Probabilités III Introduction à l évaluation d options

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités III Introduction à l évaluation d options"

Transcription

1 Probabilités III Introduction à l évaluation d options Jacques Printems Promotion

2 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique 3 Méthode de Monte-Carlo Réduction de variance Variables de contrôle.

3 Option exemple Une option européenne d achat (Call européen) est un contrat dont les conditions sont les suivantes : À un moment futur déterminé à l avance, désigné sous le terme maturité ou date d expiration ou encore échéance, son détenteur peut acheter un actif déterminé, désigné sous le terme d actif sous-jacent ou simplement sous-jacent pour un montant prescrit, désigné sous le terme de prix d exercice ou encore par l anglais strike.

4 Asymétrie du risque Notons S T la valeur de l actif risqué à l échéance T de l option et K le prix d exercice. Que peut-il se passer à la date T? Soit S T > K : le détenteur de l option achète donc l actif au prix d exercice, noté K. On dit qu il y a exercice de l option. Le vendeur de l option doit donc être en mesure de fournir la différence S T K. Soit S T < K : le détenteur de l option achète directement l actif au prix du marché. Le vendeur de l option n a rien à faire. Le risque est du côté du vendeur de l option. Q : Comment rétribuer ce risque? Quel prix pour cette option?

5 Bilans symétriques Valeur de l option à l échéance : Bilan du point de vue du vendeur : à l échéance de l option, le vendeur doit fournir la quantité S T K si S T > K, 0 si S T < K. Donc, dans le cas d une option d achat, le vendeur doit fournir la quantité (S T K) + = max(s T K, 0) à l échéance de l option. Bilan du point de vue de l acheteur : à l échéance de l option, dans le cas où S T > K, il achète un bien de valeur S T au prix K, son gain est donc de S T K ; dans le cas contraire, son gain est nul. Valeur de l option à l échéance =(S T K) +.

6 Options vanilles Cas général : on note h(s T ) la quantité que doit fournir le vendeur à l échéance. La fonction h s appelle l actif contingent ou en anglais la fonction de pay-off. Comme h ne dépend que de la valeur de l actif à l échéance, on parle d option vanille. Exemple : h(s T ) = (K S T ) + (option de vente) ; h(s T ) = (S T K) + (option d achat).

7 Actif risqué S t et actif sans risque B t (bon 0-coupon), t {0, 1}. t = 0 : S 0 et B 0 = 1. t = 1 : 2 scénarii possibles pour S 1 : soit S 1 = S 0 u > S 0, soit S 1 = S 0 d < S 0 t = 1 : B 1 = 1 + R.

8 Point de vue du vendeur Portefeuille de réplication Option vanille de maturité T = 1 de valeur terminale h(s 1 ). Portefeuille de valeur initiale V 0 contenant une proportion x d actifs risqué de valeur S 0 ; le reste noté y dans l actif non risqué (en liquide placé à un taux R). V 0 = x S 0 + y. Portefeuille de réplication portefeuille de valeur initiale V 0 qui fournit la quantité désirée à l échéance de l option, soit h(s 1 ). Q : Est-ce possible dans tous les cas? Comment choisir x et y? Quel est la valeur de V 0?

9 Réplication Valeur du portefeuille à l échéance : x S 0 u + (1 + R)y V 1 = x S 1 + (1 + R)y = x S 0 d + (1 + R)y si l actif a monté, sinon. Contraintes de réplication : h(s 0 u) V 1 = h(s 1 ) = h(s 0 d) si l actif a monté, sinon. Deux inconnues x et y, deux équations = une unique solution!

10 Prime et stratégie de couverture On résoud le système linéaire 2 2 : x = h(s 0u) h(s 0 d) S 0 (u d), y = h(s 0d)u h(s 0 u)d, (1 + R)(u d) En injectant ces relations dans V 0 = S 0 x + y : V 0 = 1 [ ( ) ( )] 1 + R d u (1 + R) h(s 0 u) + h(s 0 d) 1 + R u d u d Idée centrale : Prime de l option coût de la stratégie de réplication le montant initial du portefeuille qui la réplique.

11 Probabilités risque-neutre Supposons que d 1 + R u, on pose alors p = 1 + R d u d 0, q = u 1 R u d 0, p + q = 1. Les nombres {p, q} sont les probabilités risque-neutres du modèle : { } Ω = {S 1 = S 0 u}, {S 1 = S 0 d} ; p = P(S 1 = S 0 u), q = P(S 1 = S 0 d). On réécrit alors V 0 = R ( ) p h(s 0 u) + q h(s 0 d) = 1 ( ) 1 + R E h(s 1 ).

12 Stratégie d arbitrage Que se passe-t-il, par exemple, si 1 + R > u? On vend le stock S 0 et on le place le tout dans le 0-coupon : x = 1, y = S 0 = V 0 = 0. À l échéance, on a : V 1 = (1 + R) Z avec Z = u ou Z = d. Dans tous les cas V 1 > 1 + R u > 0 : on a réalisé un arbitrage. Stratégie d arbitrage : c est un portefeuille V tel que V 0 = 0, et V 1 > 0 avec probabilité 1.

13 Principe d Abscence d Opportunité d Arbitrage (1) d 1 + R u Pas de stratégies d arbitrage possibles. En effet, considérons un portefeuille de valeur initiale nulle V 0 = 0 : S 0 x + y = 0 = y = S 0 x. À l échéance, on a x S 0 (u (1 + R)) si S 1 = S 0 u, V 1 = S 1 x + y = x S 0 (d (1 + R)) sinon. Donc si x > 0 alors on a à la fois u > 1 + R et d > 1 + R ce qui viole les inégalités (1). Idem si x < 0.

14 Probabilités risque-neutre versus historiques On suppose d 1 + R u, on pose p = 1 + R d u d 0, q = u 1 R u d 0, p + q = 1. p représente la probabilité de monter de l actif risqué et q la probabilité de descendre. Ces probabilités sont issues d une réflexion sur la stratégie de couverture du vendeur en fonction d un modèle sur l évolution future de S t. En aucun cas, il ne s agit de probabilités historiques issues de statistiques sur le passé de l actif.

15 Signification du prix de l option Le concept de portefeuille de réplication, issu du point de vue du vendeur de l option, permet de donner un sens au prix de l option : le prix de l option est la valeur initiale du portefeuille qui la réplique. Autre sens : le prix de l option à t = 0 est l espérance actualisé de sa valeur à l échéance V 0 = R E h(s 1) = R E V 1.

16 Bilan : Marché viable, marché complet Marché : Dans le contexte présent, il s agit d un ensemble de d actifs risqués et d un actif non risqué. Marché viable : Un marché où il n y a pas d opportunité d arbitrage. Définition équivalente : Un marché pour lequel il existe une probabilité P risque-neutre, c.-à-d. sous laquelle l espérance des différents actifs risqués est égale aux prix forward E P (S i T ) = (1 + R)S i 0, i = 1..., d. Marché complet : Un marché où tout actif conditionnel (le pay-off) est réplicable. Définition équivalente : Un marché pour lequel il existe une unique probabilité P risque-neutre.

17 Deux faces de la même médaille SOIT on cherche les probabilités telles que S 1 1 p p M = 1, p 1 S 1,1 + p M S 1,M = (1 + R)S 0 p 1 2 équations, M inconnnues : existence de solutions mais pas unicité en général. S 2 1 SOIT on cherche une stratégie (x, y) telle que S 0 p 2 xs 1,1 + y(1 + R) = h(s 1,1 ),. xs 1,M + y(1 + R) = h(s 1,M ) 1 p M S M R M équations, 2 inconnnues : pas de solutions en général (couverture partielle). Il existe donc des pay-offs non réplicables. V 0 = xs 0 + y, 1 V 0 = 1 + R (p 1h(S 1,i ) + + p M h(s 1,M )).

18 Un modèle discret où t = 0, 1, 2,..., T Deux sous-jacents : un actif risqué S t et un sans risque B t ; B t+1 = (1 + R) B t, B 0 = 1, t = 0, 1,... T 1, S t+1 = S t Z t, S 0 = s, t = 0, 1,... T 1. Z 0, Z 1,..., Z T 1 variables aléatoires i.i.d. ne prenant que deux valeurs : u > 1 et d < 1 telles que P(Z n = u) = p = 1 P(Z n = d).

19 Exemple T=3 périodes Arbre recombinant : S 0 = s, u > 1, d < 1 su 3 su 2 su su 2 d s sud sd sud 2 sd 2 sd 3

20 Stratégie d allocation de portefeuille Un portefeuille V t contenant x t proportion d actifs risqué et y t proportion d actifs sans risque : V t = x t S t + (1 + R)y t, t = 1,... T. y t = quantité de liquide investie en banque à la date t 1 et gardée jusqu à la date t ; x t = quantité d actifs risqué acheté à la date t 1 et gardée jusqu à la date t. t 1 (x t, y t ) t (x t, y t ) V t 1 = x t S t 1 + y t V t = x t S t + (1 + R)y t

21 Stratégie auto-financée t 1 t t + 1 (x t, y t ) (x t, y t ) V t 1 = x t S t 1 + y t V t = x t S t + y t (1 + R) t t + 1 (x t+1, y t+1 ) (x t+1, y t+1 ) V t = x t+1 S t + y t+1 V t+1 = x t+1 S t+1 + y t+1 (1 + R)

22 Bilan de la stratégie autofinancée V t = x t+1 S t + y t+1 = x t S t + y t (1 + R) À chaque date t, la valeur de l ancien portefeuille (x t, y t ) constitué à la date t 1 est égale à la valeur du nouveau portefeuille (x t+1, y t+1 ) formé à la date t jusqu à t + 1. L acquisition d un nouveau montant d actifs est financé par la vente d un autre. On exclut donc a priori l hypothèse de consommation entre deux dates ou l injection de liquide au cours du temps.

23 Stratégie d arbitrage Une stratégie d arbitrage est une stratégie auto-financée {(x t, y t ), t = 0,... T 1} telle que la valeur V t du portefeuille associé satisfait les trois propriétés suivantes : V 0 = 0, P(V T 0) = 1, P(V T > 0) > 0. Retour au modèle : Si le modèle est libre d arbitrage alors d 1 + R u (voir le modèle à une période). On supposera donc d < u de sorte que cette inégalité soit vérifiée.

24 Probabilités risque-neutre Les probabilités p et q = 1 p sont choisis de sorte que s = 1 ( ) 1 + R E S t+1 S t = s. On dit que ce sont les probabilités risque-neutre du modèle ou encore les probabilités martingales. Dans le cas du modèle binomial, ces probabilités sont données par p = 1 + R d u (1 + R), q = u d u d

25 Application au calcul récursif des prix S t = R E ( S t+1 S t ), On dit que l actif actualisé est une martingale. Conséquence de l autofinancement : V t+1 (1 + R)V t = x t+1 (S t+1 (1 + R)S t ) = V t = R E ( V t+1 S t ). Le portefeuille de réplication est également une martingale.

26 Exemple Le modèle calibré S 0 = 80, u = 1.5, d = 0.5, R = 0, N = 3 périodes

27 Exemple Une option d achat à t = 3 V 3 = (S 3 K) +, K =

28 Exemple Calcul de la prime à t = 2 V 2 = R E(V 3 S 2 )

29 Exemple La prime à t = 0 V t = R E(V t+1 S t ), t = 0,

30 Exemple La stratégie de réplication x t = V t+1(s t u) V t+1 (S t d) S t (u d) x = 1, y = x = 95/120, y = x = 5/8 x = 1/6, y = y = 22.5 x = 1/8, y = x = 0, y =

31 Calibration d un modèle binomial Représentation en N périodes d un modèle continu en temps sur un intervalle [0, T ]. Soit h = T /N le pas de temps. But : Calcul de u, d et R en fonction des paramètres du modèle continu. ( Ex : modèle log-normal S h = S 0 exp (r σ 2 /2)h + σ ) hz. Les contraintes de bases sont d identifier les premiers moments du modèle : p u + (1 p) d = E(S h /S 0 ) ) = exp(rh) = 1 + R, p u 2 + (1 p) d 2 = E ((S h /S 0 ) 2 = exp(2rh + σ 2 h). Paramétrage CRR : h = T /N, p = (1 + R d)/(u d), q = 1 p, u = exp(σ h), d = exp( σ h).

32 Modèle binomial avec N = 10 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

33 Modèle binomial avec N = 100 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

34 Mode le a temps discret Technique de simulation et re duction de variance Limite du mode le binomial lorsque N + Un mode le simple des prix d actifs Embryon de calcul stochastique Mode le binomial avec N = Probabilite s III Introduction a l e valuation d options

35 Une trajectoire du mouvement brownien 2 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

36 Le mouvement brownien Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Definition Le mouvement brownien standard est un processus stochastique, c.-à-d. une famille de v.a. indexée par le temps {B t } t 0 tel que B 0 = 0 ses accroissements sont indépendants, c.-à-d. pour tout t > s, B t B s indépendant de B s, stationnaires tel que pour t > s, et ses trajectoires continues. B t B s N (0, (t s)),

37 Hypothèse d efficience des marchés Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Le prix actuel d un actif reflète tout l historique des prix passés. Toute nouvelle information implique un réponse immédiate du marché sur les prix. Modéliser le prix d un actif (risqué) modéliser l arrivée de nouvelles informations

38 Processus des prix Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique S = prix d un actif risqué à la date t. t t + dt = S S + ds ds S = µ dt + σ db rendement déterministe du prix de l actif µ : taux moyen de croissance de l actif risqué, changements aléatoires dûs à des causes externes σ : volatilité de l actif qui mesure l écart-type des rendements. Les accroissements sont gaussiens centrés : db N (0, dt) = dt N (0, 1)

39 Le lemme d Itô Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Dans la réalité, les prix sont côtés en temps discret. La variable dt ne peut pas descendre en dessous d une certaine limite. Cependant, il peut être plus efficace de considérer des modèles continus en temps lorsque dt 0. db 2 dt lorsque dt 0. S S + ds = f + df : df = f S ds f 2 S ds (ds) 2 = σ 2 S 2 db 2 + 2σµS 2 dtdb + µ 2 S 2 dt 2 σ 2 S 2 dt. Lemme d Itô df = f S (σs db + µs dt) σ2 S 2 2 f S 2 dt = σs f S db + ( µs f S σ2 S 2 2 f S 2 ) dt

40 Back to Black Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique On applique le lemme d Itô à f (x) = ln(x) : d ln(s) = 1 S σs db + (µs 1 S σ2 S 2 ( )) 1 S 2 dt, soit ou encore ou encore d ln(s) = σdb + ln(s) ln(s 0 ) = σb t + S t = S 0 exp ) (µ σ2 dt, 2 ) (µ σ2 t, 2 ) ) ((µ σ2 t + σb t. 2

41 Application aux pricing d options Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique V t = valeur à la date t d une option vanille de pay-off h et de maturité T sur un sous-jacent S. Point de vue du vendeur : constitution d un portefeuille P t = V t x t S t, rétribué au taux sans-risque r : P t = P 0 e rt. P t qté d actifs non risqué, x t qté d actifs risqué. Inconnues : V t et x t.

42 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Hypothèse de départ : V t = V (t, S t ). Bilan entre t et t + dt (x t = x pendant [t, t + dt[) : P t+dt = V (t + dt, S t+dt ) x S t+dt P t = V (t, S t ) x S t = P t+dt P t = dv x ds D après le lemme d Itô : dv = σs V S db + ( V t V + µs S + σ2 S 2 2 ) V 2 S 2 dt, ds = S(µdt + σsdb).

43 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Bilan des équations : P t+dt P t = r (V xs)dt = σs V ( V S db + t x(µsdt + σsdb) Identification des termes en db et dt : x = V S, V + µs S + σ2 S 2 2 ) V 2 S 2 dt (couverture en delta neutre) r(v xs) = V t V + µs S + σ2 S 2 2 V 2 S 2 µxs

44 Raisonnement par arbitrage Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Par unité de temps : V t + σ2 S 2 2 V } {{ 2 S 2 } Rendement du portefeuille de réplication V t ( = r V S V ), S } {{ } Rendement de la partie non risqué en dépôt P t Si V t + σ2 S 2 2 ( V 2 S 2 > r V S V ) : on emprunte une qté P t S que l on investi dans le portefeuille V t ; profit sans risque. Si V t + σ2 S 2 2 ( V 2 S 2 < r V S V ) : on shorte le portefeuille et S on met en dépôt le résultat.

45 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Équation aux Dérivées Partielles de B&S (1973) Black, F. et Scholes, M. (1973), The pricing of options and corporate liabilities, J. Pol. Econ. 81, V t + σ2 S 2 2 ( V 2 S 2 r V S V ) = 0, S avec la donnée terminale V (T, S) = h(s).

46 Nécessité des simulations Méthode de Monte-Carlo Réduction de variance Variables de contrôle Soit X : Ω R d et F : R d R tels que E(F (X )) 2 < +. On souhaite approcher c = E F (X ). Exemples : X = (ST 1,..., S T d ) un panier de d stocks à la date T et F (X ) = (λ 1 ST λ dst d K) + (call sur indice). X = (S 1 T, S 2 T ) et F (X ) = (S 1 T S 2 T K) + (call spread). Problèmes : même dans le cas du modèle log-normal, il n y a pas de formules explicites (ex : B&S ), d où un recours à la simulation : méthode de Monte-Carlo. Outils théoriques : loi des grands nombres et théorème central de la limite.

47 Méthode de Monte-Carlo Méthode de Monte-Carlo Réduction de variance Variables de contrôle Étant donné un échantillon (Y i ) 1 i M de taille M d une population Y (mathématiquement un famille de v.a. indépendantes et de même loi que Y ), on calcule la moyenne de l échantillon Y = 1 M M Y i, i=1 alors lorsque M tend vers + on a les deux convergences suivantes : Y E(Y 1 ) (loi des grands nombres) Y N (E(Y 1 ), σ 2 (Y 1 )/M) (TCL) Bilan : l erreur Y E(Y 1 ) se réparti asymptotiquement selon une distribution gaussienne centré et d écart-type : σ(y 1 )/ M et ceci quelque soit la distribution de Y.

48 Application Méthode de Monte-Carlo Réduction de variance Variables de contrôle On applique le principe précédent à Y = F (X ) et Y i = F (X i ). Donc si l on sait générer des copies indépendantes X i et de même loi que X (des scénarios), la méthode de Monte-Carlo permet d estimer la moyenne de F (X ), c.-à-d. E(F (X )), et la méthode génère sa propre estimation de l erreur σ(f (X ))/ M : on remplace σ(f (X )) par l écart-type empirique de l échantillon s(f (X )) = 1 M 1 M (F (X i ) Y ) 2 i=1 La convergence est lente 1/ M mais indépendante de d (!) Un réduction de σ(f (X )) permet de gagner beaucoup en temps de calcul.

49 Réduire la variance Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle ; «Importance sampling» ; Variables antithetiques ; Stratification ; Conditionnement ;...

50 Variable de contrôle Méthode de Monte-Carlo Réduction de variance Variables de contrôle Idée : écrire E(F (X )) comme E(F (X ) H(X )) + EH(X ) = a + b, où a est estimé en utilisant une simulation Monte-Carlo, a = 1 M (F (X m ) H(X m )) M m=1 et où b = EH(X ) peut être calculé explicitement. Le choix de H est guidé par le fait que Var(F (X ) H(X )) < Var(F (X )).

51 Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle : version optimisation La recherche de H peut s optimiser dans certains cas : soit Z = F (X ) H(X ) + E(H(X )), Z = F (X ) et λ R. On pose Z λ = (1 λ)z + λz. Alors les trois v.a. ont la même espérance : E(Z λ ) = E(Z) = E(Z ) = c et on peut essayer d estimer E(Z λ ) de sorte que λ = argmin λ R Var(Z λ ) = Cov(Z Z, Z) Var(Z. Z)

52 Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle et relation de parité Z = exp( rt )(S T K) + (CALL), Z = exp( rt )(K S T ) + + S 0 K exp( rt ) (CALL parité) D après la relation de parité E(Z) = E(Z ) =Prix du Call. Or la variance de Z est la variance du Call et la variance de Z est celle du Put : laquelle est la plus petite? Optimisation : Z λ = λz + (1 λ)z, recherche du meilleur λ (Cf. TP 1). Avantage : indépendant du modèle (B&S, vol locale, vol sto,...) Ne dépend que du produit (ici call vanille) pour lequel il existe une relation de parité. S adapte donc au cas asiatique par exemple.

53 Variable de contrôle géométrique Méthode de Monte-Carlo Réduction de variance Variables de contrôle X i valeurs d actifs B&S à une date T, indépendants, de volatilité σ i et de prix spot x i. Soit λ i > 0 poids de somme 1. Call sur panier F (X ) = (λ 1 X λ d X d K) +, Call sur panier géométrique (abstrait) H(X ) = (X λ1 1 X λ d d K) + On peut voir Z = X λ1 1 X λ d d comme un actif B&S. Quelle volatilité? (Cf. TP 1). Donc E(H(X )) se calcule par une formule de B&S. Laquelle? Ici a = E(F (X ) H(X )) est estimé selon Monte-Carlo et b = E(H(X )) est calculé explicitement grâce à une fromule de B&S. Prix final E(F (X )) = a + b.

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières

Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Master ISIFAR 2ème année Exercices pour le cours Mathématiques Financières Chapitre 1 Exercice 1. * Calculer le prix à terme d échéance T d une obligation de nominal N, qui verse un coupon C à la date

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton

3. Evaluer la valeur d une option. 1. Arbres binomiaux 2. Modèle de Black, Scholes et Merton 3. Evaluer la valeur d une option 1. Arbres binomiaux. Modèle de Black, choles et Merton 1 Les arbres binomiaux ; évaluation des options sur actions Cox, Ross, Rubinstein 1979 Hypothèse absence opportunité

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Couverture et calcul de Malliavin

Couverture et calcul de Malliavin Couverture et calcul de Malliavin L. Decreusefond TPT L. Decreusefond (TPT) Couverture et calcul de Malliavin 1 / 1 Modèle binomial L. Decreusefond (TPT) Couverture et calcul de Malliavin 2 / 1 Modèle

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Calcul stochastique appliqué à la finance. Romuald ELIE & Idris KHARROUBI

Calcul stochastique appliqué à la finance. Romuald ELIE & Idris KHARROUBI Calcul stochastique appliqué à la finance Romuald ELIE & Idris KHARROUBI . Table des matières 1 Notion d arbitrage 5 1.1 Hypothèses sur le marché............................ 5 1.2 Arbitrage....................................

Plus en détail

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Huyên PHAM Université Paris 7 Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599 pham@math.jussieu.fr Version

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite

Calcul stochastique appliqué à la finance. Volatilités stochastique, locale et implicite Calcul stochastique appliqué à la finance Ioane Muni Toke Draft version Ce document rassemble de brèves notes de cours. Les résultats sont proposés sans démonstration, les preuves ayant été données en

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

Année 2009/2010. Rapport de projet de dernière année ISIMA F4

Année 2009/2010. Rapport de projet de dernière année ISIMA F4 Année 2009/2010 Rapport de projet de dernière année ISIMA F4 «Evaluation d options Européenne Vanille, Américaine Vanille et Asiatique» Elaboré par : Encadré par : Monsieur Mehdi Fhima Résumé Les options

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance

Master Modélisation Statistique M2 Finance - chapitre 0. Introduction au cours de finance Master Modélisation Statistique M2 Finance - chapitre 0 Introduction au cours de finance Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein

Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Obtention de la formule de Black-Scholes par passage à la limite dans le modèle de Cox-Ross-Rubinstein Introduction Christophe Chorro, Alexandre Marino Ce document constitue, dans sa forme actuelle, un

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Economie, finance et mathématiques

Economie, finance et mathématiques Economie, finance et mathématiques de la réalité à la modélisation Conférence de l APMEP Laon 2015 Laurence Carassus URCA Plan de l exposé Les produits financiers Formalisation mathématique et évaluation

Plus en détail

Volatilité stochastique : étude d un modèle ergodique.

Volatilité stochastique : étude d un modèle ergodique. Volatilité stochastique : étude d un modèle ergodique. Julien Guyon julien.guyon@polytechnique.fr novembre Table des matières 1 Introduction 5 1.1 Notations............................. 5 1. Interprétation...........................

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Evaluation et couverture de produits dérivés» Etudiants : Colonna Andrea Pricing d'un Call Lookback par Monte Carlo et Ponts Browniens Rapport de Projet

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

B&S Pratique et limites

B&S Pratique et limites B&S Pratique et limites Christophe Chorro (christophe.chorro@univ-paris1.fr) Université Paris 1 Décembre 2008 hristophe Chorro (christophe.chorro@univ-paris1.fr) (Université Paris BS 1) Pratique et limites

Plus en détail

Formation ESSEC Gestion de patrimoine

Formation ESSEC Gestion de patrimoine Formation ESSEC Gestion de patrimoine Séminaire «Savoir vendre les nouvelles classes d actifs financiers» Les options Plan Les options standards (options de 1 ère génération) Les produits de base: calls

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

Document d implémentation - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO - Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO Grenoble, 11 juin 2012 Table des matières 1 Avant-propos 3 2 Présentation de l architecture du logiciel 3 2.1 Core..........................................

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

3- Valorisation d'options

3- Valorisation d'options 3- Valorisation d'options Valorisation des options classiques : options d'achat (call) options de vente (put) Une pierre angulaire de la finance moderne : décisions d'investissement (options réelles) conditions

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures Chapitre 2 Les produits dérivés Di érents types des taux d intérêt. Formule de valorisation d un forward sur un actif financier (action, obligation). Classification des options et terminologie associée,

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

Méthodes de Monte Carlo pour le pricing d options

Méthodes de Monte Carlo pour le pricing d options Méthodes de Monte Carlo pour le pricing d options Mohamed Ben Alaya 14 février 2013 Nous allons tester les différentes méthodes probabilistes vu dans le cours en l appliquant au calcul du call ou le put

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Couverture dynamique des produits dérivés de crédit dans les modèles à copules

Couverture dynamique des produits dérivés de crédit dans les modèles à copules Couverture dynamique des produits dérivés de crédit dans les modèles à copules David Kurtz, Groupe de Recherche Opérationnelle Workshop Copula in Finance, 14 mai 2004, ENS Cachan Sommaire 1 Le marché des

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

Chapitre 9 Le modèle Cox-Ross-Rubinstein

Chapitre 9 Le modèle Cox-Ross-Rubinstein Chapitre 9 Le modèle Cox-Ross-Rubinstein Considérons un actif valant S 0 à la période initiale et qui, à chaque période, peut être haussier (et avoir un rendement u) avec une probabilité p ou baissier

Plus en détail

Options exotiques complexes

Options exotiques complexes Options exotiques complexes Cette série d exercices porte sur les options exotiques (chapitre 14 ) avec éventuellement des taux d intérêt stochastiques (chapitres 16 et 17). Les exercices les plus difficiles

Plus en détail

Sfev. Matinales de la SFEV. Bsar, stock options, management package les modèles d évaluation d options dans la pratique

Sfev. Matinales de la SFEV. Bsar, stock options, management package les modèles d évaluation d options dans la pratique Sfev Matinales de la SFEV Bsar, stock options, management package les modèles d évaluation d options dans la pratique Thomas Bouvet, Directeur Général délégué d Europe Offering Frédéric Dubuisson, Director

Plus en détail

Chapitre 5 : produits dérivés

Chapitre 5 : produits dérivés Chapitre 5 : produits dérivés 11.11.2015 Plan du cours Options définition profil de gain à l échéance d une option déterminants du prix d une option Contrats à terme définition utilisation Bibliographie:

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Introduction aux produits de taux d intérêts

Introduction aux produits de taux d intérêts Introduction aux produits de taux d intérêts R&D Banque CPR 8 avril 2002 Plan 1. Notations et préliminaires 2. Euribor, caplets, caps 3. Swaps, swaptions 4. Constant Maturity Swap (CMS) 5. Quelques produits

Plus en détail

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel

Évaluation des options américaines par méthodes de Monte-Carlo. Jacky Mochel Évaluation des options américaines par méthodes de Monte-Carlo Jacky Mochel 3 décembre 2002 1 2 TABLE DES MATIÈRES Table des matières 1 Introduction 3 1.1 Définitions et notations..............................

Plus en détail

Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis. François Delarue

Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis. François Delarue Cours Produits dérivés M1 IM Université Nice Sophia-Antipolis François Delarue CHAPITRE 1 Actifs et exemples de dérivés Dans ce chapitre, nous discutons de la notion d actif financier et d actif dérivé

Plus en détail

Stratégies sur options et Pricer d'options

Stratégies sur options et Pricer d'options Stratégies sur options et Pricer d'options Définition Une option (ou Warrant) est un contrat qui confère à son porteur le droit d acheter ou de vendre un sous-jacent (action, obligation, indice synthétique,

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

Processus de diusion. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Processus de diusion. Olivier Scaillet. University of Geneva and Swiss Finance Institute Processus de diusion Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Mouvement brownien 2 Intégrale d'itô 3 Processus de diusion 4 Black-Scholes 5 Assurance vie indexée 6 Modèle

Plus en détail

Pricing d options asiatiques par les méthodes de Monte Carlo

Pricing d options asiatiques par les méthodes de Monte Carlo Pricing d options asiatiques par les méthodes de Monte Carlo BARRY IBRAHIMA et FRELE JEAN-MARC Février Première partie Présentation et algorithmes Introduction Nées sur le marché des changes de okyo, d

Plus en détail

Finance des matières premières (2) Les options, marchés complets, AOA

Finance des matières premières (2) Les options, marchés complets, AOA Finance des matières premières (2) Les options, marchés complets, AOA Joël Priolon - 12 mars 2014 Définition générale Une option est un contrat financier qui lie : l émetteur de l option et le détenteur

Plus en détail

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti pierre.andreoletti@univ-orleans.fr Bureau E15 1 / 20 Objectifs du cours Définition

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Projet de Modélisations avancées en Assurance

Projet de Modélisations avancées en Assurance ISFA M2R SAF Projet de Modélisations avancées en Assurance Evaluation et couverture de garanties plancher sur des Contrats en unité de compte Thierry Moudiki, Xavier Milhaud 2 juin 2008 . 1 Table des matières

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Les changements de numéraire dans la tarification de produits financiers

Les changements de numéraire dans la tarification de produits financiers INMA 2990 - Travail de fin d études Les changements de numéraire dans la tarification de produits financiers Pajot Benjamin Promoteur Devolder Pierre Juin 2010 Table des matières Introduction 1 1 Mesures

Plus en détail

Calibration des modèles

Calibration des modèles Calibration des modèles Rapport de projet de fin d études Auteur : Professeurs responsables : LEFEVERE Laurent FINTZ Nesim LONGEVIALLE Antoine TAFLIN Erik MANOLESSOU Marietta Table des matières Introduction

Plus en détail

Evaluation d actifs financier et Arbitrage

Evaluation d actifs financier et Arbitrage TD M1 Evaluation d actifs financier et Arbitrage Université Paris-Dauphine 1 Arbitrage Exercice 1 : Payoffs et stratégies Donner et tracer les payoffs à maturité des stratégies suivantes. Interprétez l

Plus en détail

Le risque de crédit. DeriveXperts. 23 juillet 2010

Le risque de crédit. DeriveXperts. 23 juillet 2010 23 juillet 2010 Définitions Exemples - Interactions Obligations Credit Default Swap (CDS) First To Default Collateralized Debt Obligation (CDO) Probabilité de défaut Le modèle exponentiel dynamique - Introduction

Plus en détail

Portefeuille - Probabilité risque neutre

Portefeuille - Probabilité risque neutre Portefeuille - Probabilité risque neutre Marché complet sans opportunité d arbitrage ½/ Actifs risqué et non risqué Constitution du portefeuille On notera F n l information dont on dispose à l instant

Plus en détail

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart

Delta couverture de produits dérivés en Finance. ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Delta couverture de produits dérivés en Finance ESILV Ingénierie Financière S8 Cours du 24 avril 2012 Partie 2 Marie Bernhart Plan de la présentation Couverture de produits dérivés en Finance Principe

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Pricing de CDS forward

Pricing de CDS forward Pricing de CDS forward SOFYAE THABET HASSA HAJISADEGHIA YASSIE HADDAOUI 4 mars 2008 Le but de ce rapport est de présenter une méthode de pricing des CDS forward. Le marché des Credit Default Swap a connu

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail