Probabilités III Introduction à l évaluation d options

Dimension: px
Commencer à balayer dès la page:

Download "Probabilités III Introduction à l évaluation d options"

Transcription

1 Probabilités III Introduction à l évaluation d options Jacques Printems Promotion

2 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique 3 Méthode de Monte-Carlo Réduction de variance Variables de contrôle.

3 Option exemple Une option européenne d achat (Call européen) est un contrat dont les conditions sont les suivantes : À un moment futur déterminé à l avance, désigné sous le terme maturité ou date d expiration ou encore échéance, son détenteur peut acheter un actif déterminé, désigné sous le terme d actif sous-jacent ou simplement sous-jacent pour un montant prescrit, désigné sous le terme de prix d exercice ou encore par l anglais strike.

4 Asymétrie du risque Notons S T la valeur de l actif risqué à l échéance T de l option et K le prix d exercice. Que peut-il se passer à la date T? Soit S T > K : le détenteur de l option achète donc l actif au prix d exercice, noté K. On dit qu il y a exercice de l option. Le vendeur de l option doit donc être en mesure de fournir la différence S T K. Soit S T < K : le détenteur de l option achète directement l actif au prix du marché. Le vendeur de l option n a rien à faire. Le risque est du côté du vendeur de l option. Q : Comment rétribuer ce risque? Quel prix pour cette option?

5 Bilans symétriques Valeur de l option à l échéance : Bilan du point de vue du vendeur : à l échéance de l option, le vendeur doit fournir la quantité S T K si S T > K, 0 si S T < K. Donc, dans le cas d une option d achat, le vendeur doit fournir la quantité (S T K) + = max(s T K, 0) à l échéance de l option. Bilan du point de vue de l acheteur : à l échéance de l option, dans le cas où S T > K, il achète un bien de valeur S T au prix K, son gain est donc de S T K ; dans le cas contraire, son gain est nul. Valeur de l option à l échéance =(S T K) +.

6 Options vanilles Cas général : on note h(s T ) la quantité que doit fournir le vendeur à l échéance. La fonction h s appelle l actif contingent ou en anglais la fonction de pay-off. Comme h ne dépend que de la valeur de l actif à l échéance, on parle d option vanille. Exemple : h(s T ) = (K S T ) + (option de vente) ; h(s T ) = (S T K) + (option d achat).

7 Actif risqué S t et actif sans risque B t (bon 0-coupon), t {0, 1}. t = 0 : S 0 et B 0 = 1. t = 1 : 2 scénarii possibles pour S 1 : soit S 1 = S 0 u > S 0, soit S 1 = S 0 d < S 0 t = 1 : B 1 = 1 + R.

8 Point de vue du vendeur Portefeuille de réplication Option vanille de maturité T = 1 de valeur terminale h(s 1 ). Portefeuille de valeur initiale V 0 contenant une proportion x d actifs risqué de valeur S 0 ; le reste noté y dans l actif non risqué (en liquide placé à un taux R). V 0 = x S 0 + y. Portefeuille de réplication portefeuille de valeur initiale V 0 qui fournit la quantité désirée à l échéance de l option, soit h(s 1 ). Q : Est-ce possible dans tous les cas? Comment choisir x et y? Quel est la valeur de V 0?

9 Réplication Valeur du portefeuille à l échéance : x S 0 u + (1 + R)y V 1 = x S 1 + (1 + R)y = x S 0 d + (1 + R)y si l actif a monté, sinon. Contraintes de réplication : h(s 0 u) V 1 = h(s 1 ) = h(s 0 d) si l actif a monté, sinon. Deux inconnues x et y, deux équations = une unique solution!

10 Prime et stratégie de couverture On résoud le système linéaire 2 2 : x = h(s 0u) h(s 0 d) S 0 (u d), y = h(s 0d)u h(s 0 u)d, (1 + R)(u d) En injectant ces relations dans V 0 = S 0 x + y : V 0 = 1 [ ( ) ( )] 1 + R d u (1 + R) h(s 0 u) + h(s 0 d) 1 + R u d u d Idée centrale : Prime de l option coût de la stratégie de réplication le montant initial du portefeuille qui la réplique.

11 Probabilités risque-neutre Supposons que d 1 + R u, on pose alors p = 1 + R d u d 0, q = u 1 R u d 0, p + q = 1. Les nombres {p, q} sont les probabilités risque-neutres du modèle : { } Ω = {S 1 = S 0 u}, {S 1 = S 0 d} ; p = P(S 1 = S 0 u), q = P(S 1 = S 0 d). On réécrit alors V 0 = R ( ) p h(s 0 u) + q h(s 0 d) = 1 ( ) 1 + R E h(s 1 ).

12 Stratégie d arbitrage Que se passe-t-il, par exemple, si 1 + R > u? On vend le stock S 0 et on le place le tout dans le 0-coupon : x = 1, y = S 0 = V 0 = 0. À l échéance, on a : V 1 = (1 + R) Z avec Z = u ou Z = d. Dans tous les cas V 1 > 1 + R u > 0 : on a réalisé un arbitrage. Stratégie d arbitrage : c est un portefeuille V tel que V 0 = 0, et V 1 > 0 avec probabilité 1.

13 Principe d Abscence d Opportunité d Arbitrage (1) d 1 + R u Pas de stratégies d arbitrage possibles. En effet, considérons un portefeuille de valeur initiale nulle V 0 = 0 : S 0 x + y = 0 = y = S 0 x. À l échéance, on a x S 0 (u (1 + R)) si S 1 = S 0 u, V 1 = S 1 x + y = x S 0 (d (1 + R)) sinon. Donc si x > 0 alors on a à la fois u > 1 + R et d > 1 + R ce qui viole les inégalités (1). Idem si x < 0.

14 Probabilités risque-neutre versus historiques On suppose d 1 + R u, on pose p = 1 + R d u d 0, q = u 1 R u d 0, p + q = 1. p représente la probabilité de monter de l actif risqué et q la probabilité de descendre. Ces probabilités sont issues d une réflexion sur la stratégie de couverture du vendeur en fonction d un modèle sur l évolution future de S t. En aucun cas, il ne s agit de probabilités historiques issues de statistiques sur le passé de l actif.

15 Signification du prix de l option Le concept de portefeuille de réplication, issu du point de vue du vendeur de l option, permet de donner un sens au prix de l option : le prix de l option est la valeur initiale du portefeuille qui la réplique. Autre sens : le prix de l option à t = 0 est l espérance actualisé de sa valeur à l échéance V 0 = R E h(s 1) = R E V 1.

16 Bilan : Marché viable, marché complet Marché : Dans le contexte présent, il s agit d un ensemble de d actifs risqués et d un actif non risqué. Marché viable : Un marché où il n y a pas d opportunité d arbitrage. Définition équivalente : Un marché pour lequel il existe une probabilité P risque-neutre, c.-à-d. sous laquelle l espérance des différents actifs risqués est égale aux prix forward E P (S i T ) = (1 + R)S i 0, i = 1..., d. Marché complet : Un marché où tout actif conditionnel (le pay-off) est réplicable. Définition équivalente : Un marché pour lequel il existe une unique probabilité P risque-neutre.

17 Deux faces de la même médaille SOIT on cherche les probabilités telles que S 1 1 p p M = 1, p 1 S 1,1 + p M S 1,M = (1 + R)S 0 p 1 2 équations, M inconnnues : existence de solutions mais pas unicité en général. S 2 1 SOIT on cherche une stratégie (x, y) telle que S 0 p 2 xs 1,1 + y(1 + R) = h(s 1,1 ),. xs 1,M + y(1 + R) = h(s 1,M ) 1 p M S M R M équations, 2 inconnnues : pas de solutions en général (couverture partielle). Il existe donc des pay-offs non réplicables. V 0 = xs 0 + y, 1 V 0 = 1 + R (p 1h(S 1,i ) + + p M h(s 1,M )).

18 Un modèle discret où t = 0, 1, 2,..., T Deux sous-jacents : un actif risqué S t et un sans risque B t ; B t+1 = (1 + R) B t, B 0 = 1, t = 0, 1,... T 1, S t+1 = S t Z t, S 0 = s, t = 0, 1,... T 1. Z 0, Z 1,..., Z T 1 variables aléatoires i.i.d. ne prenant que deux valeurs : u > 1 et d < 1 telles que P(Z n = u) = p = 1 P(Z n = d).

19 Exemple T=3 périodes Arbre recombinant : S 0 = s, u > 1, d < 1 su 3 su 2 su su 2 d s sud sd sud 2 sd 2 sd 3

20 Stratégie d allocation de portefeuille Un portefeuille V t contenant x t proportion d actifs risqué et y t proportion d actifs sans risque : V t = x t S t + (1 + R)y t, t = 1,... T. y t = quantité de liquide investie en banque à la date t 1 et gardée jusqu à la date t ; x t = quantité d actifs risqué acheté à la date t 1 et gardée jusqu à la date t. t 1 (x t, y t ) t (x t, y t ) V t 1 = x t S t 1 + y t V t = x t S t + (1 + R)y t

21 Stratégie auto-financée t 1 t t + 1 (x t, y t ) (x t, y t ) V t 1 = x t S t 1 + y t V t = x t S t + y t (1 + R) t t + 1 (x t+1, y t+1 ) (x t+1, y t+1 ) V t = x t+1 S t + y t+1 V t+1 = x t+1 S t+1 + y t+1 (1 + R)

22 Bilan de la stratégie autofinancée V t = x t+1 S t + y t+1 = x t S t + y t (1 + R) À chaque date t, la valeur de l ancien portefeuille (x t, y t ) constitué à la date t 1 est égale à la valeur du nouveau portefeuille (x t+1, y t+1 ) formé à la date t jusqu à t + 1. L acquisition d un nouveau montant d actifs est financé par la vente d un autre. On exclut donc a priori l hypothèse de consommation entre deux dates ou l injection de liquide au cours du temps.

23 Stratégie d arbitrage Une stratégie d arbitrage est une stratégie auto-financée {(x t, y t ), t = 0,... T 1} telle que la valeur V t du portefeuille associé satisfait les trois propriétés suivantes : V 0 = 0, P(V T 0) = 1, P(V T > 0) > 0. Retour au modèle : Si le modèle est libre d arbitrage alors d 1 + R u (voir le modèle à une période). On supposera donc d < u de sorte que cette inégalité soit vérifiée.

24 Probabilités risque-neutre Les probabilités p et q = 1 p sont choisis de sorte que s = 1 ( ) 1 + R E S t+1 S t = s. On dit que ce sont les probabilités risque-neutre du modèle ou encore les probabilités martingales. Dans le cas du modèle binomial, ces probabilités sont données par p = 1 + R d u (1 + R), q = u d u d

25 Application au calcul récursif des prix S t = R E ( S t+1 S t ), On dit que l actif actualisé est une martingale. Conséquence de l autofinancement : V t+1 (1 + R)V t = x t+1 (S t+1 (1 + R)S t ) = V t = R E ( V t+1 S t ). Le portefeuille de réplication est également une martingale.

26 Exemple Le modèle calibré S 0 = 80, u = 1.5, d = 0.5, R = 0, N = 3 périodes

27 Exemple Une option d achat à t = 3 V 3 = (S 3 K) +, K =

28 Exemple Calcul de la prime à t = 2 V 2 = R E(V 3 S 2 )

29 Exemple La prime à t = 0 V t = R E(V t+1 S t ), t = 0,

30 Exemple La stratégie de réplication x t = V t+1(s t u) V t+1 (S t d) S t (u d) x = 1, y = x = 95/120, y = x = 5/8 x = 1/6, y = y = 22.5 x = 1/8, y = x = 0, y =

31 Calibration d un modèle binomial Représentation en N périodes d un modèle continu en temps sur un intervalle [0, T ]. Soit h = T /N le pas de temps. But : Calcul de u, d et R en fonction des paramètres du modèle continu. ( Ex : modèle log-normal S h = S 0 exp (r σ 2 /2)h + σ ) hz. Les contraintes de bases sont d identifier les premiers moments du modèle : p u + (1 p) d = E(S h /S 0 ) ) = exp(rh) = 1 + R, p u 2 + (1 p) d 2 = E ((S h /S 0 ) 2 = exp(2rh + σ 2 h). Paramétrage CRR : h = T /N, p = (1 + R d)/(u d), q = 1 p, u = exp(σ h), d = exp( σ h).

32 Modèle binomial avec N = 10 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

33 Modèle binomial avec N = 100 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

34 Mode le a temps discret Technique de simulation et re duction de variance Limite du mode le binomial lorsque N + Un mode le simple des prix d actifs Embryon de calcul stochastique Mode le binomial avec N = Probabilite s III Introduction a l e valuation d options

35 Une trajectoire du mouvement brownien 2 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique

36 Le mouvement brownien Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Definition Le mouvement brownien standard est un processus stochastique, c.-à-d. une famille de v.a. indexée par le temps {B t } t 0 tel que B 0 = 0 ses accroissements sont indépendants, c.-à-d. pour tout t > s, B t B s indépendant de B s, stationnaires tel que pour t > s, et ses trajectoires continues. B t B s N (0, (t s)),

37 Hypothèse d efficience des marchés Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Le prix actuel d un actif reflète tout l historique des prix passés. Toute nouvelle information implique un réponse immédiate du marché sur les prix. Modéliser le prix d un actif (risqué) modéliser l arrivée de nouvelles informations

38 Processus des prix Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique S = prix d un actif risqué à la date t. t t + dt = S S + ds ds S = µ dt + σ db rendement déterministe du prix de l actif µ : taux moyen de croissance de l actif risqué, changements aléatoires dûs à des causes externes σ : volatilité de l actif qui mesure l écart-type des rendements. Les accroissements sont gaussiens centrés : db N (0, dt) = dt N (0, 1)

39 Le lemme d Itô Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Dans la réalité, les prix sont côtés en temps discret. La variable dt ne peut pas descendre en dessous d une certaine limite. Cependant, il peut être plus efficace de considérer des modèles continus en temps lorsque dt 0. db 2 dt lorsque dt 0. S S + ds = f + df : df = f S ds f 2 S ds (ds) 2 = σ 2 S 2 db 2 + 2σµS 2 dtdb + µ 2 S 2 dt 2 σ 2 S 2 dt. Lemme d Itô df = f S (σs db + µs dt) σ2 S 2 2 f S 2 dt = σs f S db + ( µs f S σ2 S 2 2 f S 2 ) dt

40 Back to Black Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique On applique le lemme d Itô à f (x) = ln(x) : d ln(s) = 1 S σs db + (µs 1 S σ2 S 2 ( )) 1 S 2 dt, soit ou encore ou encore d ln(s) = σdb + ln(s) ln(s 0 ) = σb t + S t = S 0 exp ) (µ σ2 dt, 2 ) (µ σ2 t, 2 ) ) ((µ σ2 t + σb t. 2

41 Application aux pricing d options Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique V t = valeur à la date t d une option vanille de pay-off h et de maturité T sur un sous-jacent S. Point de vue du vendeur : constitution d un portefeuille P t = V t x t S t, rétribué au taux sans-risque r : P t = P 0 e rt. P t qté d actifs non risqué, x t qté d actifs risqué. Inconnues : V t et x t.

42 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Hypothèse de départ : V t = V (t, S t ). Bilan entre t et t + dt (x t = x pendant [t, t + dt[) : P t+dt = V (t + dt, S t+dt ) x S t+dt P t = V (t, S t ) x S t = P t+dt P t = dv x ds D après le lemme d Itô : dv = σs V S db + ( V t V + µs S + σ2 S 2 2 ) V 2 S 2 dt, ds = S(µdt + σsdb).

43 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Bilan des équations : P t+dt P t = r (V xs)dt = σs V ( V S db + t x(µsdt + σsdb) Identification des termes en db et dt : x = V S, V + µs S + σ2 S 2 2 ) V 2 S 2 dt (couverture en delta neutre) r(v xs) = V t V + µs S + σ2 S 2 2 V 2 S 2 µxs

44 Raisonnement par arbitrage Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Par unité de temps : V t + σ2 S 2 2 V } {{ 2 S 2 } Rendement du portefeuille de réplication V t ( = r V S V ), S } {{ } Rendement de la partie non risqué en dépôt P t Si V t + σ2 S 2 2 ( V 2 S 2 > r V S V ) : on emprunte une qté P t S que l on investi dans le portefeuille V t ; profit sans risque. Si V t + σ2 S 2 2 ( V 2 S 2 < r V S V ) : on shorte le portefeuille et S on met en dépôt le résultat.

45 Limite du modèle binomial lorsque N + Un modèle simple des prix d actifs Embryon de calcul stochastique Équation aux Dérivées Partielles de B&S (1973) Black, F. et Scholes, M. (1973), The pricing of options and corporate liabilities, J. Pol. Econ. 81, V t + σ2 S 2 2 ( V 2 S 2 r V S V ) = 0, S avec la donnée terminale V (T, S) = h(s).

46 Nécessité des simulations Méthode de Monte-Carlo Réduction de variance Variables de contrôle Soit X : Ω R d et F : R d R tels que E(F (X )) 2 < +. On souhaite approcher c = E F (X ). Exemples : X = (ST 1,..., S T d ) un panier de d stocks à la date T et F (X ) = (λ 1 ST λ dst d K) + (call sur indice). X = (S 1 T, S 2 T ) et F (X ) = (S 1 T S 2 T K) + (call spread). Problèmes : même dans le cas du modèle log-normal, il n y a pas de formules explicites (ex : B&S ), d où un recours à la simulation : méthode de Monte-Carlo. Outils théoriques : loi des grands nombres et théorème central de la limite.

47 Méthode de Monte-Carlo Méthode de Monte-Carlo Réduction de variance Variables de contrôle Étant donné un échantillon (Y i ) 1 i M de taille M d une population Y (mathématiquement un famille de v.a. indépendantes et de même loi que Y ), on calcule la moyenne de l échantillon Y = 1 M M Y i, i=1 alors lorsque M tend vers + on a les deux convergences suivantes : Y E(Y 1 ) (loi des grands nombres) Y N (E(Y 1 ), σ 2 (Y 1 )/M) (TCL) Bilan : l erreur Y E(Y 1 ) se réparti asymptotiquement selon une distribution gaussienne centré et d écart-type : σ(y 1 )/ M et ceci quelque soit la distribution de Y.

48 Application Méthode de Monte-Carlo Réduction de variance Variables de contrôle On applique le principe précédent à Y = F (X ) et Y i = F (X i ). Donc si l on sait générer des copies indépendantes X i et de même loi que X (des scénarios), la méthode de Monte-Carlo permet d estimer la moyenne de F (X ), c.-à-d. E(F (X )), et la méthode génère sa propre estimation de l erreur σ(f (X ))/ M : on remplace σ(f (X )) par l écart-type empirique de l échantillon s(f (X )) = 1 M 1 M (F (X i ) Y ) 2 i=1 La convergence est lente 1/ M mais indépendante de d (!) Un réduction de σ(f (X )) permet de gagner beaucoup en temps de calcul.

49 Réduire la variance Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle ; «Importance sampling» ; Variables antithetiques ; Stratification ; Conditionnement ;...

50 Variable de contrôle Méthode de Monte-Carlo Réduction de variance Variables de contrôle Idée : écrire E(F (X )) comme E(F (X ) H(X )) + EH(X ) = a + b, où a est estimé en utilisant une simulation Monte-Carlo, a = 1 M (F (X m ) H(X m )) M m=1 et où b = EH(X ) peut être calculé explicitement. Le choix de H est guidé par le fait que Var(F (X ) H(X )) < Var(F (X )).

51 Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle : version optimisation La recherche de H peut s optimiser dans certains cas : soit Z = F (X ) H(X ) + E(H(X )), Z = F (X ) et λ R. On pose Z λ = (1 λ)z + λz. Alors les trois v.a. ont la même espérance : E(Z λ ) = E(Z) = E(Z ) = c et on peut essayer d estimer E(Z λ ) de sorte que λ = argmin λ R Var(Z λ ) = Cov(Z Z, Z) Var(Z. Z)

52 Méthode de Monte-Carlo Réduction de variance Variables de contrôle Variable de contrôle et relation de parité Z = exp( rt )(S T K) + (CALL), Z = exp( rt )(K S T ) + + S 0 K exp( rt ) (CALL parité) D après la relation de parité E(Z) = E(Z ) =Prix du Call. Or la variance de Z est la variance du Call et la variance de Z est celle du Put : laquelle est la plus petite? Optimisation : Z λ = λz + (1 λ)z, recherche du meilleur λ (Cf. TP 1). Avantage : indépendant du modèle (B&S, vol locale, vol sto,...) Ne dépend que du produit (ici call vanille) pour lequel il existe une relation de parité. S adapte donc au cas asiatique par exemple.

53 Variable de contrôle géométrique Méthode de Monte-Carlo Réduction de variance Variables de contrôle X i valeurs d actifs B&S à une date T, indépendants, de volatilité σ i et de prix spot x i. Soit λ i > 0 poids de somme 1. Call sur panier F (X ) = (λ 1 X λ d X d K) +, Call sur panier géométrique (abstrait) H(X ) = (X λ1 1 X λ d d K) + On peut voir Z = X λ1 1 X λ d d comme un actif B&S. Quelle volatilité? (Cf. TP 1). Donc E(H(X )) se calcule par une formule de B&S. Laquelle? Ici a = E(F (X ) H(X )) est estimé selon Monte-Carlo et b = E(H(X )) est calculé explicitement grâce à une fromule de B&S. Prix final E(F (X )) = a + b.

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Etude de Cas de Structuration Magistère d Economie et de Statistiques

Etude de Cas de Structuration Magistère d Economie et de Statistiques Etude de Cas de Structuration Magistère d Economie et de Statistiques David DUMONT - TEAM CALYON 22 avril 2008 Dans 2 ans, si l EURODOL est inférieur à 1,40 touchez 116% du nominal investi en euros, sinon

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Théorie Financière 8 P. rod i u t its dé dérivés

Théorie Financière 8 P. rod i u t its dé dérivés Théorie Financière 8P 8. Produits dit dérivés déié Objectifsdelasession session 1. Définir les produits dérivés (forward, futures et options (calls et puts) 2. Analyser les flux financiers terminaux 3.

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 12. Théorie des options I Daniel Andrei Semestre de printemps 211 Principes de Finance 12. Théorie des options I Printemps 211 1 / 43 Plan I Introduction II Comprendre les options

Plus en détail

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers

Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Introduction aux Mathématiques et Modèles Stochastiques des Marchés Financiers Huyên PHAM Université Paris 7 Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599 pham@math.jussieu.fr Version

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone... Liste des notes techniques.................... xxi Liste des encadrés....................... xxiii Préface à l édition internationale.................. xxv Préface à l édition francophone..................

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES

MEMOIRE Présenté pour l obtention du diplôme de : MAGISTER EN MATHEMATIQUES REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES

Plus en détail

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines Ensimag - 2éme année Mai 2010 TRAVAIL D ETUDE ET DE RECHERCHE Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire AURIAULT 1/48 2/48 Cadre de l Étude Cette étude a été

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

VALORISATION DES PRODUITS DE CHANGE :

VALORISATION DES PRODUITS DE CHANGE : VALORISATION DES PRODUITS DE CHANGE : TERMES, SWAPS & OPTIONS LIVRE BLANC I 2 Table des Matières Introduction... 3 Les produits non optionnels... 3 La méthode des flux projetés... 3 Les options de change

Plus en détail

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures

Les produits dérivés. Chapitre 2. 2.1 Forwards et futures Chapitre 2 Les produits dérivés Di érents types des taux d intérêt. Formule de valorisation d un forward sur un actif financier (action, obligation). Classification des options et terminologie associée,

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Options, Futures, Parité call put

Options, Futures, Parité call put Département de Mathématiques TD Finance / Mathématiques Financières Options, Futures, Parité call put Exercice 1 Quelle est la différence entre (a) prendre une position longue sur un forward avec un prix

Plus en détail

Options et des stratégies sur dérivés

Options et des stratégies sur dérivés Options et des stratégies sur dérivés 1. Les stratégies impliquant les options 2. Les propriétés des options sur actions 1. Stratégies sur les options De nombreuses combinaisons sont possibles Prendre

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

Dérivés Financiers Options

Dérivés Financiers Options Stratégies à base d options Dérivés Financiers Options 1) Supposons que vous vendiez un put avec un prix d exercice de 40 et une date d expiration dans 3 mois. Le prix actuel de l action est 41 et le contrat

Plus en détail

Méthodes numériques pour la finance

Méthodes numériques pour la finance Méthodes numériques pour la finance Olivier Guibé 1 mars 010 Table des matières 1 Les outils de modélisation pour les options 1.1 Options............................................... 1. Modèle du marché

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Calibration des modèles

Calibration des modèles Calibration des modèles Rapport de projet de fin d études Auteur : Professeurs responsables : LEFEVERE Laurent FINTZ Nesim LONGEVIALLE Antoine TAFLIN Erik MANOLESSOU Marietta Table des matières Introduction

Plus en détail

MARTINGALES POUR LA FINANCE

MARTINGALES POUR LA FINANCE MARTINGALES POUR LA FINANCE une introduction aux mathématiques financières Christophe Giraud Cours et Exercices corrigés. Table des matières I Le Cours 7 0 Introduction 8 0.1 Les produits dérivés...............................

Plus en détail

Calcul Stochastique pour la finance. Romuald ELIE

Calcul Stochastique pour la finance. Romuald ELIE Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis

Plus en détail

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE Le présent document est un recueil de questions, la plupart techniques, posées à des candidats généralement jeunes diplômés, issus d école d ingénieurs, de commerce

Plus en détail

Modèles Mathématiques Discrets pour la Finance et l Assurance. Marc et Francine DIENER

Modèles Mathématiques Discrets pour la Finance et l Assurance. Marc et Francine DIENER Modèles Mathématiques Discrets pour la Finance et l Assurance Marc et Francine DIENER 7 septembre 2007 2 Table des matières 1 Prix et couverture d une option d achat 5 1.1 Evaluation du prix dans un modèle

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Les changements de numéraire dans la tarification de produits financiers

Les changements de numéraire dans la tarification de produits financiers INMA 2990 - Travail de fin d études Les changements de numéraire dans la tarification de produits financiers Pajot Benjamin Promoteur Devolder Pierre Juin 2010 Table des matières Introduction 1 1 Mesures

Plus en détail

Modélisation mathématique et finance des produits dérivés

Modélisation mathématique et finance des produits dérivés Modélisation mathématique et finance des produits dérivés Ecole Polytechnique Paris Académie Européenne Interdisciplinaire des Sciences Paris, 28 novembre 2011 Outline Introduction 1 Introduction 2 3 Qu

Plus en détail

INTRODUCTION INTRODUCTION

INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION Les options sont des actifs financiers conditionnels qui donnent le droit mais pas l'obligation d'effectuer des transactions sur des actifs supports. Leur intérêt réside dans

Plus en détail

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012 Pierre Andreoletti pierre.andreoletti@univ-orleans.fr Bureau E15 1 / 20 Objectifs du cours Définition

Plus en détail

Options et Volatilité (introduction)

Options et Volatilité (introduction) SECONDE PARTIE Options et Volatilité (introduction) Avril 2013 Licence Paris Dauphine 2013 SECONDE PARTIE Philippe GIORDAN Head of Investment Consulting +377 92 16 55 65 philippe.giordan@kblmonaco.com

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Utilisation des éléments finis pour le pricing d'options

Utilisation des éléments finis pour le pricing d'options 1 Utilisation des éléments finis pour le pricing d'options Semaine «éléments finis», ENSMP 29 novembre 2006 Jean-Didier Garaud (ONERA, DMSE/LCME) 2 Plan Actions et produits dérivés Modèle de Black-Scholes

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le modèle de Merton Les hypothèses du modèle Dérivation du modèle Les extensions du modèle Le modèle de Merton Les hypothèses du modèle Marché

Plus en détail

Résumé... 9... 10... 10... 10

Résumé... 9... 10... 10... 10 Bibliographie 1 Table des matières Table des matières.................................... 3 Résumé............................................ 9........................................ 10........................................

Plus en détail

Les Variable Annuities sous la directive Solvabilité II

Les Variable Annuities sous la directive Solvabilité II Les Variable Annuities sous la directive Solvabilité II Mémoire présenté le vendredi 10 juin 2011 par Clément Schmitt clement.schmitt@fixage.com Introduction Solvabilité II impose des fonds propres réglementaires

Plus en détail

2- Instruments de gestion des risques de marché

2- Instruments de gestion des risques de marché 2- Instruments de gestion des risques de marché Objectif : présenter les produits dérivés utilisés dans la gestion des risques de marché. 1- CONTRATS À TERME 2- SWAPS 3- OPTIONS CLASSIQUES Jean-Baptiste

Plus en détail

Annexe Simulations de Monte Carlo

Annexe Simulations de Monte Carlo Annexe Simulations de Monte Carlo Cette annexe présente, de façon pratique, les principales techniques opératoires des simulations de Monte Carlo. Le lecteur souhaitant une présentation plus rigoureuse

Plus en détail

Prix et couverture d une option d achat

Prix et couverture d une option d achat Chapitre 1 Prix et couverture d une option d achat Dans cette première leçon, on explique comment on peut calculer le prix d un contrat d option en évaluant celui d un portefeuille de couverture de cette

Plus en détail

Modèles Mathématiques Discrets pour la Finance et l Assurance. Marc et Francine DIENER

Modèles Mathématiques Discrets pour la Finance et l Assurance. Marc et Francine DIENER Modèles Mathématiques Discrets pour la Finance et l Assurance Marc et Francine DIENER 28 mars 2010 2 Table des matières 1 Prix et couverture d une option d achat 5 1.1 Evaluation du prix dans un modèle

Plus en détail

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr

Calibration de Modèles et Couverture de. Peter TANKOV Université Paris VII tankov@math.jussieu.fr Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr 2 Table de matières 1 Les marchés de produits dérivés 7 1.1 Historique...............................

Plus en détail

Couverture des risques dans les marchés financiers

Couverture des risques dans les marchés financiers énéral2.6.137 1 2 Couverture des risques dans les marchés financiers Nicole El Karoui Ecole Polytechnique,CMAP, 91128 Palaiseau Cedex email : elkaroui@cmapx.polytechnique.fr Année 23-24 2 Table des matières

Plus en détail

Question 1: Analyse et évaluation d obligations

Question 1: Analyse et évaluation d obligations Question 1: Analyse et évaluation d obligations (43 points) Vous êtes responsable des émissions obligataires pour une banque européenne. Il y a 10 ans cette banque a émis l obligation perpétuelle subordonnée

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape

CALCULATEUR D OPTIONS GUIDE PRATIQUE. Reshaping Canada s Equities Trading Landscape CALCULATEUR D OPTIONS GUIDE PRATIQUE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Table des matières Introduction 3 Évaluation des options 4 Exemples 6 Évaluation d une option de style américain

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke

Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke Introduction aux Mathématiques Financières Ecole Centrale Paris Deuxième année, S3 Lionel Gabet, Frédéric Abergel, Ioane Muni Toke Version 2010 Introduction aux mathématiques financières 2 Table des matières

Plus en détail

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+ ERRATA ET AJOUTS Chapitre, p. 64, l équation se lit comme suit : 008, Taux effectif = 1+ 0 0816 =, Chapitre 3, p. 84, l équation se lit comme suit : 0, 075 1 000 C = = 37, 50$ Chapitre 4, p. 108, note

Plus en détail

Estimation du coût de l incessibilité des BSA

Estimation du coût de l incessibilité des BSA Estimation du coût de l incessibilité des BSA Jean-Michel Moinade Oddo Corporate Finance 22 Juin 2012 Incessibilité des BSA Pas de méthode académique reconnue Plusieurs méthodes «pratiques», dont une usuelle

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Évaluation des risques de la réplique d une option asiatique en temps discret

Évaluation des risques de la réplique d une option asiatique en temps discret COLLECTION FEUILLE D ARGENT TRAVAUX DE RECHERCHE 2004-001 Évaluation des risques de la réplique d une option asiatique en temps discret Olivier Lussier Jean-Pierre Paré ÉVALUATION DES RISQUES DE LA RÉPLIQUE

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

PROJET MODELE DE TAUX

PROJET MODELE DE TAUX MASTER 272 INGENIERIE ECONOMIQUE ET FINANCIERE PROJET MODELE DE TAUX Pricing du taux d intérêt des caplets avec le modèle de taux G2++ Professeur : Christophe LUNVEN 29 Fevrier 2012 Taylan KUNAL - Dinh

Plus en détail

Evaluation d options avec incertitude sur la volatilité

Evaluation d options avec incertitude sur la volatilité Evaluation d options avec incertitude sur la volatilité Andrea Odetti, Rémy Ripoll 5 octobre 000 Table des matières 1 Introduction 1 La formule de Black et Scholes 3 Incertitude sur la volatilité 3.1 Modèles

Plus en détail

Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013

Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013 Produits structurés Sacha Duparc, Développement & Trading Produits Structurés 20.12.2013 Importance du marché des produits structurés en Suisse Les produits structurés constituent une catégorie d investissement

Plus en détail

Options exotiques. April 18, 2000

Options exotiques. April 18, 2000 Options exotiques Nicole El Karoui, Monique Jeanblanc April 18, 2000 1 Introduction Les options exotiques sont des produits complexes, qui constituent un marché d une réelle importance depuis les années

Plus en détail

Introduction au pricing d option en finance

Introduction au pricing d option en finance Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research.

BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP Paribas, CIB, Global Equity and Commodity Derivatives Research. BNP PARIBAS jouit d une dimension internationale sur le marché des produits dérivés sur actions. Notre équipe de Recherche et Développement

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA Contents 1 Introduction aux marchés financiers 2 1.1 Rôle des marchés financiers......................... 2 1.2 Les différents

Plus en détail

Pratique des options Grecs et stratégies de trading. F. Wellers

Pratique des options Grecs et stratégies de trading. F. Wellers Pratique des options Grecs et stratégies de trading F. Wellers Plan de la conférence 0 Philosophie et structure du cours 1 Définitions des grecs 2 Propriétés des grecs 3 Qu est ce que la volatilité? 4

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3 Exercice 3 :

Plus en détail

Chapitre 20. Les options

Chapitre 20. Les options Chapitre 20 Les options Introduction Les options financières sont des contrats qui lient deux parties. Les options existent dans leur principe depuis plusieurs millénaires, mais elles connaissent depuis

Plus en détail

Modélisation des marchés de matières premières

Modélisation des marchés de matières premières Modélisation des marchés de matières premières Louis MARGUERITTE Jean-Baptiste NESSI Institut des Actuaires Auditorium CNP Vendredi 10 Avril 2009 L. MARGUERITTE JB. NESSI Modélisation des marchés de matières

Plus en détail

Pratique des produits dérivés P5 : Options

Pratique des produits dérivés P5 : Options Pratique des produits dérivés P5 : Options Olivier Brandouy Université de Bordeaux 2014 2015 Diapo 1/52 Olivier Brandouy Master 2 Métiers de la Banque (CPA) Plan 1 Notions essentielles 2 Protéger son investissement

Plus en détail

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude.

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Le Cadre Etats de la nature : s = 1,.S,.. p(1),, p(s), Actifs a : m+1 actifs de base {a(0), a(m)} Matrices

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

Les techniques des marche s financiers Exercices supple mentaires

Les techniques des marche s financiers Exercices supple mentaires Les techniques des marche s financiers Exercices supple mentaires Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3 Exercice 3 : mathématiques et statistiques...

Plus en détail

Les techniques des marchés financiers

Les techniques des marchés financiers Les techniques des marchés financiers Corrigé des exercices supplémentaires Christine Lambert éditions Ellipses Exercice 1 : le suivi d une position de change... 2 Exercice 2 : les titres de taux... 3

Plus en détail

Prévention et gestion des risques naturels et environnementaux

Prévention et gestion des risques naturels et environnementaux Prévention et gestion des risques naturels et environnementaux Risque et assurance : quelques éléments théoriques Ecole des Ponts - Le 6 Avril 01 Jacques Pelletan 1 Théorie du risque et pérennité de l

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

TP de risque management Risque Forex

TP de risque management Risque Forex TP de risque management Risque Forex Exercice 1 Partie 1. Le but de cette exercice est voir quel sont les options qui permettent de gérer le risque du au taux de change. En effet, dans notre cas, une société

Plus en détail

MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005

MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005 MATHEMATIQUES FINANCIERES SANS LARMES Nicolas Bouleau octobre 2005 L'engouement parmi les chercheurs et les jeunes scientifiques pour les mathématiques financières très excessif est-il un comportement

Plus en détail

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS

CHAPITRE 12 LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS CHAPITRE LE DÉVELOPPEMENT DES MARCHÉS DE TAUX ET INSTRUMENTS DÉRIVÉS TESTEZ VOS CONNAISSANCES Comment définir un contrat à terme? Comment se dénoue un contrat à terme? Quelle est la définition d'une option

Plus en détail

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE Avec le développement des produits dérivés, le marché des options de change exerce une influence croissante sur le marché du change au comptant. Cette étude,

Plus en détail

Calibration de Modèles et Couverture de Produits Dérivés

Calibration de Modèles et Couverture de Produits Dérivés Calibration de Modèles et Couverture de Produits Dérivés Peter TANKOV Université Paris VII tankov@math.jussieu.fr Edition 28, dernière m.à.j. le 1 mars 28 La dernière version de ce document est disponible

Plus en détail

Capital économique en assurance vie : utilisation des «replicating portfolios»

Capital économique en assurance vie : utilisation des «replicating portfolios» Capital économique en assurance vie : utilisation des «replicating portfolios» Anne LARPIN, CFO SL France Stéphane CAMON, CRO SL France 1 Executive summary Le bouleversement de la réglementation financière

Plus en détail

Dérivés de crédit : Situation et évolution du marché

Dérivés de crédit : Situation et évolution du marché Dérivés de crédit : Situation et évolution du marché Parallèle entre dérivés de crédit et produits d assurance Déjeuner débat FFA Jean-Paul LAURENT Professeur à l'isfa, Université de Lyon, Conseiller scientifique

Plus en détail

Une expérience de mathématiques appliquées en Grande Ecole

Une expérience de mathématiques appliquées en Grande Ecole Une expérience de mathématiques appliquées en Grande Ecole El Karoui Nicole Univ Paris VI / Ecole Polytechnique elkaroui@cmapx.polytechnique.fr 6 Novembre 2009 El Karoui Nicole (Labo de proba/ CMAP) Conf

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Calibration de modèles et couverture de produits dérivés

Calibration de modèles et couverture de produits dérivés Calibration de modèles et couverture de produits dérivés Peter Tankov To cite this version: Peter Tankov. Calibration de modèles et couverture de produits dérivés. DEA. Calibration de modèles et couverture

Plus en détail