CALCUL SOCHASTIQUE EN FINANCE

Dimension: px
Commencer à balayer dès la page:

Download "CALCUL SOCHASTIQUE EN FINANCE"

Transcription

1 CALCUL SOCHASTIQUE EN FINANCE Peter Tankov Nizar Touzi Ecole Polytechnique Paris Département de Mathématiques Appliquées Septembre 21

2 2

3 Contents 1 Introduction European and American options No dominance principle and first properties Put-Call Parity Bounds on call prices and early exercise of American calls Risk effect on options prices Some popular examples of contingent claims A first approach to the Black-Scholes formula The single period binomial model The Cox-Ross-Rubinstein model Valuation and hedging in the Cox-Ross-Rubinstein model Continuous-time limit Some preliminaries on continuous-time processes Filtration and stopping times Filtration Stopping times Martingales and optional sampling Maximal inequalities for submartingales Complement: Doob s optional sampling for discrete martingales The Brownian Motion Definition of the Brownian motion The Brownian motion as a limit of a random walk Distribution of the Brownian motion Scaling, symmetry, and time reversal Brownian filtration and the Zero-One law Small/large time behavior of the Brownian sample paths Quadratic variation Complement

4 4 5 Stochastic integration with respect to the Brownian motion Stochastic integrals of simple processes Stochastic integrals of processes in H Construction The stochastic integral as a continuous process Martingale property and the Itô isometry Deterministic integrands Stochastic integration beyond H 2 and Itô processes Complement: density of simple processes in H Itô Differential Calculus Itô s formula for the Brownian motion Extension to Itô processes Lévy s characterization of Brownian motion A verification approach to the Black-Scholes model The Ornstein-Uhlenbeck process Distribution Differential representation Application to the Merton optimal portfolio allocation problem Problem formulation The dynamic programming equation Solving the Merton problem Martingale representation and change of measure Martingale representation The Cameron-Martin change of measure The Girsanov s theorem The Novikov s criterion Application: the martingale approach to the Black-Scholes model The continuous-time financial market Portfolio and wealth process Admissible portfolios and no-arbitrage Super-hedging and no-arbitrage bounds The no-arbitrage valuation formula Stochastic differential equations First examples Strong solution of a stochastic differential equation Existence and uniqueness The Markov property More results for scalar stochastic differential equations Linear stochastic differential equations An explicit representation The Brownian bridge Connection with linear partial differential equations Generator

5 Cauchy problem and the Feynman-Kac representation Representation of the Dirichlet problem The hedging portfolio in a Markov financial market Application to importance sampling Importance sampling for random variables Importance sampling for stochastic differential equations The Black-Scholes model and its extensions The Black-Scholes approach for the Black-Scholes formula The Black and Scholes model for European call options The Black-Scholes formula The Black s formula Option on a dividend paying stock The Garman-Kohlhagen model for exchange rate options The practice of the Black-Scholes model Hedging with constant volatility: robustness of the Black- Scholes model Complement: barrier options in the Black-Scholes model Barrier options prices Dynamic hedging of barrier options Static hedging of barrier options Local volatility models and Dupire s formula Implied volatility Local volatility models CEV model Dupire s formula Dupire s formula in practice Link between local and implied volatility Gaussian interest rates models Fixed income terminology Zero-coupon bonds Interest rates swaps Yields from zero-coupon bonds Forward Interest Rates Instantaneous interest rates The Vasicek model Zero-coupon bonds prices Calibration to the spot yield curve and the generalized Vasicek model Multiple Gaussian factors models Introduction to the Heath-Jarrow-Morton model Dynamics of the forward rates curve The Heath-Jarrow-Morton drift condition The Ho-Lee model

6 The Hull-White model The forward neutral measure Derivatives pricing under stochastic interest rates and volatility calibration European options on zero-coupon bonds The Black-Scholes formula under stochastic interest rates Introduction to financial risk management Classification of risk exposures Market risk Credit risk Liquidity risk Operational risk Model risk Risk exposures and risk limits: sensitivity approach to risk management Value at Risk and the global approach Convex and coherent risk measures Regulatory capital and the Basel framework A Préliminaires de la théorie des mesures 193 A.1 Espaces mesurables et mesures A.1.1 Algèbres, σ algèbres A.1.2 Mesures A.1.3 Propriétés élémentaires des mesures A.2 L intégrale de Lebesgue A.2.1 Fonction mesurable A.2.2 Intégration des fonctions positives A.2.3 Intégration des fonctions réelles A.2.4 De la convergence p.p. à la convergence L A.2.5 Intégrale de Lebesgue et intégrale de Riemann A.3 Transformées de mesures A.3.1 Mesure image A.3.2 Mesures définies par des densités A.4 Inégalités remarquables A.5 Espaces produits A.5.1 Construction et intégration A.5.2 Mesure image et changement de variable A.6 Annexe du chapitre A A.6.1 π système, d système et unicité des mesures A.6.2 Mesure extérieure et extension des mesures A.6.3 Démonstration du théorème des classes monotones

7 7 B Préliminaires de la théorie des probabilités 215 B.1 Variables aléatoires B.1.1 σ algèbre engendrée par une v.a B.1.2 Distribution d une v.a B.2 Espérance de variables aléatoires B.2.1 Variables aléatoires à densité B.2.2 Inégalités de Jensen B.2.3 Fonction caractéristique B.3 Espaces L p et convergences fonctionnelles des variables aléatoires B.3.1 Géométrie de l espace L B.3.2 Espaces L p et L p B.3.3 Espaces L et L B.3.4 Lien entre les convergences L p, en proba et p.s B.4 Convergence en loi B.4.1 Définitions B.4.2 Caractérisation de la convergence en loi par les fonctions de répartition B.4.3 Convergence des fonctions de répartition B.4.4 Convergence en loi et fonctions caractéristiques B.5 Indépendance B.5.1 σ algèbres indépendantes B.5.2 variables aléatoires indépendantes B.5.3 Asymptotique des suites d événements indépendants B.5.4 Asymptotique des moyennes de v.a. indépendantes

8 8

9 Chapter 1 Introduction Financial mathematics is a young field of applications of mathematics which experienced a huge growth during the last thirty years. It is by now considered as one of the most challenging fields of applied mathematics by the diversity of the questions which are raised, and the high technical skills that it requires. These lecture notes provide an introduction to stochastic finance for the students of third year of Ecole Polytechnique. Our objective is to cover the basic Black-Scholes theory from the modern martingale approach. This requires the development of the necessary tools from stochastic calculus and their connection with partial differential equations. Modelling financial markets by continuous-time stochastic processes was initiated by Louis Bachelier (19) in his thesis dissertation under the supervision of Henri Poincaré. Bachelier s work was not recognized until the recent history. Sixty years later, Samuelson (Nobel Prize in economics 197) came back to this idea, suggesting a Brownian motion with constant drift as a model for stock prices. However, the real success of Brownian motion in the financial applications was realized by Fisher Black, Myron Scholes, et Robert Merton (Nobel Prize in economics 1997) who founded between 1969 and 1973 the modern theory of financial mathematics by introducing the portfolio theory and the no-arbitrage pricing arguments. Since then, this theory gained an important amount of rigour and precision, essentially thanks to the martingale theory developed in the eightees. Although continuous-time models are more demanding from the technical viewpoint, they are widely used in the financial industry because of the simplicity of the resulting formulae for pricing and hedging. This is related to the powerful tools of differential calculus which are available only in continuoustime. We shall first provide a self-contained introduction of the main concept from stochastic analysis: Brownian motion, stochastic integration with respect to the Brownian motion, Itô s formula, Girsanov change of measure Theorem, connection with the heat equation, and stochastic differential equations. We then consider the Black-Scholes continuous-time financial market where the noarbitrage concept is sufficient for the determination of market prices of derivative 9

10 1 CHAPTER 1. INTRODUCTION securities. Prices are expressed in terms of the unique risk-neutral measure, and can be expressed in closed form for a large set of relevant derivative securities. The final chapter provides the main concepts in interest rates models in the gaussian case. In order to motivate the remaining content of theses lecture notes, we would like to draw the reader about the following major difference between financial engineering and more familiar applied sciences. Mechanical engineering is based on the fundamental Newton s law. Electrical engineering is based on the Maxwell equations. Fluid mechanics are governed by the Navier-Stokes and the Bernoulli equations. Thermodynamics rest on the fundamental laws of conservation of energy, and entropy increase. These principles and laws are derived by empirical observation, and are sufficiently robust for the future development of the corresponding theory. In contrast, financial markets do not obey to any fundamental law except the simplest no-dominance principle which states that valuation obeys to a trivial monotonicity rule, see Section 1.2 below. Consequently, there is no universally accurate model in finance. Financial modelling is instead based upon comparison between assets. The Black-Scholes model derives the price of an option by comparison to the underlying asset price. But in practice, more information is available and one has to incorporate the relevant information in the model. For this purpose, the Black-Scholes model is combined with convenient calibration techniques to the available relevant information. Notice that information is different from one market to the other, and the relevance criterion depends on the objective for which the model is built (prediction, hedging, risk management...). Therefore, the nature of the model depends on the corresponding market and its final objective. So again, there is no universal model, and any proposed model is wrong. Financial engineering is about building convenient tools in order to make these wrong models less wrong. This is achieved by accounting for all relevant information, and using the only no-dominance law, or its stronger version of noarbitrage. An introdcution to this important aspect is contained in Chapter 1. Given this major limitation of financial modelling, a most important issue is to develop tools which measure the risk beared by any financial position and any model used in its management. The importance of this activity was highlighted by the past financial crisis, and even more emphasized during the recent subprime financial crisis. Chapter 12 provides the main tools and ideas in this area. In the remaining of this introduction, we introduce the reader to the main notions in derivative securities markets. We shall focus on some popular examples of derivative assets, and we provide some properties that their prices must satisfy independently of the distribution of the primitive assets prices. The only ingredient which will be used in order to derive these properties is the no dominance principle introduced in Section1.2 below.

11 1.1. European and American options European and American options The most popular examples of derivative securities are European and American call and put options. More examples of contingent claims are listed in Section 1.6 below. A European call option on the asset S i is a contract where the seller promises to deliver the risky asset S i at the maturity T for some given exercise price, or strike, K >. At time T, the buyer has the possibility (and not the obligation) to exercise the option, i.e. to buy the risky asset from the seller at strike K. Of course, the buyer would exercise the option only if the price which prevails at time T is larger than K. Therefore, the gain of the buyer out of this contract is B = (S i T K) + = max{s i T K, }, i.e. if the time T price of the asset S i is larger than the strike K, then the buyer receives the payoff ST i K which corresponds to the benefit from buying the asset from the seller of the contract rather than on the financial market. If the time T price of the asset S i is smaller than the strike K, the contract is worthless for the buyer. A European put option on the asset S i is a contract where the seller promises to purchase the risky asset S i at the maturity T for some given exercise price, or strike, K >. At time T, the buyer has the possibility, and not the obligation, to exercise the option, i.e. to sell the risky asset to the seller at strike K. Of course, the buyer would exercise the option only if the price which prevails at time T is smaller than K. Therefore, the gain of the buyer out of this contract is B = (K S i T ) + = max{k S i T, }, i.e. if the time T price of the asset S i is smaller than the strike K, then the buyer receives the payoff K ST i which corresponds to the benefit from selling the asset to the seller of the contract rather than on the financial market. If the time T price of the asset S i is larger than the strike K, the contract is worthless for the buyer, as he can sell the risky asset for a larger price on the financial market. An American call (resp. put) option with maturity T and strike K > differs from the corresponding European contract in that it offers the possibility to be exercised at any time before maturity (and not only at the maturity). The seller of a derivative security requires a compensation for the risk that he is bearing. In other words, the buyer must pay the price or the premium for the benefit of the contrcat. The main interest of this course is to determine this price. In the subsequent sections of this introduction, we introduce the no dominance principle which already allows to obtain some model-free properties of options which hold both in discrete and continuous-time models. In the subsequent sections, we shall consider call and put options with exercise price (or strike) K, maturity T, and written on a single risky asset with

12 12 CHAPTER 1. INTRODUCTION price S. At every time t T, the American and the European call option price are respectively denoted by C(t, S t, T, K) and c(t, S t, T, K). Similarly, the prices of the American and the Eurpoean put options are respectively denoted by P (t, S t, T, K) and p(t, S t, T, K). The intrinsic value of the call and the put options are respectively: C(t, S t, t, K) = c(t, S t, t, K) = (S t K) +. P (t, S t, t, K) = p(t, S t, t, K) = (K S t ) +, i.e. the value received upon immediate exercing the option. An option is said to be in-the-money (resp. out-of-the-money) if its intrinsic value is positive. If K = S t, the option is said to be at-the-money. Thus a call option is in-themoney if S t > K, while a put option is in-the-money if S t < K. Finally, a zero-coupon bond is the discount bond defined by the fixed income 1 at the maturity T. We shall denote by B t (T ) its price at time T. Given the prices of zero-coupon bonds with all maturity, the price at time t of any stream of deterministic payments F 1,..., F n at the maturities t < T 1 <... < T n is given by F 1 B t (T 1 ) F n B t (T n ). 1.2 No dominance principle and first properties We shall assume that there are no market imperfections as transaction costs, taxes, or portfolio constraints, and we will make use of the following concept. No dominance principle Let X be the gain from a portfolio strategy with initial cost x. If X in every state of the world, Then x. 1 Notice that, choosing to exercise the American option at the maturity T provides the same payoff as the European counterpart. Then the portfolio consisting of a long position in the American option and a short position in the European counterpart has at least a zero payoff at the maturity T. It then follows from the dominance principle that American calls and puts are at least as valuable as their European counterparts: C(t, S t, T, K) c(t, S t, T, K) and P (t, S t, T, K) p(t, S t, T, K) 2 By a similar easy argument, we now show that American and European call (resp. put) options prices are decreasing (resp. increasing) in the exercise price,

13 1.2. No dominance and first properties 13 i.e. for K 1 K 2 : C(t, S t, T, K 1 ) C(t, S t, T, K 2 ) and c(t, S t, T, K 1 ) c(t, S t, T, K 2 ) P (t, S t, T, K 1 ) P (t, S t, T, K 2 ) and p(t, S t, T, K 1 ) p(t, S t, T, K 2 ) Let us justify this for the case of American call options. If the holder of the low exrecise price call adopts the optimal exercise strategy of the high exercise price call, the payoff of the low exercise price call will be higher in all states of the world. Hence, the value of the low exercise price call must be no less than the price of the high exercise price call. 3 American/European Call and put prices are convex in K. Let us justify this property for the case of American call options. For an arbitrary time instant u [t, T ] and λ [, 1], it follows from the convexity of the intrinsic value that λ (S u K 1 ) + + (1 λ) (S u K 2 ) + (S u λk 1 + (1 λ)k 2 ) +. We then consider a portfolio X consisting of a long position of λ calls with strike K 1, a long position of (1 λ) calls with strike K 2, and a short position of a call with strike λk 1 + (1 λ)k 2. If the two first options are exercised on the optimal exercise date of the third option, the resulting payoff is non-negative by the above convexity inequality. Hence, the value at time t of the portfolio is non-negative. 4 We next show the following result for the sensitivity of European call options with respect to the exercise price: B t (T ) c (t, S t, T, K 2 ) c (t, S t, T, K 1 ) K 2 K 1 The right hand-side inequality follows from the decrease of the European call option c in K. To see that the left hand-side inequality holds, consider the portfolio X consisting of a short position of the European call with exercise price K 1, a long position of the European call with exercise price K 2, and a long position of K 2 K 1 zero-coupon bonds. The value of this portfolio at the maturity T is X T = (S T K 1 ) + + (S T K 2 ) + + (K 2 K 1 ). By the dominance principle, this implies that c (S t, τ, K 1 ) + c (S t, τ, K 2 ) + B t (τ)(k 2 K 1 ), which is the required inequality. 5 American call and put prices are increasing in maturity, i.e. for T 1 T 2 : C(t, S t, T 1, K) C(t, S t, T 2, K)and P (t, S t, T 1, K 1 ) P (t, S t, T 2, K 2 ) This is a direct consequence of the fact tat all stopping strategies of the shorter maturity option are allowed for the longer maturity one. Notice that this argument is specific to the American case.

14 14 CHAPTER 1. INTRODUCTION 1.3 Put-Call Parity When the underlying security pays no income before the maturity of the options, the prices of calls and puts are related by p(t, S t, T, K) = c(t, S t, T, K) S t + KB t (T ). Indeed, Let X be the portfolio consisting of a long position of a European put option and one unit of the underlying security, and a short position of a European call option and K zero-coupon bonds. The value of this portfolio at the maturity T is X T = (K S T ) + + S T (S T K) + K =. By the dominance principle, the value of this portfolio at time t is non-negative, which provides the required inequality. Notice that this argument is specific to European options. We shall se in fact that the corresponding result does not hold for American options. Finally, if the underlying asset pays out some dividends then, the above argument breaks down because one should account for the dividends received by holding the underlying asset S. If we assume that the dividends are known in advance, i.e. non-random, then it is an easy exercise to adapt the put-call parity to this context. However, id the dividends are subject to uncertainty as in real life, there is no direct way to adapt the put-call parity. 1.4 Bounds on call prices and early exercise of American calls 1 From the monotonicity of American calls in terms of the exercise price, we see that c(s t, τ, K) C(S t, τ, K) S t When the underlying security pays no dividends before maturity, we have the following lower bound on call options prices: C(t, S t, T, K) c(t, S t, T, K) (S t KB t (T )) +. Indeed, consider the portfolio X consisting of a long position of a European call, a long position of K T maturity zero-coupon bonds, and a short position of one share of the underlying security. The required result follows from the observation that the final value at the maturity of the portfolio is non-negative, and the application of the dominance principle. 2 Assume that interest rates are positive. Then, an American call on a security that pays no dividend before the maturity of the call will never be exercised early. Indeed, let u be an arbitrary instant in [t, T ), - the American call pays S u K if exercised at time u,

15 1.5. Risk effect on options 15 - but S u K < S KB u (T u) because interest rates are positive. - Since C(S u, u, K) S u KB u (T u), by the lower bound, the American option is always worth more than its exercise value, so early exercise is never optimal. 3 Assume that the security price takes values as close as possible to zero. Then, early exercise of American put options may be optimal before maturity. Suppose the security price at some time u falls so deeply that S u < K KB u (T ). - Observe that the maximum value that the American put can deliver when if exercised at maturity is K. - The immediate exercise value at time u is K S u > K [K KB u (T u)] = KB u (T u) the discounted value of the maximum amount that the put could pay if held to maturity, Hence, in this case waiting until maturity to exercise is never optimal. 1.5 Risk effect on options prices 1 The value of a portfolio of European/american call/put options, with common strike and maturity, always exceeds the value of the corresponding basket option. Indeed, let S 1,..., S n be the prices of n security, and consider the portfolio composition λ 1,..., λ n. By sublinearity of the maximum, n λ i max { Su i K, } { n } max λ i Su i K, i=1 i.e. if the portfolio of options is exercised on the optimal exercise date of the option on the portfolio, the payoff on the former is never less than that on the latter. By the dominance principle, this shows that the portfolio of options is more maluable than the corresponding basket option. 2 For a security with spot price S t and price at maturity S T, we denote its return by R t (T ) := S T S t. Definition Let Rt(T i ), i = 1, 2 be the return of two securities. We say that security 2 is more risky than security 1 if i=1 R 2 t (T ) = R 1 t (T ) + ε where E [ ε R 1 t (T ) ] =. As a consequence, if security 2 is more risky than security 1, the above definition implies that Var [ R 2 t (T ) ] = Var [ R 1 t (T ) ] + Var[ε] + 2Cov[R 1 t (T ), ε] = Var [ R 1 t (T ) ] + Var[ε] Var [ R 1 t (T ) ]

16 16 CHAPTER 1. INTRODUCTION 3 We now assume that the pricing functional is continuous in some sense to be precised below, and we show that the value of an European/American call/put is increasing in its riskiness. To see this, let R := R t (T ) be the return of the security, and consider the set of riskier securities with returns R i := R i t(t ) defined by R i = R + ε i where ε i are iid and E [ε i R] =. Let C i (t, S t, T, K) be the price of the American call option with payoff ( S t R i K ) +, and C n (t, S t, T, K) be the price of the basket option defined by the payoff ( 1 n n i=1 S tr i K ) + ( = ST + 1 n n i=1 S tε i K ) +. We have previously seen that the portfolio of options with common maturity and strike is worth more than the corresponding basket option: C 1 (t, S t, T, K) = 1 n n C i (t, S t, T, K) C n (t, S t, T, K). i=1 Observe that the final payoff of the basket option C n (T, S T, T, K) (S T K) + a.s. as n by the law of large numbers. Then assuming that the pricing functional is continuous, it follows that C n (t, S t, T, K) C(t, S t, T, K), and therefore: that C 1 (t, S t, T, K) C(t, S t, T, K). Notice that the result holds due to the convexity of European/American call/put options payoffs. 1.6 Some popular examples of contingent claims Example 1.1. (Basket call and put options) Given a subset I of indices in {1,..., n} and a family of positive coefficients (a i ) i I, the payoff of a Basket call (resp. put) option is defined by ( + ( B = a i ST i K) resp. K ) + a i ST i. i I i I Example 1.2. (Option on a non-tradable underlying variable) Let U t (ω) be the time t realization of some observable state variable. Then the payoff of a call (resp. put) option on U is defined by B = (U T K) + resp. (K U T ) +. For instance, a Temperature call option corresponds to the case where U t is the temperature at time t observed at some location (defined in the contract).

17 1.6. Examples of contingent claims 17 Example 1.3. (Asian option)an Asian call option on the asset S i with maturity T > and strike K > is defined by the payoff at maturity: ( S i T K) +, where S i T is the average price process on the time period [, T ]. With this definition, there is still choice for the type of Asian option in hand. One can define S i T to be the arithmetic mean over of given finite set of dates (outlined in the contract), or the continuous arithmetic mean... Example 1.4. (Barrier call options) Let B, K > be two given parameters, and T > given maturity. There are four types of barrier call options on the asset S i with stike K, barrier B and maturity T : When B > S : an Up and Out Call option is defined by the payoff at the maturity T : UOC T = (S T K) + 1 {max[,t ] S t B}. The payoff is that of a European call option if the price process of the underlying asset never reaches the barrier B before maturity. Otherwise it is zero (the contract knocks out). an Up and In Call option is defined by the payoff at the maturity T : UIC T = (S T K) + 1 {max[,t ] S t>b}. The payoff is that of a European call option if the price process of the underlying asset crosses the barrier B before maturity. Otherwise it is zero (the contract knocks out). Clearly, UOC T + UIC T = C T is the payoff of the corresponding European call option. When B < S : an Down and In Call option is defined by the payoff at the maturity T : DIC T = (S T K) + 1 {min[,t ] S t B}. The payoff is that of a European call option if the price process of the underlying asset never reaches the barrier B before maturity. Otherwise it is zero (the contract knocks out).

18 18 CHAPTER 1. INTRODUCTION an Down and Out Call option is defined by the payoff at the maturity T : DOC T = (S T K) + 1 {min[,t ] S t<b}. The payoff is that of a European call option if the price process of the underlying asset crosses the barrier B before maturity. Otherwise it is zero (the contract knocks out). Clearly, DOC T + DIC T = C T is the payoff of the corresponding European call option. Example 1.5. (Barrier put options) Replace calls by puts in the previous example

19 Chapter 2 A first approach to the Black-Scholes formula 2.1 The single period binomial model We first study the simplest one-period financial market T = 1. Let Ω = {ω u, ω d }, F the σ-algebra consisting of all subsets of Ω, and P a probability measure on (Ω, F) such that < P(ω u ) < 1. The financial market contains a non-risky asset with price process S = 1, S 1(ω u ) = S 1(ω d ) = e r, and one risky asset (d = 1) with price process S = s, S 1 (ω u ) = su, S 1 (ω d ) = sd, where s, r, u and d are given strictly positive parameters with u > d. Such a financial market can be represented by the binomial tree : time time 1 Risky asset S = s Su Sd Non-risky asset S = 1 R = e r In the terminology of the Introduction Section 1, the above model is the simplest wrong model which illustrates the main features of the valuation theory in financial mathematics. The discouted prices are defined by the value of the prices relative to the nonrisky asset price, and are given by S := S, S := 1, and S1 := S 1 R, S 1 := 1. 19

20 2 CHAPTER 2. FIRST APPROACH TO BLACK-SCHOLES A self-financing trading strategy is a pair (x, θ) R 2. The corresponding wealth process at time 1 is given by : or, in terms of discounted value X x,θ 1 := (x θs )R + θs 1, X x,θ 1 := x + θ( S 1 S ). (i) The No-Arbitrage condition : An arbitrage opportunity is a portfolio strategy θ R such that X,θ 1 (ω i), i {u, d}, and P[X,θ 1 > ] >. It can be shown that excluding all arbitrage opportunities is equivalent to the condition d < R < u. (2.1) Exercise 2.1. In the context of the present one-period binomial model, prove that the no-arbitrage condition is equivalent to (2.1). then, introducing the equivalent probability measure Q defined by Q[S 1 = us ] = 1 Q[S 1 = ds ] = q := R d u d, (2.2) we see that the discounted price process satisfies S is a martingale under Q, i.e. E Q [ S 1 ] = S. (2.3) The probability measure Q is called risk-neutral measure, or equivalent martingale measure. (ii) Hedging contingent claims : A contingent claim is defined by its payoff B u := B(ω u ) and B d := B(ω d ) at time 1. In the context of the binomial model, it turns out that there exists a pair (x, θ ) R A such that X x,θ T = B. Indeed, the equality X x,θ 1 = B is a system of two (linear) equations with two unknowns which can be solved straightforwardly : x (B) = q B u R + (1 q)b d R = EQ [ B] and θ (B) = B u B d su sd. The portfolio (x (B), θ (B)) satisfies X x,θ T perfect replication strategy for B. = B, and is therefore called a (iii) No arbitrage valuation : Suppose that the contingent claim B is available for trading at time with market price p(b), and let us show that, under

MAT 2377 Solutions to the Mi-term

MAT 2377 Solutions to the Mi-term MAT 2377 Solutions to the Mi-term Tuesday June 16 15 Time: 70 minutes Student Number: Name: Professor M. Alvo This is an open book exam. Standard calculators are permitted. Answer all questions. Place

Plus en détail

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par Probabilités) Calculus on Fock space and a non-adapted quantum Itô formula Nicolas Privault Abstract - The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations,

Plus en détail

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002

2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 2002 Maritime Mathematics Competition Concours de Mathématiques des Maritimes 2002 Instructions: Directives : 1 Provide the information requested below Veuillez fournir les renseignements demandés ci-dessous

Plus en détail

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years.

2 players Ages 8+ Note: Please keep these instructions for future reference. WARNING. CHOKING HAZARD. Small parts. Not for children under 3 years. Linja Game Rules 2 players Ages 8+ Published under license from FoxMind Games NV, by: FoxMind Games BV Stadhouderskade 125hs Amsterdam, The Netherlands Distribution in North America: FoxMind USA 2710 Thomes

Plus en détail

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien)

Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Finance des matières premières (6b) De la formation des prix sur les marchés financiers à la possibilité d un équilibre (non walrasien) Alain Bretto & Joël Priolon - 25 mars 2013 Question Dans un équilibre

Plus en détail

Chaire Risques Financiers. Responsable: Nicole El Karoui Société Générale, ENPC, UPMC, X

Chaire Risques Financiers. Responsable: Nicole El Karoui Société Générale, ENPC, UPMC, X : Responsable: Nicole El Karoui Société Générale, ENPC, UPMC, X Ecole Polytechnique Paris 29 avril 2014 /Sponsor SG Historique Créée en Mars 2007, pour 5 ans au sein de la FdR (2007) Equipes de Mathématiques

Plus en détail

LONDON NOTICE No. 3565

LONDON NOTICE No. 3565 EURONEXT DERIVATIVES MARKETS LONDON NOTICE No. 3565 ISSUE DATE: 15 February 2012 EFFECTIVE DATE: 12 March 2012 FTSE 100 INDEX FUTURES CONTRACT THREE MONTH EURO (EURIBOR) INTEREST RATE FUTURES CONTRACT

Plus en détail

Hydro-Québec Distribution

Hydro-Québec Distribution Hydro-Québec Distribution 2004 Distribution Tariff Application Demande R-3541-2004 Request No. 1 Reference: HQD-5, Document 3, Page 6 Information Requests HQD says that it will be required to buy energy

Plus en détail

Variational inequalities and time-dependent traffic equilibria

Variational inequalities and time-dependent traffic equilibria Time-dependent traffic equilibria Analyse mathématique/mathematical analysis Variational inequalities and time-dependent traffic equilibria Patrizia DANIELE, Antonino MAUGERI and Werner OETTLI P. D. A.

Plus en détail

Scénarios économiques en assurance

Scénarios économiques en assurance Motivation et plan du cours Galea & Associés ISFA - Université Lyon 1 ptherond@galea-associes.eu pierre@therond.fr 18 octobre 2013 Motivation Les nouveaux référentiels prudentiel et d'information nancière

Plus en détail

APPENDIX 6 BONUS RING FORMAT

APPENDIX 6 BONUS RING FORMAT #4 EN FRANÇAIS CI-DESSOUS Preamble and Justification This motion is being presented to the membership as an alternative format for clubs to use to encourage increased entries, both in areas where the exhibitor

Plus en détail

Les licences Creative Commons expliquées aux élèves

Les licences Creative Commons expliquées aux élèves Les licences Creative Commons expliquées aux élèves Source du document : http://framablog.org/index.php/post/2008/03/11/education-b2i-creative-commons Diapo 1 Creative Commons presents : Sharing Creative

Plus en détail

Florida International University. Department of Modern Languages. FRENCH I Summer A Term 2014 FRE 1130 - U01A

Florida International University. Department of Modern Languages. FRENCH I Summer A Term 2014 FRE 1130 - U01A Florida International University Department of Modern Languages FRENCH I Summer A Term 2014 FRE 1130 - U01A Class time: Monday, Tuesday, Wednesday, Thursday; 6:20 P.M. - 9:00 P.M. Instructors: Prof. Jean-Robert

Plus en détail

GREDOR Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables

GREDOR Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables GREDOR Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables Can operational planning decrease distribution costs? - La gestion prévisionnelle pour diminuer les coûts de distribution?

Plus en détail

Please find attached a revised amendment letter, extending the contract until 31 st December 2011.

Please find attached a revised amendment letter, extending the contract until 31 st December 2011. Sent: 11 May 2011 10:53 Subject: Please find attached a revised amendment letter, extending the contract until 31 st December 2011. I look forward to receiving two signed copies of this letter. Sent: 10

Plus en détail

Algebra for Digital Communication. Test 2

Algebra for Digital Communication. Test 2 EPFL - Section de Mathématiques Algebra for Digital Communication Prof. E. Bayer Fluckiger Sections de Systèmes de Communications et Physique Winter semester 2006-2007 Test 2 Thursday, 1st February 2007

Plus en détail

Feuille d exercices Variables Aléatoires et Conditionnement

Feuille d exercices Variables Aléatoires et Conditionnement Feuille d exercices Variables Aléatoires et Conditionnement B. Delyon, V. Monbet Master 1-2013-2014 1 Indépendance et conditionnement 1.1 Introduction Exercice 1 Pour améliorer la sûreté de fonctionnement

Plus en détail

Pricing Hedging de produits dérivés quels apports du pojet PREMIA p. 1/1

Pricing Hedging de produits dérivés quels apports du pojet PREMIA p. 1/1 Pricing Hedging de produits dérivés quels apports du pojet PREMIA p. 1/1 Pricing Hedging de produits dérivés quels apports du pojet PREMIA Agnès Sulem INRIA-Rocquencourt agnes.sulem@inria.fr 3eme rencontre

Plus en détail

Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg

Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg Le présent document contient des informations qui sont la propriété de France Télécom. L'acceptation de ce document par son destinataire

Plus en détail

B&S Pratique et limites

B&S Pratique et limites B&S Pratique et limites Christophe Chorro (christophe.chorro@univ-paris1.fr) Université Paris 1 Décembre 2008 hristophe Chorro (christophe.chorro@univ-paris1.fr) (Université Paris BS 1) Pratique et limites

Plus en détail

LOI SUR LE FONDS DU PATRIMOINE DES TERRITOIRES DU NORD-OUEST NORTHWEST TERRITORIES HERITAGE FUND ACT

LOI SUR LE FONDS DU PATRIMOINE DES TERRITOIRES DU NORD-OUEST NORTHWEST TERRITORIES HERITAGE FUND ACT NORTHWEST TERRITORIES HERITAGE FUND ACT NORTHWEST TERRITORIES HERITAGE FUND REGULATIONS R-008-2013 AMENDED BY LOI SUR LE FONDS DU PATRIMOINE DES TERRITOIRES DU NORD-OUEST RÈGLEMENT SUR LE FONDS DU PATRIMOINE

Plus en détail

SWAPS. Lionel Artige HEC Université de Liège

SWAPS. Lionel Artige HEC Université de Liège SWAPS Lionel Artige HEC Université de Liège Swaps 5 types de swaps par ordre d importance sur les marchés financiers : Swaps de taux (interest rate swaps) Swaps de devises (currency swaps) Swaps de crédits

Plus en détail

Bill 234 Projet de loi 234

Bill 234 Projet de loi 234 1ST SESSION, 39TH LEGISLATURE, ONTARIO 58 ELIZABETH II, 2009 1 re SESSION, 39 e LÉGISLATURE, ONTARIO 58 ELIZABETH II, 2009 Bill 234 Projet de loi 234 An Act to amend the Taxation Act, 2007 to provide for

Plus en détail

1. The Lester B. Pearson School Board will be operating summer programs at the secondary level during the months of July and August 2015.

1. The Lester B. Pearson School Board will be operating summer programs at the secondary level during the months of July and August 2015. PLEASE POST NOTICE TO TEACHING PERSONNEL RE: SUMMER PROGRAM 2015 March 19, 2015 1. The Lester B. Pearson School Board will be operating summer programs at the secondary level during the months of July

Plus en détail

6. Les désastres environnementaux sont plus fréquents. 7. On ne recycle pas ses déchets ménagers. 8. Il faut prendre une douche au lieu d un bain.

6. Les désastres environnementaux sont plus fréquents. 7. On ne recycle pas ses déchets ménagers. 8. Il faut prendre une douche au lieu d un bain. 1. Notre planète est menacée! 2. Il faut faire quelque chose! 3. On devrait faire quelque chose. 4. Il y a trop de circulation en ville. 5. L air est pollué. 6. Les désastres environnementaux sont plus

Plus en détail

Mesure Measurement Réf 322 033 Etiquettes Terre, Jupiter, Mars, Français p 1 Lune pour dynamomètre 10 N English p 4 Earth, Jupiter, Mars, Moon,

Mesure Measurement Réf 322 033 Etiquettes Terre, Jupiter, Mars, Français p 1 Lune pour dynamomètre 10 N English p 4 Earth, Jupiter, Mars, Moon, Mesure Measurement Français p 1 English p 4 Version : 8006 Etiquettes Terre, Jupiter, Mars, Lune pour dynamomètre 10 N Earth, Jupiter, Mars, Moon, labels for 10 N dynamometer Mesure Etiquettes Terre, Jupiter,

Plus en détail

Natixis Asset Management Response to the European Commission Green Paper on shadow banking

Natixis Asset Management Response to the European Commission Green Paper on shadow banking European Commission DG MARKT Unit 02 Rue de Spa, 2 1049 Brussels Belgium markt-consultation-shadow-banking@ec.europa.eu 14 th June 2012 Natixis Asset Management Response to the European Commission Green

Plus en détail

Promotion of bio-methane and its market development through local and regional partnerships. A project under the Intelligent Energy Europe programme

Promotion of bio-methane and its market development through local and regional partnerships. A project under the Intelligent Energy Europe programme Promotion of bio-methane and its market development through local and regional partnerships A project under the Intelligent Energy Europe programme Contract Number: IEE/10/130 Deliverable Reference: W.P.2.1.3

Plus en détail

Nouveautés printemps 2013

Nouveautés printemps 2013 » English Se désinscrire de la liste Nouveautés printemps 2013 19 mars 2013 Dans ce Flash Info, vous trouverez une description des nouveautés et mises à jour des produits La Capitale pour le printemps

Plus en détail

DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002

DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver 2001-2002 Département d économie politique DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS Semestre d hiver 2001-2002 Professeurs Marc Chesney et François Quittard-Pinon Séance

Plus en détail

S-9.05 Small Business Investor Tax Credit Act 2003-39 RÈGLEMENT DU NOUVEAU-BRUNSWICK 2003-39 NEW BRUNSWICK REGULATION 2003-39. établi en vertu de la

S-9.05 Small Business Investor Tax Credit Act 2003-39 RÈGLEMENT DU NOUVEAU-BRUNSWICK 2003-39 NEW BRUNSWICK REGULATION 2003-39. établi en vertu de la NEW BRUNSWICK REGULATION 2003-39 under the SMALL BUSINESS INVESTOR TAX CREDIT ACT (O.C. 2003-220) Regulation Outline Filed July 29, 2003 Citation........................................... 1 Definition

Plus en détail

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5 RULE 5 - SERVICE OF DOCUMENTS General Rules for Manner of Service Notices of Application and Other Documents 5.01 (1) A notice of application or other document may be served personally, or by an alternative

Plus en détail

Assoumta Djimrangaye Coordonnatrice de soutien au développement des affaires Business development support coordinator

Assoumta Djimrangaye Coordonnatrice de soutien au développement des affaires Business development support coordinator 2008-01-28 From: [] Sent: Monday, January 21, 2008 6:58 AM To: Web Administrator BCUC:EX Cc: 'Jean Paquin' Subject: RE: Request for Late Intervenorship - BCHydro Standing Offer C22-1 Dear Bonnie, Please

Plus en détail

Minority Investment (Banks) Regulations. Règlement sur les placements minoritaires (banques) Current to January 25, 2016. À jour au 25 janvier 2016

Minority Investment (Banks) Regulations. Règlement sur les placements minoritaires (banques) Current to January 25, 2016. À jour au 25 janvier 2016 CANADA CONSOLIDATION CODIFICATION Minority Investment (Banks) Regulations Règlement sur les placements minoritaires (banques) SOR/2001-402 DORS/2001-402 À jour au 25 janvier 2016 Published by the Minister

Plus en détail

Haslingden High School French Y8 Block C Set 1 HOMEWORK BOOKLET

Haslingden High School French Y8 Block C Set 1 HOMEWORK BOOKLET Haslingden High School French Y8 Block C Set 1 HOMEWORK BOOKLET Name: Form: Subject Teacher: Date Given: Date to Hand in: Level: Effort: House Points: Comment: Target: Parent / Guardian Comment: Complete

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Instructions Mozilla Thunderbird Page 1

Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Page 1 Instructions Mozilla Thunderbird Ce manuel est écrit pour les utilisateurs qui font déjà configurer un compte de courrier électronique dans Mozilla Thunderbird et

Plus en détail

Call for tender No. ITER/C4T109/75/JBT TAXIS SERVICES FOR THE ITER ORGANIZATION

Call for tender No. ITER/C4T109/75/JBT TAXIS SERVICES FOR THE ITER ORGANIZATION china eu india japan korea russia usa 13067 St. Paul-Ies-Durance ww.iter.org 27 April 2009 Call for tender No. ITER/C4T109/75/JBT TAXIS SERVICES FOR THE ITER ORGANIZATION Contact: Jérémy BEGOT Tel: +33

Plus en détail

Building Local Climate Zones by using socio-economic and topographic vectorial databases

Building Local Climate Zones by using socio-economic and topographic vectorial databases Recherche portant la référence Building Local Climate Zones by using socio-economic and topographic vectorial databases C. Plumejeaud, C. Poitevin, C. Pignon-Mussaud, N. Long UMR 7266 LIENSs, Littoral

Plus en détail

Règlement sur les prestations de retraite supplémentaires. Supplementary Retirement Benefits Regulations

Règlement sur les prestations de retraite supplémentaires. Supplementary Retirement Benefits Regulations CANADA CONSOLIDATION CODIFICATION Supplementary Retirement Benefits Regulations Règlement sur les prestations de retraite supplémentaires C.R.C., c. 1511 C.R.C., ch. 1511 Current to December 10, 2015 À

Plus en détail

RFP 1000162739 and 1000163364 QUESTIONS AND ANSWERS

RFP 1000162739 and 1000163364 QUESTIONS AND ANSWERS RFP 1000162739 and 1000163364 QUESTIONS AND ANSWERS Question 10: The following mandatory and point rated criteria require evidence of work experience within the Canadian Public Sector: M3.1.1.C / M3.1.2.C

Plus en détail

Exemple PLS avec SAS

Exemple PLS avec SAS Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that

Plus en détail

INVESTMENT REGULATIONS R-090-2001 In force October 1, 2001. RÈGLEMENT SUR LES INVESTISSEMENTS R-090-2001 En vigueur le 1 er octobre 2001

INVESTMENT REGULATIONS R-090-2001 In force October 1, 2001. RÈGLEMENT SUR LES INVESTISSEMENTS R-090-2001 En vigueur le 1 er octobre 2001 FINANCIAL ADMINISTRATION ACT INVESTMENT REGULATIONS R-090-2001 In force October 1, 2001 LOI SUR LA GESTION DES FINANCES PUBLIQUES RÈGLEMENT SUR LES INVESTISSEMENTS R-090-2001 En vigueur le 1 er octobre

Plus en détail

How to Deposit into Your PlayOLG Account

How to Deposit into Your PlayOLG Account How to Deposit into Your PlayOLG Account Option 1: Deposit with INTERAC Online Option 2: Deposit with a credit card Le texte français suit l'anglais. When you want to purchase lottery products or play

Plus en détail

Evaluation de la prime de risques de la vente d une bande d énergie nucléaire

Evaluation de la prime de risques de la vente d une bande d énergie nucléaire 28/3/2011 ANNEXE 6 (Source: Electrabel) Evaluation de la prime de risques de la vente d une bande d énergie nucléaire Si nous vendons une bande d énergie nucléaire à certains clients, que nous garantissons

Plus en détail

Présentation des états financiers 2014 Presentation of the 2014 Financial Statements

Présentation des états financiers 2014 Presentation of the 2014 Financial Statements Présentation des états financiers 2014 Presentation of the 2014 Financial Statements Les faits saillants Highlights L état financier du MAMROT est très complexe et fournit de nombreuses informations. Cette

Plus en détail

Commercial Loan (Cooperative Credit Associations) Regulations. Règlement sur les prêts commerciaux (associations coopératives de crédit)

Commercial Loan (Cooperative Credit Associations) Regulations. Règlement sur les prêts commerciaux (associations coopératives de crédit) CANADA CONSOLIDATION CODIFICATION Commercial Loan (Cooperative Credit Associations) Regulations Règlement sur les prêts commerciaux (associations coopératives de crédit) SOR/92-356 DORS/92-356 Current

Plus en détail

Application Form/ Formulaire de demande

Application Form/ Formulaire de demande Application Form/ Formulaire de demande Ecosystem Approaches to Health: Summer Workshop and Field school Approches écosystémiques de la santé: Atelier intensif et stage d été Please submit your application

Plus en détail

Commercial Loan (Cooperative Credit Associations) Regulations. Règlement sur les prêts commerciaux (associations coopératives de crédit) CONSOLIDATION

Commercial Loan (Cooperative Credit Associations) Regulations. Règlement sur les prêts commerciaux (associations coopératives de crédit) CONSOLIDATION CANADA CONSOLIDATION CODIFICATION Commercial Loan (Cooperative Credit Associations) Regulations Règlement sur les prêts commerciaux (associations coopératives de crédit) SOR/92-356 DORS/92-356 Current

Plus en détail

NOTICE. General rules for applying the package method by Euronext Paris and by C21 clearing system.

NOTICE. General rules for applying the package method by Euronext Paris and by C21 clearing system. NOTICE >> LCH.Clearnet SA Corporate Reference No.: 2008-084 NOTICE From : Rules and Regulation Department Date : July 6 th, 2008 Subject Referred documentation LCH.Clearnet SA publishes hereinafter a Notice

Plus en détail

Estimations de convexité pour des équations elliptiques nonlinéaires

Estimations de convexité pour des équations elliptiques nonlinéaires Estimations de convexité pour des équations elliptiques nonlinéaires et application à des problèmes de frontière libre Jean DOLBEAULT a, Régis MONNEAU b a Ceremade (UMR CNRS no. 7534), Université Paris

Plus en détail

Software Design Description

Software Design Description Software Design Description ABSTRACT: KEYWORDS: APPROVED: AUTHOR PROJECT MANAGER PRODUCT OWNER General information/recommendations A SDD provides a representation of a software system created to facilitate

Plus en détail

Product Platform Development: A Functional Approach Considering Customer Preferences

Product Platform Development: A Functional Approach Considering Customer Preferences Product Platform Development: A Functional Approach Considering Customer Preferences THÈSE N O 4536 (2009) PRÉSENTÉE le 4 décembre 2009 À LA FACULTé SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DES

Plus en détail

PROJET DE LOI C- BILL C- SECRET SECRET HOUSE OF COMMONS OF CANADA CHAMBRE DES COMMUNES DU CANADA

PROJET DE LOI C- BILL C- SECRET SECRET HOUSE OF COMMONS OF CANADA CHAMBRE DES COMMUNES DU CANADA SECRET C- SECRET C- First Session, Forty-first Parliament, Première session, quarante et unième législature, HOUSE OF COMMONS OF CANADA CHAMBRE DES COMMUNES DU CANADA BILL C- PROJET DE LOI C- An Act to

Plus en détail

Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01

Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01 Publication IEC 61000-4-3 (Edition 3.0 2008) I-SH 01 Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques Radiated, radio-frequency, electromagnetic field immunity test INTERPRETATION

Plus en détail

Eléments de statistique

Eléments de statistique Eléments de statistique L. Wehenkel Cours du 9/12/2014 Méthodes multivariées; applications & recherche Quelques méthodes d analyse multivariée NB: illustration sur base de la BD résultats de probas en

Plus en détail

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014

Tavakoli, Shahin Fourier analysis of functional time series, with applications to DNA... 2014 resultats sont ensuite utilises pour construire des estimateurs des operateurs de densite spectrale bases sur des versions lissees du periodogramme, le generalisation fonctionnelle de la matrice de periodogramme.

Plus en détail

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION

First Nations Assessment Inspection Regulations. Règlement sur l inspection aux fins d évaluation foncière des premières nations CONSOLIDATION CANADA CONSOLIDATION CODIFICATION First Nations Assessment Inspection Regulations Règlement sur l inspection aux fins d évaluation foncière des premières nations SOR/2007-242 DORS/2007-242 Current to September

Plus en détail

Section B: Receiving and Reviewing the Technician Inspection Report & Claims Decision Process

Section B: Receiving and Reviewing the Technician Inspection Report & Claims Decision Process Phoenix A.M.D. International Inc. - Claim Procedures, Timelines & Expectations Timelines & Expectations 1. All telephone messages and e-mail correspondence is to be handled and responded back to you within

Plus en détail

AUX AGENTS IMMOBILIERS QUALIFICATIONS OF AGENTS AND SALESPERSONS REGULATIONS

AUX AGENTS IMMOBILIERS QUALIFICATIONS OF AGENTS AND SALESPERSONS REGULATIONS REAL ESTATE AGENTS LICENSING ACT QUALIFICATIONS OF AGENTS AND SALESPERSONS REGULATIONS R.R.N.W.T. 1990,c.15(Supp.) In force September 15, 1992; SI-013-92 LOI SUR LA DÉLIVRANCE DE LICENCES AUX AGENTS IMMOBILIERS

Plus en détail

PUBLIQUES. FINANCIAL AGREEMENTS AND TRANSACTIONS (PETROLEUM PRODUCT DERIVATIVES) REGULATIONS R-45-2008 In force August 1, 2008

PUBLIQUES. FINANCIAL AGREEMENTS AND TRANSACTIONS (PETROLEUM PRODUCT DERIVATIVES) REGULATIONS R-45-2008 In force August 1, 2008 FINANCIAL ADMINISTRATION ACT LOI SUR LA GESTION DES FINANCES PUBLIQUES FINANCIAL AGREEMENTS AND TRANSACTIONS (PETROLEUM PRODUCT DERIVATIVES) REGULATIONS R-45-2008 In force August 1, 2008 RÈGLEMENT SUR

Plus en détail

IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board

IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board 1 L élaboration de la norme IPSAS 32 Objectif : traitement comptable des «service concession arrangements»

Plus en détail

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2

Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Nouvelles classes de problèmes pour la fouille de motifs intéressants dans les bases de données 2 Lhouari Nourine 1 1 Université Blaise Pascal, CNRS, LIMOS, France SeqBio 2012 Marne la vallée, France 2.

Plus en détail

Arithmetical properties of idempotents in group algebras

Arithmetical properties of idempotents in group algebras Théorie des Groupes/Group Theory Arithmetical properties of idempotents in group algebras Max NEUNHÖFFER Lehrstuhl D für Mathematik, Templergraben 64, 52062 Aachen, Allemagne E-mail: max.neunhoeffer@math.rwth-aachen.de

Plus en détail

Regulatory Capital (Insurance Companies) Regulations. Règlement sur le capital réglementaire (sociétés d assurances) CONSOLIDATION CODIFICATION

Regulatory Capital (Insurance Companies) Regulations. Règlement sur le capital réglementaire (sociétés d assurances) CONSOLIDATION CODIFICATION CANADA CONSOLIDATION CODIFICATION Regulatory Capital (Insurance Companies) Regulations Règlement sur le capital réglementaire (sociétés d assurances) SOR/92-529 DORS/92-529 Current to September 30, 2015

Plus en détail

Design and creativity in French national and regional policies

Design and creativity in French national and regional policies Design and creativity in French national and regional policies p.01 15-06-09 French Innovation policy Distinction between technological innovation and non-technological innovation (including design) French

Plus en détail

OPPORTUNITÉ D INVESTISSEMENT / INVESTMENT OPPORTUNITY. ESPACES DE BUREAU À VENDRE / OFFICE SPACES FOR SALE 1211 University, Montréal, QC

OPPORTUNITÉ D INVESTISSEMENT / INVESTMENT OPPORTUNITY. ESPACES DE BUREAU À VENDRE / OFFICE SPACES FOR SALE 1211 University, Montréal, QC OPPORTUNITÉ D INVESTISSEMENT / INVESTMENT OPPORTUNITY ESPACES DE BUREAU À VENDRE / OFFICE SPACES FOR SALE 1211 University, Montréal, QC asgaard.ca p. 1 OPPORTUNITÉ D INVESTISSEMENT / INVESTMENT OPPORTUNITY

Plus en détail

ASSEMBLÉE LÉGISLATIVE DU YUKON LEGISLATIVE ASSEMBLY OF YUKON. First Session of the Thirty-third Legislative Assembly

ASSEMBLÉE LÉGISLATIVE DU YUKON LEGISLATIVE ASSEMBLY OF YUKON. First Session of the Thirty-third Legislative Assembly LEGISLATIVE ASSEMBLY OF YUKON First Session of the Thirty-third Legislative Assembly ASSEMBLÉE LÉGISLATIVE DU YUKON Première session de la trente-troisième Assemblée législative BILL NO. 46 ACT TO AMEND

Plus en détail

Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development. Bil.

Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development. Bil. A usage officiel/for Official Use C(2006)34 C(2006)34 A usage officiel/for Official Use Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development

Plus en détail

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Introduction Christophe Chorro, Alexandre Marino Ce document constitue, dans sa forme actuelle, un

Plus en détail

C est quoi, Facebook?

C est quoi, Facebook? C est quoi, Facebook? Si tu as plus de 13 ans, tu fais peut-être partie des 750 millions de personnes dans le monde qui ont un compte Facebook? Et si tu es plus jeune, tu as dû entendre parler autour de

Plus en détail

Association des Doctorants du campus STIC. Séminaires doctorants 11

Association des Doctorants du campus STIC. Séminaires doctorants 11 Association des Doctorants du campus STIC Séminaires doctorants 11 07 mars 2007 Actes édités par l association des doctorants du campus STIC. Les travaux individuels publiés restent l unique propriété

Plus en détail

Calculation of Interest Regulations. Règlement sur le calcul des intérêts CONSOLIDATION CODIFICATION. Current to August 4, 2015 À jour au 4 août 2015

Calculation of Interest Regulations. Règlement sur le calcul des intérêts CONSOLIDATION CODIFICATION. Current to August 4, 2015 À jour au 4 août 2015 CANADA CONSOLIDATION CODIFICATION Calculation of Interest Regulations Règlement sur le calcul des intérêts SOR/87-631 DORS/87-631 Current to August 4, 2015 À jour au 4 août 2015 Published by the Minister

Plus en détail

Marketing Régional et Mondial Copyright 2015 Miami Association of Realtors

Marketing Régional et Mondial Copyright 2015 Miami Association of Realtors MLS - Local and Global Marketing Marketing Régional et Mondial Copyright 2015 Miami Association of Realtors Teresa King Kinney CEO Miami Association of Realtors Miami Association of Realtors 40,000 Members

Plus en détail

Offre contractuelle de rachat sur emprunt obligataire GDF SUEZ

Offre contractuelle de rachat sur emprunt obligataire GDF SUEZ CORPORATE EVENT NOTICE: Offre contractuelle de rachat sur emprunt obligataire GDF SUEZ PLACE: Paris AVIS N : PAR_20150603_04282_EUR DATE: 03/06/2015 MARCHE: EURONEXT PARIS GDF SUEZ (l' Initiateur de l'offre)

Plus en détail

PROJET DE LOI. An Act to Amend the Employment Standards Act. Loi modifiant la Loi sur les normes d emploi

PROJET DE LOI. An Act to Amend the Employment Standards Act. Loi modifiant la Loi sur les normes d emploi 2nd Session, 57th Legislature New Brunswick 60-61 Elizabeth II, 2011-2012 2 e session, 57 e législature Nouveau-Brunswick 60-61 Elizabeth II, 2011-2012 BILL PROJET DE LOI 7 7 An Act to Amend the Employment

Plus en détail

Prescribed Deposits (Authorized Foreign Banks) Regulations. Règlement sur les dépôts (banques étrangères autorisées)

Prescribed Deposits (Authorized Foreign Banks) Regulations. Règlement sur les dépôts (banques étrangères autorisées) CANADA CONSOLIDATION CODIFICATION Prescribed Deposits (Authorized Foreign Banks) Regulations Règlement sur les dépôts (banques étrangères autorisées) SOR/2000-53 DORS/2000-53 Current to January 25, 2016

Plus en détail

Votre entrée dans le monde des plombiers. Entering a plumber world

Votre entrée dans le monde des plombiers. Entering a plumber world Votre entrée dans le monde des plombiers Entering a plumber world Jean-Denis Roy 9 janvier 2010 Quelle est la principale différence entre l université et le marché du travail? What is the main difference

Plus en détail

Loi sur le point de service principal du gouvernement du Canada en cas de décès

Loi sur le point de service principal du gouvernement du Canada en cas de décès CANADA CONSOLIDATION CODIFICATION Main Point of Contact with the Government of Canada in case of Death Act Loi sur le point de service principal du gouvernement du Canada en cas de décès S.C. 2015, c.

Plus en détail

APPENDIX 2. Provisions to be included in the contract between the Provider and the. Holder

APPENDIX 2. Provisions to be included in the contract between the Provider and the. Holder Page 1 APPENDIX 2 Provisions to be included in the contract between the Provider and the Obligations and rights of the Applicant / Holder Holder 1. The Applicant or Licensee acknowledges that it has read

Plus en détail

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION

Cheque Holding Policy Disclosure (Banks) Regulations. Règlement sur la communication de la politique de retenue de chèques (banques) CONSOLIDATION CANADA CONSOLIDATION CODIFICATION Cheque Holding Policy Disclosure (Banks) Regulations Règlement sur la communication de la politique de retenue de chèques (banques) SOR/2002-39 DORS/2002-39 Current to

Plus en détail

Analyse et Commande de Microscope à Effet Tunnel (STM)

Analyse et Commande de Microscope à Effet Tunnel (STM) Analyse et Commande de Microscope à Effet Tunnel (STM) Présenté par: Irfan Ahmad (Doctorant en 2 éme année) Encadré par: Alina Voda & Gildas Besançon GIPSA-lab, Département Automatique Grenoble, France

Plus en détail

EIGHTH SESSION. "Project Management"

EIGHTH SESSION. Project Management EIGHTH SESSION "Project Management" Objectifs : L objectif de cette scéance est d apprendre à analyser et à planifier un projet. A cette fin nous étudierons : 1) la méthode des chemins critiques (CPM)

Plus en détail

PAR_20141217_09543_EUR DATE: 17/12/2014. Suite à l'avis PAR_20141119_08654_EUR

PAR_20141217_09543_EUR DATE: 17/12/2014. Suite à l'avis PAR_20141119_08654_EUR CORPORATE EVENT NOTICE: Emission avec maintien du droit préférentiel de souscription, d obligations convertibles en actions ordinaires nouvelles assorties de bons de souscription d action («OCABSA») -

Plus en détail

Rational Team Concert

Rational Team Concert Une gestion de projet agile avec Rational Team Concert Samira Bataouche Consultante, IBM Rational France 1 SCRUM en Bref Events Artifacts Development Team Source: Scrum Handbook 06 Décembre 2012 Agilité?

Plus en détail

AINoE. Rapport sur l audition d AINoE Paris, 18 juin 2003

AINoE. Rapport sur l audition d AINoE Paris, 18 juin 2003 AINoE Abstract Interpretation Network of Excellence Patrick COUSOT (ENS, Coordinator) Rapport sur l audition d AINoE Paris, 18 juin 2003 Thématique Rapport sur l audition d AINoE Paris, 18 juin 2003 1

Plus en détail

UML : Unified Modeling Language

UML : Unified Modeling Language UML : Unified Modeling Language Recommended: UML distilled A brief guide to the standard Object Modeling Language Addison Wesley based on Frank Maurer lecture, Univ. of Calgary in french : uml.free.fr/index.html

Plus en détail

Choosing Your System Not sure where to start? There are six factors to consider when choosing your floor heating system:

Choosing Your System Not sure where to start? There are six factors to consider when choosing your floor heating system: Choosing Your System Not sure where to start? There are six factors to consider when choosing your floor heating system: 1.Which to choose: the cable or the mat? True Comfort offers two types of floor

Plus en détail

RESULTING FROM THE ANTI-SEMITIC LEGISLATION IN FORCE DURING THE OCCUPATION. (Decree 99-778 of September 10, 1999) QUESTIONNAIRE. Family Name...

RESULTING FROM THE ANTI-SEMITIC LEGISLATION IN FORCE DURING THE OCCUPATION. (Decree 99-778 of September 10, 1999) QUESTIONNAIRE. Family Name... COMMISSION FOR THE COMPENSATION OF VICTIMS OF SPOLIATION RESULTING FROM THE ANTI-SEMITIC LEGISLATION IN FORCE DURING THE OCCUPATION (Decree 99-778 of September 10, 1999) Case Number : (to remind in all

Plus en détail

eid Trends in french egovernment Liberty Alliance Workshop April, 20th 2007 French Ministry of Finance, DGME

eid Trends in french egovernment Liberty Alliance Workshop April, 20th 2007 French Ministry of Finance, DGME eid Trends in french egovernment Liberty Alliance Workshop April, 20th 2007 French Ministry of Finance, DGME Agenda What do we have today? What are our plans? What needs to be solved! What do we have today?

Plus en détail

Sujet de TPE PROPOSITION

Sujet de TPE PROPOSITION Single photon source made of single nanodiamonds This project will consist in studying nanodiamonds as single photon sources. The student will study the emission properties of such systems and will show

Plus en détail

Chauffage et Climatisation Heating and Air conditioning

Chauffage et Climatisation Heating and Air conditioning Chauffage et Climatisation Heating and Air conditioning Le partenaire de vos exigences The partner of your requirements Spécialiste reconnu de la robinetterie industrielle, SLIMRED est devenu un partenaire

Plus en détail

ICH Q8, Q9 and Q10. Krishnan R. Tirunellai, Ph. D. Bureau of Pharmaceutical Sciences Therapeutic Products Directorate Health Canada December 4, 2008

ICH Q8, Q9 and Q10. Krishnan R. Tirunellai, Ph. D. Bureau of Pharmaceutical Sciences Therapeutic Products Directorate Health Canada December 4, 2008 ICH Q8, Q9 and Q10 An Opportunity to Build Quality into Product Krishnan R. Tirunellai, Ph. D. Bureau of Pharmaceutical Sciences Therapeutic Products Directorate Health Canada December 4, 2008 Sequence

Plus en détail

POLICY: FREE MILK PROGRAM CODE: CS-4

POLICY: FREE MILK PROGRAM CODE: CS-4 POLICY: FREE MILK PROGRAM CODE: CS-4 Origin: Authority: Reference(s): Community Services Department Cafeteria Services and Nutrition Education Division Resolution #86-02-26-15B.1 POLICY STATEMENT All elementary

Plus en détail

OUVRIR UN COMPTE CLIENT PRIVÉ

OUVRIR UN COMPTE CLIENT PRIVÉ OUVRIR UN COMPTE CLIENT PRIVÉ LISTE DE VERIFICATION Pour éviter tous retards dans le traitement de votre application pour l ouverture d un compte avec Oxford Markets ( OM, l Entreprise ) Veuillez suivre

Plus en détail

GCSE Bitesize Controlled Assessment

GCSE Bitesize Controlled Assessment GCSE Bitesize Controlled Assessment Model 2 (for A/A* grade) Question 3 Subject: Topic: French Writing In this document you will find practical help on how to improve your grade. Before you start working

Plus en détail

GRAPHIC STANDARDS MANUAL

GRAPHIC STANDARDS MANUAL GRAPHIC STANDARDS MANUAL CHARTE GRAPHIQUE This Graphic Standards Manual is aimed at the relays of the Europe Direct information network. They are members of a single family dedicated to the same aim: the

Plus en détail

Public Inquiry (Authorized Foreign Banks) Rules. Règles sur les enquêtes publiques (banques étrangères autorisées) CONSOLIDATION CODIFICATION

Public Inquiry (Authorized Foreign Banks) Rules. Règles sur les enquêtes publiques (banques étrangères autorisées) CONSOLIDATION CODIFICATION CANADA CONSOLIDATION CODIFICATION Public Inquiry (Authorized Foreign Banks) Rules Règles sur les enquêtes publiques (banques étrangères autorisées) SOR/99-276 DORS/99-276 Current to October 15, 2015 À

Plus en détail

Official Documents for 2015 Marathon des Sables

Official Documents for 2015 Marathon des Sables Official Documents for 2015 Marathon des Sables Please take care when completing these documents they may be rejected if incorrect. They must be printed in colour and completed by hand. They must be posted

Plus en détail

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on ONTARIO Court File Number at (Name of court) Court office address Applicant(s) (In most cases, the applicant will be a children s aid society.) Full legal name & address for service street & number, municipality,

Plus en détail