En bref, prévoir l évolution d un système dans des conditions données

Documents pareils
1 Thermodynamique: première loi

Premier principe : bilans d énergie

Physique : Thermodynamique

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

Chapitre 4 Le deuxième principe de la thermodynamique

Premier principe de la thermodynamique - conservation de l énergie

Chapitre 3 LES GAZ PARFAITS : EXEMPLES DE CALCULS DE GRANDEURS THERMODYNAMIQUES

Optimisation des systèmes énergétiques Master 1 : GSI Génie Energétique et Thermique

Des molécules hydrophobes dans l eau

CHAPITRE 2 : Structure électronique des molécules

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

8 Ensemble grand-canonique

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Exemples d utilisation de G2D à l oral de Centrale

Plan du chapitre «Milieux diélectriques»

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

Etudier le diagramme température-pression, en particulier le point triple de l azote.

MESURE DE LA TEMPERATURE

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

MATHS FINANCIERES. Projet OMEGA

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Précis de thermodynamique

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

Résonance Magnétique Nucléaire : RMN

ACIDES BASES. Chap.5 SPIESS

Molécules et Liaison chimique

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Rappels sur les couples oxydantsréducteurs

COURS DE MACHINES FRIGORIFIQUES

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

EES : Engineering Equation Solver Fiche récapitulative - Marie-Sophie Cabot

La reconnaissance moléculaire: la base du design rationnel Modélisation moléculaire: Introduction Hiver 2006

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

Circuits RL et RC. Chapitre Inductance

PHYSIQUE Discipline fondamentale

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Transformations nucléaires

Cours de Master Recherche

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

L énergie sous toutes ses formes : définitions

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

1. Principes de biochimie générale. A. Bioénergétique et dynamique. a) Intro: Les mitochondries passent leur temps à fabriquer de l énergie.

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème /2015

Cours Fonctions de deux variables

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Atelier : L énergie nucléaire en Astrophysique

Exercices sur le thème II : Les savons

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

1.2 Coordinence. Notion de liaison de coordinence : Cas de NH 3. et NH 4+ , 3 liaisons covalentes + 1 liaison de coordinence.

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

CCP PSI Mathématiques 1 : un corrigé

À propos d ITER. 1- Principe de la fusion thermonucléaire

Différents types de matériaux magnétiques

INTRODUCTION À L'ENZYMOLOGIE

TECHNIQUES: Principes de la chromatographie

LES SUBSTITUTIONS NUCLÉOPHILES EN SÉRIE ALIPHATIQUE S N 1 ET S N 2

Mesures calorimétriques

Thermodynamique (Échange thermique)

Vitesse d une réaction chimique

Chapitre 11 Bilans thermiques

1 Culture Cellulaire Microplaques 2 HTS- 3 Immunologie/ HLA 4 Microbiologie/ Bactériologie Containers 5 Tubes/ 6 Pipetage

COURS DE THERMODYNAMIQUE

Suivi d une réaction lente par chromatographie

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

8/10/10. Les réactions nucléaires

Probabilités III Introduction à l évaluation d options

EXERCİCE N 1 : «Synthèse de l éthanamide» (7 pts)

CONCEPT H 2 ZERO ENERGY ZERO EMISSION

- pellicule de fruits qui a un rôle de prévention contre l'évaporation, le développement de moisissures et l'infection par des parasites

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

TSTI 2D CH X : Exemples de lois à densité 1

Cours de Physique statistique

Précision d un résultat et calculs d incertitudes

Propriétés des options sur actions

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chapitre 5 : Noyaux, masse et énergie

Circulation générale et météorologie

Effets électroniques-acidité/basicité

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

ANALYSE SPECTRALE. monochromateur

Capacité Métal-Isolant-Semiconducteur (MIS)

Transport des gaz dans le sang

Transport des gaz dans le sang

Différentiabilité ; Fonctions de plusieurs variables réelles

Physique 1 TEMPÉRATURE, CHALEUR

FUSION PAR CONFINEMENT MAGNÉTIQUE

C3. Produire de l électricité

GENERALITES SUR LA MESURE DE TEMPERATURE

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

DP 500/ DP 510 Appareils de mesure du point de rosée mobiles avec enregistreur

Transcription:

I. Convertir une énergie en une autre II. Quantifier la part d énergie utilisable III. Prédire si une réaction chimique est réalisable, si elle sera spontanée ou si elle sera réversible et dans quelles conditions elle peut se produire. Seul une partie de l univers nous intéresse: le système En bref, prévoir l évolution d un système dans des conditions données

I) INTRO: Le système II) Convertir une énergie en une autre III) Quantifier la proportion d énergie utilisable 1. Clausius 2. Joule 3. Les principes de la thermodynamique i. Premier principe ii. Deuxième principe iii. Troisième principe Iv) Savoir si une réaction sera spontanée 1. Deuxième principe 2. Enthalpie et enthalpie libre 3. Energie libre IV) Savoir si une réaction est réversible V) Potentiel chimique 1. Potentiel chimique d un gaz parfait pur 2. Potentiel d un gaz réel pur 3. Potentiel d un mélange de gaz parfaits 4. Potentiel d un liquide ou un solide dans une solution diluée 5. Solutions et mélanges réels 6. Mélanges et solutions selon Rebouillon VI) Recapitulatif des principes de la thermodynamique VI) Annexes pour la compréhension: Petit Lexique des symb...

LE SYSTÈME UNIVERS SYSTEME

Les variables d état, mesurables, extensives (V, E, M, L) proportionnelle à la quantité de matière, ou intensives (Masse volumique, P, T ) Les fonctions d état, par le calcul. (H,G,A,S )

1 er principe de thermodynamique: L énergie globale du système se conserve. L énergie ne disparaît pas, seule sa qualité peut être amoindrie. Si un système est isolé son énergie interne est cte. Si un système est non isolé: l énergie interne peut varier

UNIVERS SYSTEME L énergie interne est notée U. C est l énergie nécessaire pour que le système existe. Dans un système isolé, l énergie interne d un gaz ne varie pas, même si la pression et le volume varient au sein du système (compensation par variation de T ) E= Etrans + E rot + E vib + E liaison

UNIVERS SYSTEME L énergie interne est notée U. C est l énergie nécessaire pour que le système existe. E= Etrans + E rot + E vib + E liason

Système adiabatique Système fermé Chaleur Energie Matière Système ouvert Energie Matière

Système à l équilibre: Variable d état du système = variable d état de l environnement. Différents types d équilibre: - Equilibre chimique: C cte - Equilibre mécanique: P Cte - Equilibre thermique: T cte

CONVERTIR Une invention: la machine à vapeur: https://www.youtube.com/watch?v=xicajzycb1i On peut convertir de la chaleur, en travail. Par conséquent, dans un système fermé on a la relation suivante: Energie interne U = W + Q Travail Chaleur

SYSTEME UNIVERS

UTILISABLE 1) Clausius 2) Joule 3) Les principes de thermodynamique (Kelvin et Clausius) 4) Boltzmann

1) CLAUSIUS Lors d une conversion entre Q et W, une partie de l énergie est dégradée. Introduit l idée de rendement: R= (T2-T1).100/T2

2) A NON PARDON, JOULE Effet Joule Le rendement dans le sens Q W n est jamais de 100 %. Quantification de l énergie: 1cal =4,18 J

3) LES PRINCIPES DE THERMODYNAMIQUE 1 ER PRINCIPE L idée que U = W + Q perte de qualité d énergie, entre travail et chaleur Voir: 1er principe de thermodynamique Petite explication conseillée avant d aller plus loin : Petit Lexique des symboles mathématiques

QUANTIFIER LA PORTION D ENERGIE UTILISABLE: LE 2 ÈME PRINCIPE DE THERMODYNAMIQUE BUT: Permet de savoir si l entropie est constante, ou si elle s accroit lors de l échange. Donc: si une partie de l énergie est dégradée et devient non utilisable.

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE L entropie est la portion de l énergie non disponible pour le travail. 2 cas étudiés: - Transformation spontanée réversible à T Système = T environnement - Transformation spontanée, monotherme et irréversible.

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE Lors d une réaction spontanée, l entropie varie. Elle ne peut pas diminuer. ΔS système = ΔS échange + S création

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE A. ) Si une transformation est spontanée et réversible et à T syst = T environnement: En formule mathématique: ΔS = δq rev / T En français: La variation de l entropie du système est égale au rapport de la quantité de chaleur échangée sur la température du système.

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE ΔS = δq rev / T Dans une réaction spontanée et réversible à T Système = T environnement : La part d énergie dégradée (création d entropie) est uniquement due la chaleur. Le travail est conservé.

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE Lors d une réaction spontanée, l entropie varie: ΔS système = ΔS échange + S création Transformation réversible: S création = 0 Donc ΔS système = ΔS échange L entropie est échangée avec le milieu extérieur, mais il n y a pas de création d entropie.

INEGALITE DE CLAUSIUS 2 ÈME PRINCIPE DE LA THERMODYNAMIQUE B. Transformation spontanée, monotherme et irréversible Transformation irréversible: S création > 0 ΔS système = ΔS échange + S création UNE PARTIE DE L ENERGIE A ÉTÉ DEGRADE ΔS = δq rev / T + S création ΔS > δq rev / T

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE ΔS > δq rev / T INEGALITE DE CLAUSIUS L échange de chaleur, ne suffit pas à expliquer la variation de l entropie, une partie de l énergie a été dégradée. L énergie-travail a diminuée.

2 ÈME PRINCIPE DE LA THERMODYNAMIQUE Précision apportée par Rebouillon Dans les cas précédents, la température était constante avec T système = T environnement. Si la température varie alors: ΔS = b a δq rev / T

BOLTZMANN ET 3 ÈME PRINCIPE L entropie d un système à l état macroscopique est fonction du nombre de ses états microscopiques. S= k.ln Ω Si S augmente alors Ω augmente Donc, (puisque k est proportionnel à T ) le 3 ème principe de thermodynamique nous dit: S (T=0K) =0Ω

SPONTANÉE 1) Lors d une réaction spontanée et irréversible, l entropie augmente: voir diapo 2ème principe de la thermodynamique 2) Notion d enthalpie (H) (à P cte) et d enthalpie libre (G)(à P et T cte) 3) Notion d énergie libre (A) (à V cte)

NOTION D ENTHALPIE (H) ET D ENTHALPIE LIBRE (G) H, l enthalpie est l énergie totale du système: Si on se place dans un système à pression constante dq (P) =du (P) dw(p) <-> dq (P) =du (P) + PdV dq = dh Ici H est donc égale à la chaleur échangée à pression constante. H = U + PV L énergie totale du système est égale à la somme de l énergie nécessaire au système pour exister + l énergie pour lutter contre la pression extérieure

NOTION D ENTHALPIE (H) ET D ENTHALPIE LIBRE (G) Dans le cours de Rebouillon: DANS UNE TRANSFORMATION ISOBARE, ΔH= Q(P) Δ H R = ch c + dh D ( ah A + b H B ) La variation d énergie (l énergie échangée ΔH, est égale à Q (P) ) Δ H R = 0 n existe pas Δ H R < 0 exothermique Δ H R > 0 endothermique

NOTION D ENTHALPIE ET D ENTHALPIE LIBRE A P et T constant: ΔS système (P,T) dq / T donc dq (P,T) TdS système (P,T) 0 Donc dh (P,T) TdS système (P,T) 0 On fixe dg (P, T) = dh (P,T) TdS système (P,T) L enthalpie libre peut être comprise comme: l énergie disponible pour la réaction chimique.

NOTION D ENTHALPIE ET D ENTHALPIE LIBRE Selon Breuzard, 3 cas de figure: Si ΔG (P,T) = 0 Pas de variation de G = système à l équilibre Si ΔG (P,T) < 0 Il y a une diminution de G (énergie disponible pour la réaction) Le système a libéré de l énergie: REACTION EXERGONIQUE Réaction spontanée Si ΔG (P,T) > 0 Il y a une augmentation de G Le système a gagné de l énergie: REACTION ENDERGONIQUE Réaction non spontanée

NOTION D ENTHALPIE ET D ENTHALPIE LIBRE Selon Rebouillon, 3 cas de figure: Si ΔG (P,T) = 0 Equilibre Si ΔG (P,T) < 0 Si ΔG (P,T) > 0 Réaction spontanée possible Réaction spontanée impossible

NOTION D ENTHALPIE ET D ENTHALPIE LIBRE Selon Rebouillon, 3 cas de figure: ΔH <0 et ΔS >0 : donc ΔG= ΔH-TΔS < 0 Ɐ T Réaction spontanée ΔH >0 et ΔS <0 : donc ΔG= ΔH-TΔS > 0 Ɐ T ΔH >0 et ΔS >0 : ΔH <0 et ΔS <0 : Réaction jamais spontanée Réaction spontanée si T>T qui annule ΔH-TΔS Réaction spontanée si T<T qui annule ΔH-TΔS Quand H et S ont le même signe, le signe de ΔG dépend de T

NOTION D ENERGIE LIBRE A volume et température constants : ΔU = Qv (puisque V constant alors W est nul) ΔA = ΔU-T ΔS (c est l énergie disponible à volume et température constante, donc le travail maximum qu on peut obtenir) La transformation spontanée est possible si ΔA <0.

RÉVERSIBLE 1) Si une réaction est réversible, le système passe de l état initial à l état final par une infinité d états intermédiaires, peu différents d états intermédiaires successifs. 2) Si une réaction est réversible, alors la création d entropie est nulle 2ème principe de la thermodynamique 3) Utilisation de l enthalpie libre

UTILISATION DE L ENTHALPIE LIBRE Enthalpie libre = énergie disponible à P et T cte. Si ΔG = W : toute l énergie disponible à été transformée en travail REVERSIBILITE TOTALE Si ΔG = Q : toute l énergie disponible à été transformée en chaleur IRREVERSIBILITE TOTALE Si ΔG = W+Q REVERSIBILITE PARTIELLE

ATTENTION RÉVERSIBLE CYCLIQUE Cyclique: on est revenu au point de départ ΔF = δf δx dx + δf δy = F Ef F Ei = 0

A) Potentiel chimique d un gaz pur parfait Pour les gaz, la pression varie. Si l échange est réversible et à volume constant: dg(v)= VdP SdT Si en plus, la température est constante: P dg(t) = VdP ou G (T) = G (T) + P0 VdP T Avec G (T) = enthalpie libre de référence du gaz sous la pression de référence P. Cela signifie qu on étudie l énergie disponible fournie par le gaz selon les variations de pression.

POTENTIEL CHIMIQUE D UN GAZ PUR PARFAIT Enthalpie molaire: comment chaque mole de gaz contribue à l enthalpie libre (énergie disponible pour l échange) Gm = G/n G(T) = G (T) n n + P VdP (T) P n Car PV=nRT Gm(T) = Gm (T) + RT.ln ( P P )

POTENTIEL CHIMIQUE D UN GAZ PUR PARFAIT Potentiel chimique: Pour un composant unique µb = G(T) nb = Gm (T) C est la variation de l enthalpie libre G du mélange due à l addition d une mole de B sans variation de pression et température. µb = Gm (T) + RT.ln ( P P )

POTENTIEL CHIMIQUE D UN GAZ PUR RÉEL Fugacité: pression fictive sous laquelle devrait se trouver le gaz réel s il était parfait pour posséder l enthalpie libre molaire à température constante. µb = Gm (T) + RT.ln ( f f )

DANS LE CAS DES ESPÈCES COMPOSÉES D ATOMES DIFFÉRENTS: RELATION D EULER G= Σ µ i. n i Ex: G NO2 = µ N. n N + µ O2. n o2 Attention: ici on parle bien des différents atomes composant le gaz et non pas de gaz différents.

MÉLANGES ET SOLUTIONS Mélange: Utilisé pour décrier une phase gazeuse, liquide, ou solide contenant plus d une substance lorsque les substances sont toutes considérées de la même manière. Solution: Décrit une phase liquide ou solide contenant plus d une substance.

MÉLANGE DE GAZ PARFAITS P totale: pression du mélange prit dans son ensemble P partielle: pression d un des constituant du mélange si celui-ci occupait seul le même volume à température constante. Avec Pi V= nirt P partielle = P i = ni N totale x P totale = y i x P totale On cherche à savoir comment chaque constituant influe sur la pression totale du mélange.

POTENTIEL CHIMIQUE D UN GAZ PARFAIT DANS UN GAZ PARFAIT Pour chaque gaz, la pression partielle vaut : P(B) = y(b)xp totale A température constante: µb = Gm (T) + RT.ln ( P totale P ) + RT ln y b Comment contribue chaque gaz au potentiel chimique du mélange? Attention, on calcule le potentiel chimique de chaque gaz ici.

POTENTIEL CHIMIQUE D UN LIQUIDE OU D UN SOLIDE DANS UNE SOLUTION IDÉALE Pas d interaction entre les constituants, pas de modifications des propriétés du mélange par rapport au solvant pur. Pas de variation de pression µ(z,t) =Gm(z,T) Gm (z,t) + RT ln y b

POTENTIEL CHIMIQUE D UN LIQUIDE DANS UNE SOLUTION DILUÉE Tend vers la solution idéale On calcule le potentiel chimique du solvant. µ solvant (l,t) =Gm(z,T) =Gm (z,t) + ln xi solvant

POTENTIEL CHIMIQUE D UN SOLIDE DANS UNE SOLUTION DILUÉE Tend vers la solution idéale On calcule le potentiel chimique du soluté. µ soluté (s,t) =Gm(s,T)= Gm (s,t)

RELATION DE GIBBS-DUHEIM Dans un mélange: dg= µ A.dn A + µ B.dn B + dµ A.n A + dµ B.n B A l équilibre: dn B et dn A = 0 et pas de variation de G dµ A.n A + dµ B.n B = 0

SOLUTIONS ET MÉLANGES RÉELS On s intéresse à comment chaque composant influe sur les caractéristiques du mélange. MAIS, chaque composant influe le comportement des autres. On utilise la notion de grandeur molaire partielle: c est la valeur que possède une grandeur pour 1 mole de B dans le solvant A, toute chose constante par ailleurs. Donc c est l influence de la mole de B sur la grandeur en question. X m (B) = X n B T,P, n A X=n(A).Xm(A) +n(b).xm(b)+

ACTIVITÉ DANS LES MÉLANGES RÉELS Avec a(b)= γ X (B), on choisit la grandeur qui nous intéresse. µ (B) =Gm (z,t) + ln a (B) En pratique: a(b) = γ B. C B C

ACTIVITÉ DANS LES MÉLANGES RÉELS Selon Rebouillon: Pour les liquides: a = γc Si C augmente, γ diminue Δ GT = G T + RT ln (a / a ) A l état standard: Δ GT = G T + RT ln (a) ouδ GT = G T + RT ln (C) Pour les gaz: a i = γ i. P i / P o = f i / P o Avec fi (fugacité) = γ i. P i Δ GT = G T + RT ln P2

MELANGES ET SOLUTIONS SELON REBOUILLON On peut avoir des solutions liquides, solides et gazeuses. Solutions solides: alliages métalliques Solutions gazeuses: - gaz toujours miscibles entre eux. Solutions liquides: - liquide/gaz - les gaz en solutions on les mêmes propriétés que s ils sont purs. - liquide/liquide - liquide/solide

MÉLANGE LIQUIDE/GAZ Loi de Henry : C= k. Pi Plus le k est grand, plus le gaz est soluble: ex du CO vs O 2 Si Pi > P atm : le gaz se dissout (caisson hyperbare ) Si Pi < Patm: le gaz part (bulles de champagne ou accident de plongée)

MÉLANGE LIQUIDE/LIQUIDE Homogénéité dépend des interactions entres molécules. Molécules polaires soluble dans les polaires Molécules apolaires insolubles dans les polaires Ex du phénol (polaire+ polaire): - phénol aqueux 5 % d eau - eau phéniquée 95% d eau Ex de l alcool: moment dipolaire très soluble MAIS difficile d obtenir alcool pur à 100%

MÉLANGE LIQUIDE/LIQUIDE Les liaisons faibles: Keesom: polaire +polaire Debye: Polaire+ non polaire London: apolaire+ apolaire Forces de Van der Waals, varient selon 1/(r6) + les liaisons hydrogènes

MÉLANGE LIQUIDE-SOLIDE Dépend de la température et du solide. La dissolution peut être endothermique ou exodermique (cf: ΔG). Endothermique: si T augmente, dissolution facilitée Exothermique: si T augmente, dissolution diminuée Permet de savoir s il faut fournir ou non de la chaleur pour dissoudre une mole de soluté: CHALEUR DE DISSOLUTION

1 er principe: l énergie se conserve, l énergie est indestructible, l énergie se transforme. U = W + Q 2 ème principe: dans une réaction spontanée, l entropie croît. ΔS > δq rev / T 3 ème principe: au 0 absolu, l ordre est parfait S (T=0K) =0Ω

Δ est utilisé pour une différence. Par exemple sur le graphique suivant, l écart entre le point A et le point B est de d, c est le signe des dérivés. Les dérivées permettent de connaitre les variations entre un tout petit écart, très localement., d rond, est le signe des dérivées partielles. On l utilise pour étudier les variations selon l influence de plusieurs variables. δ,est utilisé pour signifier une quantité. Lien wikipédia, où c est super bien expliqué :https://fr.wikipedia.org/wiki/notations_delta_en_sciences Pour passer au 2ème principe de thermodynamique