Moments des variables aléatoires réelles

Dimension: px
Commencer à balayer dès la page:

Download "Moments des variables aléatoires réelles"

Transcription

1 Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles Définition et calcul appels et compléments sur les séries de nombres réels Propriétés Inégalité de Markov Variance et écart-type Définition et propriétés Inégalité de Tchebitcheff Calculs pour les lois usuelles Objectifs: Comprendre la notion d espérance et de variance d une variable aléatoire réelle. Savoir les calculer pour des variables discrètes et à densité. Mots-clés: espérance, variance. Outils: linéarité de l espérance: E(aX + by ) aex + bey. positivité de l espérance: si X Y alors EX EY. formule de calcul de E(f(X)) quand X est une v.a.discrète ou à densité (théorème de transfert). non-linéarité de la variance: en général var(x + Y ) varx + vary et var(ax + b) a 2 varx. Inégalités de Markov et de Tchebitcheff.

2 6.1 Espérance des variables aléatoires réelles Définition et calcul L espérance d une variable aléatoire réelle est ce qu on nomme en langage courant sa moyenne: Définition 6.1 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. 1. Si X est discrète, on dit qu elle est intégrable (ou qu elle admet une espérance) si et seulement si x Ω(X) x P(X x) < +. Dans ce cas, son espérance EX est définie par E(X) xp(x x). x Ω(X) 2. Si X a pour densité f, on dit qu elle est intégrable si et seulement si x f(x)dx < +. Dans ce cas, son espérance EX est définie par E(X) xf(x)dx. emarque: 1. Si X est une variable aléatoire réelle qui ne prend qu un nombre fini de valeurs, son espérance, définie par une somme finie de réels, a toujours un sens. Par contre, si X est une variable aléatoire réelle qui prend un nombre dénombrable de valeurs, l espérance est naturellement définie par une série, dont il faut étudier la convergence. Pour la condition d existence de l espérance, x Ω(X) x P(X x) est une série à termes positifs. Quand elle converge (c est-à-dire quand sa somme est finie), cela implique la convergence de la série x Ω(X) xp(x x) (en effet, cette dernière série est alors absolument convergente), et cette somme x Ω(X) xp(x x) est appelée espérance de X. 2. Si X est une variable aléatoire de densité f, x f(x)dx est une intégrale, éventuellement impropre. Comme dans le cas des séries, si cette intégrale converge, cela implique l absolue convergence de l intégrale xf(x)dx, et on appelle espérance de X la valeur EX xf(x)dx. 3. L espérance de X est une moyenne pondéreée des valeurs prises par X, le poids d une valeur étant la probabilité que X prenne cette valeur. On le voit bien sur des variables aléatoires ne prenant qu un nombre fini de valeur, on peut étendre cette intuition au cas d une variable aléatoire qui prend un nombre dénombrable de valeurs, et au cas d une variable aléatoire à densité. Exemple: Considérons une variable aléatoire X de loi uniforme sur {0,... n}. C est une variable aléatoire discrète, qui ne prend qu un nombre fini de valeurs, donc elle admet une espérance: n n 1 EX kp(x k) k. n n n(n + 1) k n + 1 2(n + 1) n 2. emarquons qu on pouvait s attendre à une telle valeur. Exercice: La roulette française comporte 37 numéros, de 0 à 36, équiprobables. Le 0 est vert, la moitié des numéros restant sont rouges, les autres noirs. 1. Je mise 1 euro sur rouge. Si un numéro rouge sort, je récupère mon euro et je gagne un euro supplémentaire, sinon je perds mon euro. On note X mon gain (différence entre ce que je possède avant de jouer et ce que je possède après le jeu). Donner la loi de X et calculer son espérance. 2. Je mise 1 euro sur mon numéro fétiche, le 25. S il sort, je gagne 36 fois ma mise. Soit Y mon gain dans ce cas. Donner la loi de Y et calculer son espérance. Exemple: On considère une variable aléatoire X qui suit la loi de Poisson de paramètre λ > 0, c est-à-dire que k1 X(Ω) N et k N P(X k) e λλk k!. 46

3 Comme la variable aléatoire ne prend que des valeurs positives, on regarde kp(x k) ke λλk k! e λ k1 On a donc montré à la fois que X est intégrable et que EX λ. λ λk 1 (k 1)! λe λ l0 λ l l! λe λ e λ λ. Exercice: Soit α > 0 et C α > 0. Soit X une variable aléatoire à valeurs dans N telle que k N, P(X k) C α k α. 1. A quelle condition sur α peut-on trouver C α > 0 telle que la probabilité soit bien définie? 2. A quelle condition sur α la variable aléatoire X est-elle intégrable? Exercice: Soit X une variable aléatoire de loi uniforme sur le segment [a, b]. Calculer son espérance. Exemple: Soit X une variable aléatoire de loi exponentielle de paramètre λ. Montrer qu elle est intégrable et calculer son espérance. La densité de la loi exponentielle de paramètre λ > 0 est x f(x) λexp( λx)1 x>0. Pour que X admette une espérance, il faut que x f(x)dx < + λ x exp( λx)1 x>0 dx < + Soit M > 0. Calculons, en intégrant par parties, M λx exp( λx)dx < +. M λxexp( λx)dx [ xexp( λx] exp( λx)dx M exp( λm) + 1 (1 exp( λm). 0 λ Cette quantité a une limite quand M tend vers +, donc l intégrale est convergente et X admet une espérance. Cette espérance vaut EX M lim λx exp( λx)dx lim M exp( λm) + 1 M + 0 M + λ (1 exp( λm) 1 λ. Exercice: Lois de Cauchy. Soit α et β > 0. La densité de la loi lorentzienne de paramètres α et β est f(x) 1 βπ (x α)2 β 2 Montrer que la loi de Cauchy de paramètres α 0 et β 1 n est pas intégrable appels et compléments sur les séries de nombres réels Soit (u n ) n N une suite de nombre réels. On pose, pour tout n N, S n n u k. On dit que la série de terme général (u n ) n N converge si et seulement si la suite (S n ) n N converge et on appelle S sa somme, définie par S lim n + S n. Dans le cas contraire, on dit que la série est divergente. 47

4 Proposition 6.2 Soit (u n ) n N une suite de nombre réels positifs ou nuls, et soit ϕ une bijection de N dans N. Alors les séries de terme général (u n ) n N et (u ϕ(n) ) n N sont de même nature. Dans le cas où elles convergent, elles ont même somme. Autrement dit, pour une série à termes positifs, on peut changer l ordre de sommation sans changer la nature de la série, ni la somme de la série si elle converge. Ce n est pas le cas pour une série de terme géréral quelconque. Exercice: Démonstration: Soit ϕ : N N une bijection de N dans N. Comme (u n ) n N est une suite de nombre réels positifs ou nuls, les suites S n n u k et T n sont croissantes et tendent (en croissant) respectivement vers S et T (ces deux valeurs pouvant éventuellement être infinies). On va montrer que S T. Posons, pour n N, M n max{ϕ(k) : 0 k n}. emarquons alors que, pour tout n N, T n S Mn S, et donc en passant à la limite, T S. De même, posons, pour n N, N n max{ϕ 1 (k) : 0 k n} et remarquons alors que, pour tout n N, n S n u ϕ(ϕ 1 (k) T Nn T, et donc en passant à la limite, S T. 1. Soit (u n ) n N et (v n ) n N des suites réelles telles que: (a) (u n ) n N est croissante et (v n ) n N est décroissante, (b) pour tout n, u n v n. Montrer que les suites (u n ) n N et (v n ) n N convergent vers une même limite réelle. 2. On considère la série de terme général u n ( 1)n n. En considérant les suites de sommes partielles (S 2k) k N et (S 2k+1 ) k N, montrer que cette série converge et que sa somme est strictement positive. 3. On somme maintenant dans l ordre n u 1 + u 3 + u 2 + u 5 + u 7 + u (deux termes impairs, un terme pair). Montrer que les sommes partielles de rang un multiple de 3 sont négatives. u ϕ(k) 4. Peut-on sommer cette série dansn importe quel ordre sans changer la somme? Proposition 6.3 Soit (u n ) n N une suite de nombre réels quelconque. On suppose qu il existe une bijection ϕ de N dans N telle que la série de terme général ( u ϕ(n) ) n N converge (autrement dit telle que la série de terme général (u ϕ(n) ) n N soit absolument convergente). Alors pour toute bijection ψ : N N, les éries de terme général (u ψ(n) ) n N et ont toutes la même somme. Démonstration: admis (voir cours sur les séries numériques). Ces propriétés justifient le fait qu on puisse changer l ordre de sommation dans les preuves des propriétés qui suivent. 48

5 6.1.3 Propriétés Proposition L espérance est linéaire: si a et b sont deux nombres réels et si X et Y sont deux variables aléatoires réelles définies sur le même espace de probabilité Ω et admettant une espérance, alors ax + by admet une espérance et: E(aX + by ) aex + bey. Cas particulier: si a est une constante réelle, E(a) a. 2. L espérance est une application positive: si X est positive (ce qui signifie que ω Ω, X(ω) 0 et qui est noté X 0), et qu elle admet un moment, alors EX 0: X 0 EX 0. Cas particulier: si X Y (ce qui signifie ω Ω, X(ω) Y (ω)) alors EX EY. On va faire la preuve dans le cas de variables aléatoires discrètes. Démonstration: 1. Montrons que si a et X est une variable aléatoire discrète admettant une espérance, alors ax admet une espérance et E(aX) aex. Notons Z ax. Si a 0 alors Z 0 et la propriété est claire. Supposons maintenant que a 0. Alors l application ϕ : X(Ω) x Z(Ω) ax est une bijection, donc Z est encore une variable aléatoire discrète. Maintenant, z P(Z z) ax P(Z ax) a x P(aX ax) a x P(X x), car a 0. Donc Z admet une espérance et le même calcul sans les valeurs absolues montre que E(aX) aex. Montrons que si X et Y sont des variables aléatoires discrètes définie sur le même espace de probabilité et admettant une espérance, alors X + Y admet une espérance et E(X + Y ) EX + EY. Posons Z X + Y. Montrons que Z est encore discrète: comme X(Ω) et Y (Ω) sont finis ou dénombrables, leur produit X(Ω) Y (Ω) est encore dénombrable. Maintenant, considérons ϕ : X(Ω) Y (Ω) (x, y) x + y. Alors Z(Ω) ϕ(x(ω) Y (Ω)) est aussi fini ou dénombrable. Donc Z est une variable aléatoire discrète. Maintenant soit z Z(Ω): regardons toutes les façons dont on peut l obtenir comme somme d une valeur x X(Ω) et d une valeur y Y (Ω): par la formule des probabilités totales z P(Z z) z P {X x, Y y} z (x,y):,y Y (Ω),x+yz (x,y):,y Y(Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz P(X x, Y y) z P(X x, Y y) x + y P(X x, Y y) ( x + y )P(X x, Y y). 49

6 On découpe la somme en deux morceaux: z P(Z z) egardons le premier morceau: (x,y):,y Y (Ω),x+yz + (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz x x P(X x), x P(X x, Y z x) x P(X x, Z z) P(X x, Z z) x P(X x, Y y) x P(X x, Y y) y P(X x, Y y). par la formule des probabilités totales (on utilise le système complet ({Z z}) ). Pour le second morceau, on obtient de même (x,y):,y Y (Ω),x+yz y P(X x, Y y) y Y (Ω) y P(Y y). Comme X et Y admettent une espérance, on en déduit que Z aussi. Pour la valeur de l espérance, on reprend exactement les mêmes calculs sans les valeurs absolues. 2. C est une simple conséquence de la définition de l espérance. On va aussi donner les formules pour calculer l espérance d une fonction d une variable aléatoire: Théorème 6.5 (Théorème de transfert) Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω, et soit ϕ une application de dans. Alors ϕ(x) : Ω est une variable aléatoire réelle. 1. Si X est discrète, alors ϕ(x) est intégrable si et seulement si x Ω(X) ϕ(x) P(X x) < +. Dans ce cas, E(ϕ(X)) x Ω(X) ϕ(x)p(x x) x Ω(X) ϕ(x)p X (x). 2. Si X est a pour densité f, alors ϕ(x) est intégrable si et seulement si ϕ(x) f(x)dx < +. Dans ce cas, E(ϕ(X)) ϕ(x)f(x)dx. Démonstration: Faisons la preuve dans le cas discret. Soit X une variable aléatoire discrète, ϕ une application de dans. Notons Z ϕ(x). Alors ϕ : X(Ω) Z(Ω) est une surjection, donc Z est 50

7 encore une variable al ;eatoire discrète. De plus z P(Z z) z P(ϕ(X) z) z P z x ϕ 1 ({z}) x ϕ 1 ({z}) x ϕ 1 ({z}) ϕ(x) P(X x). {X x} P(X x) ϕ(x) P(X x) Pour la dernière égalité, on utilise la fait que comme ϕ : X(Ω) Z(Ω) est surjective, alors les (ϕ 1 (}z})) forment une partition de X(Ω). On en déduit la condition d intégrabilité de Z, et le même calcul sans les valeurs absolues donne la formule pour l espérance. Exemple: Pour ϕ : x x 2 : 1. Si X est discrète, alors X 2 est intégrable si et seulement si x Ω(X) x2 P(X x) < +. Dans ce cas, E(X 2 ) x Ω(X) x 2 P(X x). 2. Si X est a pour densité f, alors X 2 est intégrable si et seulement si x2 f(x)dx < +. Dans ce cas, E(X 2 ) x 2 f(x)dx. Attention! emarquer dans ces deux formules que c est sur le x que porte le carré et pas sur la probabilité ou sur la densité. Exercice: Vérifier que E(1 A ) P(A). Exercice: Soit X une variable aléatoire de loi uniforme sur {0,...,n}. Calculer E(X 2 ). Exercice: Soit X une variable aléatoire de loi uniforme sur [a, b]. Calculer E(X 2 ) Inégalité de Markov Proposition 6.6 Soit X une variable aléatoire réelle telle que E( X ) < +. Alors Démonstration: A > 0, P( X A) E( X ) A. E( X ) E( X (1 X A + 1 X >A )) E( X 1 X A ) + E( X 1 X >A ) E(A.1 X A ) AE(1 X A ) AP( X A). 51

8 Exercice: Soit X une variable aléatoire réelle telle que E X 0. Montrer que P(X 0) 1. Démonstration: Soit n N. Par l inégalité de Markov, P( X 1/n) ne X 0. emarquons alors que ]0, + [ n N [1/n, + [, et donc, par limite monotone, ( ) P(X 0) P( X > 0) P X (]0, + [) P X [1/n, + [ n N lim P X ([1/n, + [) lim P( X 1/n) 0. n + n + C est assez naturel: une variable aléatoire positive de moyenne 0 ne peut qu être égale à Variance et écart-type Définition et propriétés Lemme 6.7 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω telle que E(X 2 ) < +. Alors X est intégrable. Démonstration: On va montrer que E X < +. On va découper suivant que X 1 ou X > 1, et utiliser le fait que l espérance est positive: E X E( X (1 X X >1 )) E( X 1 X 1 ) + E( X 1 X >1 ) E(1.1 X 1 ) + E( X 2 1 X >1 ) P( X 1) + E(X 2 ) < +. Définition 6.8 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. On dit que X admet un moment d ordre 2 si et seulement si E(X 2 ) < +. Dans ce cas, on définit la variance varx et l écart-type σ X par: varx E((X EX) 2 ) et σ X varx. emarque: La variance est donc une moyenne de l écart entre X et sa moyenne au carré. Elle caractérise la dispersion de X par rapport à sa moyenne. Pour des raisons d homogénéité, on lui préfère souvant dans les applications pratiques l écart-type. Noter aussi que le lemme précédent assure que si E(X 2 ) < +, la variance est bien définie. Proposition Pour le calcul, on utilise souvent: varx E(X 2 ) (EX) varx varx 0 X est constante (presque-sûrement). 4. var(ax + b) a 2 varx Démonstration: 1. Posons m EX. varx E((X EX) 2 ) E((X m) 2 ) E(X 2 2mX + m 2 ) E(X 2 ) 2mE(X) + m 2 E(X 2 ) m Ceci découle de la positivité de l espérance. 3. Notons m EX. L égalité varx E((X m) 2 ) 0 peut être vu comme: l espérance de la variable aléatoire positive (X m) 2 est nulle, donc par le résultat de l exercice du paragraphe précédent, P((X m) 2 0) 1 P(X m 0) 1 P(X m) 1. 52

9 Donc (presque-sûrement) X est égale à sa moyenne. 4. Exercice: Laissée en exercice. Attention! En général var(x + Y ) varx + vary. egarder le cas X Y. Exercice: 1. Soit X une variable aléatoire de loi uniforme sur [0, 1]. Calculer varx. 2. On pose Y ax + b. Déterminer la loi de Y (on pourra utiliser sa fonction de répartition) et calculer EY et vary. 3. Soit Z une variable aléatoire de loi uniforme sur [c, d]. A l aide des questions précédentes, calculer EZ et varz. Exercice: Soit X une variable aléatoire gaussienne de paramètre m et σ 2. Calculer EX et varx Inégalité de Tchebitcheff Proposition 6.10 Soit X une variable aléatoire réelle telle que E(X 2 ) < +. Alors ε > 0, P( X EX ε) varx ε 2. Démonstration: Notons que P( X EX ε) P((X EX) 2 ε 2 ). On applique alors l inégalité de Markov à la variable aléatoire positive (X EX) 2 : P((X EX) 2 ε 2 ) E((X EX)2 ) ε 2 varx ε 2. Exercice: Montrer que si varx 0 alors X est presque sûrement constante. 6.3 Calculs pour les lois usuelles Loi de Bernoulli de paramètre p X(Ω) {0, 1}, P(X 1) p et P(X 0) 1 p. EX p.1 + (1 p).0 p. E(X 2 ) p (1 p).0 2 p. varx E(X 2 ) (EX) 2 p p 2 p(1 p). Loi uniforme sur {0,..., n} X(Ω) {0,...,n}, k {0,...,n}, P(X k) 1/(n + 1). appel: n k n(n + 1) 2 et n k 2 n(n + 1)(2n + 1). 6 EX E(X 2 ) n n k n + 1 n 2. k 2 n + 1 n(2n + 1). 6 varx E(X 2 ) (EX) 2 n(n + 2)

10 Loi binômiale de paramètres (n, p) X(Ω) {0,...,n}, k {0,...,n}, P(X k) ( k n) p k (1 p) n k. ( ) ( ) n n 1 appel: n 1, k {1,..., n}, k n ( ) k k ( 1 ) n n 2 n 2, k {2,..., n}, k(k 1) n(n 1). k k 2 EX n ( ) n n ( n k p k (1 p) n k k k k k1 n ( ) n 1 n n p k (1 p) (n 1) (k 1) np k 1 k1 ) p k (1 p) n k pn(p + (1 p) n 1 np. n ( ) n n ( n E(X(X 1)) k(k 1) p k (1 p) n k k(k 1) k k k2 n ( ) n 2 n n(n 1) p k (1 p) (n 2) (k 2) n(n 1)p 2 k 2 varx k2 n(n 1)p 2 (p + (1 p) n 1 n(n 1)p 2. k1 ( ) n 1 p k 1 (1 p) (n 1) (k 1) k 1 ) p k (1 p) n k k2 ( ) n 2 p k 2 (1 p) (n 2) (k 2) k 2 E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 n(n 1)p 2 + np n 2 p 2 np(1 p). Loi de Poisson de paramètre λ X(Ω) N et k N, P(X k) exp( λ) λk k!. Intégrabilité? EX E(X(X 1)) + k exp( λ) λk + k! k exp( λ) λk k! λexp( λ) + + k1 k1 λ k 1 λexp( λ)exp(λ) λ. (k 1)! k(k 1)exp( λ) λk + k! k(k 1)exp( λ) λk k! λ 2 exp( λ) Loi géométrique de paramètre p + k2 k2 λ k 2 (k 2)! λ2 exp( λ)exp(λ) λ 2. varx E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 λ 2 + λ λ 2 λ. X(Ω) N et k N, P(X k) p(1 p) k 1. Intégrabilité? Proposition 6.11 Soit X une variable aléatoire à valeurs dans N. Alors De plus, dans ce cas, EX X est intégrable si et seulement si la série de terme général (P(X > n)) n N converge. + kp(x k) + n0 P(X > n). 54

11 Soit n N, P(X > n) + kn+1 P(X k) + kn+1 p(1 p) k 1 p(1 p) n 1 1 (1 p) (1 p)n. EX + n0 P(X > n) + n0 (1 p) n 1 1 (1 p) 1 p. Pour la variance, on verra plus tard. Loi uniforme sur [a, b] Loi exponentielle de paramètre λ Lois gaussiennes 55

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres

Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi des grands nombres 1 Introduction Le nombre de piles obtenus au cours d une série de n lancers de pile ou face ou plus généralement dans

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Préparation au CAPES de Mathématiques

Préparation au CAPES de Mathématiques Université Claude Bernard Lyon 1 Année universitaire 2007-2008 Préparation au CAPES de Mathématiques Probabilités F. Bienvenüe-Duheille Chapitre 1 Probabilités 1 Mesure 1.1 Définitions On se place sur

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

TD 1 & 2 Rappels de probabilités

TD 1 & 2 Rappels de probabilités Master IF, ENS de Lyon Évaluation de performance 5 & 22 septembre 20 TD & 2 appels de probabilités lionel.rieg@ens-lyon.fr Probabilités discrètes. Calcul de probabilités Exercice Soient A et B des événements

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon

Plus en détail

Probabilités et Statistique. Benjamin JOURDAIN

Probabilités et Statistique. Benjamin JOURDAIN Probabilités et Statistique Benjamin JOURDAIN 18 septembre 2006 2 i Remerciements Je tiens à remercier les membres de l équipe enseignante du cours de probabilités de première année, Aurélien Alfonsi,

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés.

Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Université d Orléans Deug MASS, MIAS et SM Unité MA. Probabilités et Graphes Examen partiel du 5 décembre durée: h Le polycopié de cours, les notes manuscrites, et les calculatrices sont autorisés. Le

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Lois normales, cours, terminale S

Lois normales, cours, terminale S Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1 1 Variables centrées et réduites

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

Exercices corrigés de SQ20

Exercices corrigés de SQ20 1 Exercices corrigés de SQ2 Corrigés TD 1 à 4 Printemps 215 responsable de l'uv : André Turbergue SQ2 TD1 : espaces probabilisés TD1 : espaces probabilisés 1 Énoncés Exercice 1. Calculer si possible une

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Cours de probabilités Terminale S. Paul Milan

Cours de probabilités Terminale S. Paul Milan DERNIÈRE IMPRESSION LE 27 juillet 2014 Cours de probabilités Terminale S Pour aller plus loin... Paul Milan Table des matières 1 Espace probabilisé 2 1.1 Cas où l univers est fini..........................

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique

Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique Master de Mathématiques Mathématiques de la modélisation et de la décision Simulation Stochastique 2 2 i Introduction Ce cours présente des méthodes numériques qui utilisent des nombres aléatoires pour

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Liste des fiches de probabilités Probabilités 1 : Introduction aux espaces probabilisés Probabilités 2 : Variables

Plus en détail

Cours de probabilité et simulation Licence de mathématiques Version 2.0. Christian Léonard

Cours de probabilité et simulation Licence de mathématiques Version 2.0. Christian Léonard Cours de probabilité et simulation Licence de mathématiques Version 2.0 Christian Léonard Département de mathématiques et informatique, Université Paris Ouest. Nanterre. E-mail address: leonard@u-paris10.fr

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Cours de probabilités, ECS deuxième année. Alain TROESCH

Cours de probabilités, ECS deuxième année. Alain TROESCH Cours de probabilités, ECS deuxième année Alain TROESCH 10 janvier 2012 Table des matières 1 Rappels de probabilités générales et discrètes 5 1.1 Principes généraux du calcul des probabilités.....................

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #9 ARTHUR CHARPENTIER 1 Soit X la variable aléatoire continue de fonction de densité : { (1.4)e 2x + (0.9)e 3x pour x > 0 f X (x) = 0 sinon. Trouver E[X]. A) 9 20 B)

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

COURS COMMUN L1 MI & MIAGE

COURS COMMUN L1 MI & MIAGE COURS COMMUN L MI & MIAGE 5 janvier 03 Table des matières Propriétés du corps des nombres réels 3. A propos du corps des réels R.......................... 3.. Notion de corps..............................

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Cours de Probabilités : Modèles et Applications.

Cours de Probabilités : Modèles et Applications. Cours de Probabilités : Modèles et Applications. Anne Philippe & Marie-Claude Viano 2 Niveau Master Université de Nantes Année 2009-200. Anne.Philippe@univ-nantes.fr 2. Marie-Claude.Viano@univ-lille.fr

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

2 36. k 2 3 4 5 6 7 8 9 10 11 12

2 36. k 2 3 4 5 6 7 8 9 10 11 12 Chapitre 2 : Variables aléatoires discrètes Les variables aléatoires qui apparaissent dans ce chapitre (et son appendice) sont des exemples de variables aléatoires discrètes. I- Variables aléatoires. 1.

Plus en détail

Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires

Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires Chapitre I Le jeu de pile ou face. Introduction aux marches aléatoires 1. 1 Expérimentation, simulation 1. 1. 1 Attente du premier, du deuxième,, du kème pile Expérience : elle se fait en deux temps. Dans

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009

Projets scilab. L3 Maths Appliquées lagache@biologie.ens.fr 02 Avril 2009 Projets scilab L3 Maths Appliquées lagache@biologie.ens.fr 2 Avril 29 REMARQUE: quelques résultats importants concernant le théorème central limite et les intervalles de confiance sont rappelés dans la

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Licence 3ème année (L3 S6) année 2008-2009 UFR Sciences Université Picardie Jules Verne, Amiens. Probabilités. Barbara SCHAPIRA

Licence 3ème année (L3 S6) année 2008-2009 UFR Sciences Université Picardie Jules Verne, Amiens. Probabilités. Barbara SCHAPIRA Licence 3ème année (L3 S6) année 2008-2009 UF Sciences Université Picardie Jules Verne, Amiens Probabilités Barbara SCHAPIA 4 juin 2009 Table des matières 1 Probabilités et variables aléatoires 4 1.1 Espaces

Plus en détail

Cours de Probabilités

Cours de Probabilités Licence 2-S3 SI-MASS Année 2013 Cours de Probabilités Pierre DUSART 2 Chapitre 1 Éléments d analyse combinatoire 1.1 Quelques définitions Disposition sans répétition : c est une disposition où un élément

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Cours de Mathématiques E.S.P.C.I Deuxième année. Elie Raphaël Polycopié des élèves rédigé à partir du cours

Cours de Mathématiques E.S.P.C.I Deuxième année. Elie Raphaël Polycopié des élèves rédigé à partir du cours Cours de Mathématiques E.S.P.C.I Deuxième année Elie Raphaël Polycopié des élèves rédigé à partir du cours 2 Ce polycopié a été rédigé sous L A TEX2e par Julien Berthaud, Cyrille Boullier, Régis Schach

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail