhaite pas maintenir cette activité spontanée, il faut envisager la sédation du patient (par exemple: Hypnovel c, Fentanyl c ) associée à une curarisation si besoin. 11 Principaux modes de ventilation Sigles français et anglo-saxon, et définition de chaque mode de ventilation. Ne seront abordés içi que les modes utilisés en pré-hospitalier. 11.1 VC Ventilation contrôlée CV Controlled ventilation 12

Désigne la ventilation mécanique lorsque les caractéristiques du cycle respiratoire sont entièrement déterminées par le ventilateur sans aucune possibilité d intervention du patient. C est le mode ventilatoire de base. On peut y adjoindre une PEEP. 11.2 VAC Ventilation assistée contrôlée ACV Assisted-controled ventilation C est une VC où le patient peut déclencher des cycles ventilatoire. Actuellement, ce mode est confondu avec la VC, seul, le réglage de trigger change. 11.3 VS Ventilation spontanée SV Spontaneous ventilation Mode où le patient détermine seul la fréquence et le volume courant. On peut y adjoindre une PEEP (CPAP) ou une aide inspiratoire (VS-AI) 11.4 PEP Pression expiratoire positive PEEP Positive end-expectory pressure Désigne le maintien d une pression supérieure à la pression atmosphérique dans les voies aériennes durant toute l expiration (augmentation de la capacité résiduelle fonctionnelle CRF), et ce quel que soit le mode de ventilation. Cela empêche le collapsus alvéolaire lors de l expiration dans les œdèmes pulmonaires (cardiogénique, SDRA, pneumopathies aiguës). Le niveau de PEP varie de 0 à 15 cm H2 O. Les complications essentielles de la PEP sont le barotraumatisme (pneumothorax, pneumomédiastin, emphysème sous-cutané) et le retentissement hémodynamique (baisse de la pression artérielle systémique et du débit cardiaque). 11.5 VS-PEP Ventilation spontanée avec pression expiratoire positive CPAP Continuous positive airway pressure Ce mode associe une ventilation spontanée et le maintien d une pression positive durant l expiration, et peut être réalisé soit sur tube trachéal, soit à l aide d un circuit à débit continu (dit libre ) type Boussignac c, soit à l aide d un ventilateur, le débit gazeux étant alors interrompu pendant l expiration. 13

11.6 VM-PEP Ventilation mécanique avec pression expiratoire positive CPPV Continuous positive airway pressure ventilation On aura de même : VAC-PEP, VCI-PEP, VACI-PEP, VIV-PEP, VSA- PEP 11.7 Aide inspiratoire AI Aide inspiratoire ou PA Pression Assistée IPS Inspiratory pressure support L AI réalise un support de pression au cours de la VS. Ce mode de ventilation combine VS et VM. Plus la pression est basse et plus l activité spontanée du patient est importante. Le patient respire dans un circuit pressurisé, de niveau variable et réglable. Ce mode, très utilisé au cours du sevrage, ralentit la fréquence spontanée et augmente le Vt tout en diminuant la consommation d oxygène (en fait le coût en oxygène de l inspiration active) et le travail respiratoire. L AI retarde ou empêche la fatigue des muscles respiratoires. Il s agit d un mode en VS : c est le patient qui détermine les temps et les volumes. 14

Index PEEP, 3, 13 15