Moments des variables aléatoires réelles

Dimension: px
Commencer à balayer dès la page:

Download "Moments des variables aléatoires réelles"

Transcription

1 Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles Définition et calcul appels et compléments sur les séries de nombres réels Propriétés Inégalité de Markov Variance et écart-type Définition et propriétés Inégalité de Tchebitcheff Calculs pour les lois usuelles Objectifs: Comprendre la notion d espérance et de variance d une variable aléatoire réelle. Savoir les calculer pour des variables discrètes et à densité. Mots-clés: espérance, variance. Outils: linéarité de l espérance: E(aX + by ) aex + bey. positivité de l espérance: si X Y alors EX EY. formule de calcul de E(f(X)) quand X est une v.a.discrète ou à densité (théorème de transfert). non-linéarité de la variance: en général var(x + Y ) varx + vary et var(ax + b) a 2 varx. Inégalités de Markov et de Tchebitcheff.

2 6.1 Espérance des variables aléatoires réelles Définition et calcul L espérance d une variable aléatoire réelle est ce qu on nomme en langage courant sa moyenne: Définition 6.1 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. 1. Si X est discrète, on dit qu elle est intégrable (ou qu elle admet une espérance) si et seulement si x Ω(X) x P(X x) < +. Dans ce cas, son espérance EX est définie par E(X) xp(x x). x Ω(X) 2. Si X a pour densité f, on dit qu elle est intégrable si et seulement si x f(x)dx < +. Dans ce cas, son espérance EX est définie par E(X) xf(x)dx. emarque: 1. Si X est une variable aléatoire réelle qui ne prend qu un nombre fini de valeurs, son espérance, définie par une somme finie de réels, a toujours un sens. Par contre, si X est une variable aléatoire réelle qui prend un nombre dénombrable de valeurs, l espérance est naturellement définie par une série, dont il faut étudier la convergence. Pour la condition d existence de l espérance, x Ω(X) x P(X x) est une série à termes positifs. Quand elle converge (c est-à-dire quand sa somme est finie), cela implique la convergence de la série x Ω(X) xp(x x) (en effet, cette dernière série est alors absolument convergente), et cette somme x Ω(X) xp(x x) est appelée espérance de X. 2. Si X est une variable aléatoire de densité f, x f(x)dx est une intégrale, éventuellement impropre. Comme dans le cas des séries, si cette intégrale converge, cela implique l absolue convergence de l intégrale xf(x)dx, et on appelle espérance de X la valeur EX xf(x)dx. 3. L espérance de X est une moyenne pondéreée des valeurs prises par X, le poids d une valeur étant la probabilité que X prenne cette valeur. On le voit bien sur des variables aléatoires ne prenant qu un nombre fini de valeur, on peut étendre cette intuition au cas d une variable aléatoire qui prend un nombre dénombrable de valeurs, et au cas d une variable aléatoire à densité. Exemple: Considérons une variable aléatoire X de loi uniforme sur {0,... n}. C est une variable aléatoire discrète, qui ne prend qu un nombre fini de valeurs, donc elle admet une espérance: n n 1 EX kp(x k) k. n n n(n + 1) k n + 1 2(n + 1) n 2. emarquons qu on pouvait s attendre à une telle valeur. Exercice: La roulette française comporte 37 numéros, de 0 à 36, équiprobables. Le 0 est vert, la moitié des numéros restant sont rouges, les autres noirs. 1. Je mise 1 euro sur rouge. Si un numéro rouge sort, je récupère mon euro et je gagne un euro supplémentaire, sinon je perds mon euro. On note X mon gain (différence entre ce que je possède avant de jouer et ce que je possède après le jeu). Donner la loi de X et calculer son espérance. 2. Je mise 1 euro sur mon numéro fétiche, le 25. S il sort, je gagne 36 fois ma mise. Soit Y mon gain dans ce cas. Donner la loi de Y et calculer son espérance. Exemple: On considère une variable aléatoire X qui suit la loi de Poisson de paramètre λ > 0, c est-à-dire que k1 X(Ω) N et k N P(X k) e λλk k!. 46

3 Comme la variable aléatoire ne prend que des valeurs positives, on regarde kp(x k) ke λλk k! e λ k1 On a donc montré à la fois que X est intégrable et que EX λ. λ λk 1 (k 1)! λe λ l0 λ l l! λe λ e λ λ. Exercice: Soit α > 0 et C α > 0. Soit X une variable aléatoire à valeurs dans N telle que k N, P(X k) C α k α. 1. A quelle condition sur α peut-on trouver C α > 0 telle que la probabilité soit bien définie? 2. A quelle condition sur α la variable aléatoire X est-elle intégrable? Exercice: Soit X une variable aléatoire de loi uniforme sur le segment [a, b]. Calculer son espérance. Exemple: Soit X une variable aléatoire de loi exponentielle de paramètre λ. Montrer qu elle est intégrable et calculer son espérance. La densité de la loi exponentielle de paramètre λ > 0 est x f(x) λexp( λx)1 x>0. Pour que X admette une espérance, il faut que x f(x)dx < + λ x exp( λx)1 x>0 dx < + Soit M > 0. Calculons, en intégrant par parties, M λx exp( λx)dx < +. M λxexp( λx)dx [ xexp( λx] exp( λx)dx M exp( λm) + 1 (1 exp( λm). 0 λ Cette quantité a une limite quand M tend vers +, donc l intégrale est convergente et X admet une espérance. Cette espérance vaut EX M lim λx exp( λx)dx lim M exp( λm) + 1 M + 0 M + λ (1 exp( λm) 1 λ. Exercice: Lois de Cauchy. Soit α et β > 0. La densité de la loi lorentzienne de paramètres α et β est f(x) 1 βπ (x α)2 β 2 Montrer que la loi de Cauchy de paramètres α 0 et β 1 n est pas intégrable appels et compléments sur les séries de nombres réels Soit (u n ) n N une suite de nombre réels. On pose, pour tout n N, S n n u k. On dit que la série de terme général (u n ) n N converge si et seulement si la suite (S n ) n N converge et on appelle S sa somme, définie par S lim n + S n. Dans le cas contraire, on dit que la série est divergente. 47

4 Proposition 6.2 Soit (u n ) n N une suite de nombre réels positifs ou nuls, et soit ϕ une bijection de N dans N. Alors les séries de terme général (u n ) n N et (u ϕ(n) ) n N sont de même nature. Dans le cas où elles convergent, elles ont même somme. Autrement dit, pour une série à termes positifs, on peut changer l ordre de sommation sans changer la nature de la série, ni la somme de la série si elle converge. Ce n est pas le cas pour une série de terme géréral quelconque. Exercice: Démonstration: Soit ϕ : N N une bijection de N dans N. Comme (u n ) n N est une suite de nombre réels positifs ou nuls, les suites S n n u k et T n sont croissantes et tendent (en croissant) respectivement vers S et T (ces deux valeurs pouvant éventuellement être infinies). On va montrer que S T. Posons, pour n N, M n max{ϕ(k) : 0 k n}. emarquons alors que, pour tout n N, T n S Mn S, et donc en passant à la limite, T S. De même, posons, pour n N, N n max{ϕ 1 (k) : 0 k n} et remarquons alors que, pour tout n N, n S n u ϕ(ϕ 1 (k) T Nn T, et donc en passant à la limite, S T. 1. Soit (u n ) n N et (v n ) n N des suites réelles telles que: (a) (u n ) n N est croissante et (v n ) n N est décroissante, (b) pour tout n, u n v n. Montrer que les suites (u n ) n N et (v n ) n N convergent vers une même limite réelle. 2. On considère la série de terme général u n ( 1)n n. En considérant les suites de sommes partielles (S 2k) k N et (S 2k+1 ) k N, montrer que cette série converge et que sa somme est strictement positive. 3. On somme maintenant dans l ordre n u 1 + u 3 + u 2 + u 5 + u 7 + u (deux termes impairs, un terme pair). Montrer que les sommes partielles de rang un multiple de 3 sont négatives. u ϕ(k) 4. Peut-on sommer cette série dansn importe quel ordre sans changer la somme? Proposition 6.3 Soit (u n ) n N une suite de nombre réels quelconque. On suppose qu il existe une bijection ϕ de N dans N telle que la série de terme général ( u ϕ(n) ) n N converge (autrement dit telle que la série de terme général (u ϕ(n) ) n N soit absolument convergente). Alors pour toute bijection ψ : N N, les éries de terme général (u ψ(n) ) n N et ont toutes la même somme. Démonstration: admis (voir cours sur les séries numériques). Ces propriétés justifient le fait qu on puisse changer l ordre de sommation dans les preuves des propriétés qui suivent. 48

5 6.1.3 Propriétés Proposition L espérance est linéaire: si a et b sont deux nombres réels et si X et Y sont deux variables aléatoires réelles définies sur le même espace de probabilité Ω et admettant une espérance, alors ax + by admet une espérance et: E(aX + by ) aex + bey. Cas particulier: si a est une constante réelle, E(a) a. 2. L espérance est une application positive: si X est positive (ce qui signifie que ω Ω, X(ω) 0 et qui est noté X 0), et qu elle admet un moment, alors EX 0: X 0 EX 0. Cas particulier: si X Y (ce qui signifie ω Ω, X(ω) Y (ω)) alors EX EY. On va faire la preuve dans le cas de variables aléatoires discrètes. Démonstration: 1. Montrons que si a et X est une variable aléatoire discrète admettant une espérance, alors ax admet une espérance et E(aX) aex. Notons Z ax. Si a 0 alors Z 0 et la propriété est claire. Supposons maintenant que a 0. Alors l application ϕ : X(Ω) x Z(Ω) ax est une bijection, donc Z est encore une variable aléatoire discrète. Maintenant, z P(Z z) ax P(Z ax) a x P(aX ax) a x P(X x), car a 0. Donc Z admet une espérance et le même calcul sans les valeurs absolues montre que E(aX) aex. Montrons que si X et Y sont des variables aléatoires discrètes définie sur le même espace de probabilité et admettant une espérance, alors X + Y admet une espérance et E(X + Y ) EX + EY. Posons Z X + Y. Montrons que Z est encore discrète: comme X(Ω) et Y (Ω) sont finis ou dénombrables, leur produit X(Ω) Y (Ω) est encore dénombrable. Maintenant, considérons ϕ : X(Ω) Y (Ω) (x, y) x + y. Alors Z(Ω) ϕ(x(ω) Y (Ω)) est aussi fini ou dénombrable. Donc Z est une variable aléatoire discrète. Maintenant soit z Z(Ω): regardons toutes les façons dont on peut l obtenir comme somme d une valeur x X(Ω) et d une valeur y Y (Ω): par la formule des probabilités totales z P(Z z) z P {X x, Y y} z (x,y):,y Y (Ω),x+yz (x,y):,y Y(Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz P(X x, Y y) z P(X x, Y y) x + y P(X x, Y y) ( x + y )P(X x, Y y). 49

6 On découpe la somme en deux morceaux: z P(Z z) egardons le premier morceau: (x,y):,y Y (Ω),x+yz + (x,y):,y Y (Ω),x+yz (x,y):,y Y (Ω),x+yz x x P(X x), x P(X x, Y z x) x P(X x, Z z) P(X x, Z z) x P(X x, Y y) x P(X x, Y y) y P(X x, Y y). par la formule des probabilités totales (on utilise le système complet ({Z z}) ). Pour le second morceau, on obtient de même (x,y):,y Y (Ω),x+yz y P(X x, Y y) y Y (Ω) y P(Y y). Comme X et Y admettent une espérance, on en déduit que Z aussi. Pour la valeur de l espérance, on reprend exactement les mêmes calculs sans les valeurs absolues. 2. C est une simple conséquence de la définition de l espérance. On va aussi donner les formules pour calculer l espérance d une fonction d une variable aléatoire: Théorème 6.5 (Théorème de transfert) Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω, et soit ϕ une application de dans. Alors ϕ(x) : Ω est une variable aléatoire réelle. 1. Si X est discrète, alors ϕ(x) est intégrable si et seulement si x Ω(X) ϕ(x) P(X x) < +. Dans ce cas, E(ϕ(X)) x Ω(X) ϕ(x)p(x x) x Ω(X) ϕ(x)p X (x). 2. Si X est a pour densité f, alors ϕ(x) est intégrable si et seulement si ϕ(x) f(x)dx < +. Dans ce cas, E(ϕ(X)) ϕ(x)f(x)dx. Démonstration: Faisons la preuve dans le cas discret. Soit X une variable aléatoire discrète, ϕ une application de dans. Notons Z ϕ(x). Alors ϕ : X(Ω) Z(Ω) est une surjection, donc Z est 50

7 encore une variable al ;eatoire discrète. De plus z P(Z z) z P(ϕ(X) z) z P z x ϕ 1 ({z}) x ϕ 1 ({z}) x ϕ 1 ({z}) ϕ(x) P(X x). {X x} P(X x) ϕ(x) P(X x) Pour la dernière égalité, on utilise la fait que comme ϕ : X(Ω) Z(Ω) est surjective, alors les (ϕ 1 (}z})) forment une partition de X(Ω). On en déduit la condition d intégrabilité de Z, et le même calcul sans les valeurs absolues donne la formule pour l espérance. Exemple: Pour ϕ : x x 2 : 1. Si X est discrète, alors X 2 est intégrable si et seulement si x Ω(X) x2 P(X x) < +. Dans ce cas, E(X 2 ) x Ω(X) x 2 P(X x). 2. Si X est a pour densité f, alors X 2 est intégrable si et seulement si x2 f(x)dx < +. Dans ce cas, E(X 2 ) x 2 f(x)dx. Attention! emarquer dans ces deux formules que c est sur le x que porte le carré et pas sur la probabilité ou sur la densité. Exercice: Vérifier que E(1 A ) P(A). Exercice: Soit X une variable aléatoire de loi uniforme sur {0,...,n}. Calculer E(X 2 ). Exercice: Soit X une variable aléatoire de loi uniforme sur [a, b]. Calculer E(X 2 ) Inégalité de Markov Proposition 6.6 Soit X une variable aléatoire réelle telle que E( X ) < +. Alors Démonstration: A > 0, P( X A) E( X ) A. E( X ) E( X (1 X A + 1 X >A )) E( X 1 X A ) + E( X 1 X >A ) E(A.1 X A ) AE(1 X A ) AP( X A). 51

8 Exercice: Soit X une variable aléatoire réelle telle que E X 0. Montrer que P(X 0) 1. Démonstration: Soit n N. Par l inégalité de Markov, P( X 1/n) ne X 0. emarquons alors que ]0, + [ n N [1/n, + [, et donc, par limite monotone, ( ) P(X 0) P( X > 0) P X (]0, + [) P X [1/n, + [ n N lim P X ([1/n, + [) lim P( X 1/n) 0. n + n + C est assez naturel: une variable aléatoire positive de moyenne 0 ne peut qu être égale à Variance et écart-type Définition et propriétés Lemme 6.7 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω telle que E(X 2 ) < +. Alors X est intégrable. Démonstration: On va montrer que E X < +. On va découper suivant que X 1 ou X > 1, et utiliser le fait que l espérance est positive: E X E( X (1 X X >1 )) E( X 1 X 1 ) + E( X 1 X >1 ) E(1.1 X 1 ) + E( X 2 1 X >1 ) P( X 1) + E(X 2 ) < +. Définition 6.8 Soit (Ω, F, P) un espace de probabilité, et X une variable aléatoire réelle définie sur Ω. On dit que X admet un moment d ordre 2 si et seulement si E(X 2 ) < +. Dans ce cas, on définit la variance varx et l écart-type σ X par: varx E((X EX) 2 ) et σ X varx. emarque: La variance est donc une moyenne de l écart entre X et sa moyenne au carré. Elle caractérise la dispersion de X par rapport à sa moyenne. Pour des raisons d homogénéité, on lui préfère souvant dans les applications pratiques l écart-type. Noter aussi que le lemme précédent assure que si E(X 2 ) < +, la variance est bien définie. Proposition Pour le calcul, on utilise souvent: varx E(X 2 ) (EX) varx varx 0 X est constante (presque-sûrement). 4. var(ax + b) a 2 varx Démonstration: 1. Posons m EX. varx E((X EX) 2 ) E((X m) 2 ) E(X 2 2mX + m 2 ) E(X 2 ) 2mE(X) + m 2 E(X 2 ) m Ceci découle de la positivité de l espérance. 3. Notons m EX. L égalité varx E((X m) 2 ) 0 peut être vu comme: l espérance de la variable aléatoire positive (X m) 2 est nulle, donc par le résultat de l exercice du paragraphe précédent, P((X m) 2 0) 1 P(X m 0) 1 P(X m) 1. 52

9 Donc (presque-sûrement) X est égale à sa moyenne. 4. Exercice: Laissée en exercice. Attention! En général var(x + Y ) varx + vary. egarder le cas X Y. Exercice: 1. Soit X une variable aléatoire de loi uniforme sur [0, 1]. Calculer varx. 2. On pose Y ax + b. Déterminer la loi de Y (on pourra utiliser sa fonction de répartition) et calculer EY et vary. 3. Soit Z une variable aléatoire de loi uniforme sur [c, d]. A l aide des questions précédentes, calculer EZ et varz. Exercice: Soit X une variable aléatoire gaussienne de paramètre m et σ 2. Calculer EX et varx Inégalité de Tchebitcheff Proposition 6.10 Soit X une variable aléatoire réelle telle que E(X 2 ) < +. Alors ε > 0, P( X EX ε) varx ε 2. Démonstration: Notons que P( X EX ε) P((X EX) 2 ε 2 ). On applique alors l inégalité de Markov à la variable aléatoire positive (X EX) 2 : P((X EX) 2 ε 2 ) E((X EX)2 ) ε 2 varx ε 2. Exercice: Montrer que si varx 0 alors X est presque sûrement constante. 6.3 Calculs pour les lois usuelles Loi de Bernoulli de paramètre p X(Ω) {0, 1}, P(X 1) p et P(X 0) 1 p. EX p.1 + (1 p).0 p. E(X 2 ) p (1 p).0 2 p. varx E(X 2 ) (EX) 2 p p 2 p(1 p). Loi uniforme sur {0,..., n} X(Ω) {0,...,n}, k {0,...,n}, P(X k) 1/(n + 1). appel: n k n(n + 1) 2 et n k 2 n(n + 1)(2n + 1). 6 EX E(X 2 ) n n k n + 1 n 2. k 2 n + 1 n(2n + 1). 6 varx E(X 2 ) (EX) 2 n(n + 2)

10 Loi binômiale de paramètres (n, p) X(Ω) {0,...,n}, k {0,...,n}, P(X k) ( k n) p k (1 p) n k. ( ) ( ) n n 1 appel: n 1, k {1,..., n}, k n ( ) k k ( 1 ) n n 2 n 2, k {2,..., n}, k(k 1) n(n 1). k k 2 EX n ( ) n n ( n k p k (1 p) n k k k k k1 n ( ) n 1 n n p k (1 p) (n 1) (k 1) np k 1 k1 ) p k (1 p) n k pn(p + (1 p) n 1 np. n ( ) n n ( n E(X(X 1)) k(k 1) p k (1 p) n k k(k 1) k k k2 n ( ) n 2 n n(n 1) p k (1 p) (n 2) (k 2) n(n 1)p 2 k 2 varx k2 n(n 1)p 2 (p + (1 p) n 1 n(n 1)p 2. k1 ( ) n 1 p k 1 (1 p) (n 1) (k 1) k 1 ) p k (1 p) n k k2 ( ) n 2 p k 2 (1 p) (n 2) (k 2) k 2 E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 n(n 1)p 2 + np n 2 p 2 np(1 p). Loi de Poisson de paramètre λ X(Ω) N et k N, P(X k) exp( λ) λk k!. Intégrabilité? EX E(X(X 1)) + k exp( λ) λk + k! k exp( λ) λk k! λexp( λ) + + k1 k1 λ k 1 λexp( λ)exp(λ) λ. (k 1)! k(k 1)exp( λ) λk + k! k(k 1)exp( λ) λk k! λ 2 exp( λ) Loi géométrique de paramètre p + k2 k2 λ k 2 (k 2)! λ2 exp( λ)exp(λ) λ 2. varx E(X 2 ) (EX) 2 E(X(X 1)) + EX (EX) 2 λ 2 + λ λ 2 λ. X(Ω) N et k N, P(X k) p(1 p) k 1. Intégrabilité? Proposition 6.11 Soit X une variable aléatoire à valeurs dans N. Alors De plus, dans ce cas, EX X est intégrable si et seulement si la série de terme général (P(X > n)) n N converge. + kp(x k) + n0 P(X > n). 54

11 Soit n N, P(X > n) + kn+1 P(X k) + kn+1 p(1 p) k 1 p(1 p) n 1 1 (1 p) (1 p)n. EX + n0 P(X > n) + n0 (1 p) n 1 1 (1 p) 1 p. Pour la variance, on verra plus tard. Loi uniforme sur [a, b] Loi exponentielle de paramètre λ Lois gaussiennes 55

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Suites numériques 4. 1 Autres recettes pour calculer les limites

Suites numériques 4. 1 Autres recettes pour calculer les limites Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

Probabilités et statistique. Benjamin JOURDAIN

Probabilités et statistique. Benjamin JOURDAIN Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Remise à niveau en processus stochastiques

Remise à niveau en processus stochastiques M2IR Université Claude Bernard Lyon 1 Année universitaire 212-213 Remise à niveau en processus stochastiques F. Bienvenüe-Duheille Le but de ce poly est de vous mettre à niveau sur les processus stochastiques

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

CONCOURS 2015 Programme des classes préparatoires

CONCOURS 2015 Programme des classes préparatoires CONCOURS 2015 Programme des classes préparatoires Voie économique et commerciale option scientifique option économique option technologique Voie littéraire Filière B/L Lettres et Sciences Sociales Filière

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

MAP 311 - Aléatoire - PC 1. Probabilités

MAP 311 - Aléatoire - PC 1. Probabilités MAP 311 - Aléatoire - PC 1 Emmanuel Gobet Feuille de PC disponible en avance sur le site http://www.cmap.polytechnique.fr/~gobet/. Les exercices marqués ( ) sont corrigés dans le livre Aléatoire de S.

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Cours de probabilité et statistique

Cours de probabilité et statistique Cours de probabilité et statistique 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-4 -3-2 -1 0 1 2 3 4 Denis Bichsel 1 1 Probabilité et statistique 1.1 Introduction Le calcul des probabilité semble avoir son origine

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail