Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Dimension: px
Commencer à balayer dès la page:

Download "Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité"

Transcription

1 Université Paris 8 Introduction aux probabilités Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient trois boules : une rouge, une jaune et une bleue. La seconde contient deux boules : une rouge et une verte. On choisit au hasard une des boîtes puis une des boules de cette boîte. Décrivez l ensemble fondamental de cette expérience. Exercice 2. Soit un référentiel Ω = {a, b, c, d, e}. 1. Dire pourquoi les applications définies ci-après sur les évènements élémentaires ne sont pas des lois de probabilité : a) p({a}) = 0, 1 ; p({b}) = 0, 2 ; p({c}) = 0, 3 ; p({d}) = 0, 1 et p({e}) = 0, 2. b) p({a}) = 0, 3 ; p({b}) = 0, 2 ; p({c}) = 0, 4 ; p({d}) = 0, 1 et p({e}) = 0, Quelle doit être la valeur de p({e}) pour que l application p soit une loi de probabilité. a) p({a}) = 0, 2 ; p({b}) = 0, 2 ; p({c}) = 0, 3 ; p({d}) = 0, 1. b) p({a}) = 0, 2 ; p({b}) = 0, 2 ; p({c}) = 0, 3 ; p({d}) = 0, 3. Exercice 3. Dans une maternité, on compte 260 garçons sur les 500 naissances. On y croise une famille avec un landau. Quelle est la probabilité pour que le nouveau-né dans le landau soit un garçon? On truque un dé de sorte que la probabilité pour une face d apparaitre est proportionnelle au score de cette face, quelles sont les probabilités des différentes faces? Probabilité d un événement On tire au hasard une carte dans un jeu de 52 cartes. Soit A l évènement la carte tirée est une dame et soit B l évènement la carte tirée est un cœur. 1. Quelle sont les probabilités des évènements A et B? 2. Par quelle assertion exprimer les évènements A B et A B? Quelles sont leurs probabilités? Avec quelle probabilité cette carte est-elle soit soit une dame, soit un cœur, mais pas les deux? On lance deux dés. 1. Quelle est la probabilité d avoir un double? 2. Soit A 0 l évènement la somme des points est paire Quelle est la probabilité de l évènement A 0? 3. Soit A 1 l évènement la somme des points est impaire et soit B l événement la valeur absolue de la différence des points vaut 4. Combien y a-t-il d évènements élémentaires dans A 0 \ B? dans A 1 \ B? 4. Pour chaque valeur de k comprise entre 1 et 6, quelle est la probabilité que la valeur maximale des deux dés soit k? Exercice 7. Dans une enveloppe se trouvent 10 tickets de tombola. Deux d entre eux sont gagnants. 1. On choisit un ticket au hasard. Quelle est la probabilité que le ticket choisi soit gagnant? 2. On choisit deux tickets au hasard. Quelle est la probabilité pour qu au moins un des tickets soit gagnant? Exercice 8. On lance deux pièces équilibrées pour jouer à pile ou face. La première pièce est une pièce d un euro et la seconde est une pièce de deux euros. 1. Décrire l ensemble fondamental de cette expérience aléatoire. 2. Quelle est la loi de probabilité? 3. Trouver un évènement de probabilité 1/2. 4. Donner la liste de tous les évènements dont la probabilité est 3/4. 5. On lance les deux pièces et on vous averti : la pièce de 1 euro est sur face. Quelle est la probabilité que l autre soit sur pile? 6. On lance les deux pièces et on vous averti : une des deux pièces est sur face. Quelle est la probabilité que l autre soit sur pile?

2 2 Combiner les événements Exercice 1. Soient A, B et C trois évènements d un espace probabilisé. Exprimer les évènements suivants à l aide des opérations élémentaires sur les évènements : 1. A est réalisé seul. 2. A et B sont réalisés, mais pas C. 3. Exactement un des trois évènements est réalisé. 4. Deux évènements au plus sont réalisés. 5. Aucun de ces évènements n est réalisé. 6. Au moins deux sur les trois sont réalisés. 7. Deux évènements exactement sur les trois sont réalisés Exercice 2. Lors d un jet de deux dés cubiques, on s intéresse aux évènements suivants : A = la somme obtenue est au moins 5, B = la somme obtenue est au plus 5 et C = la somme obtenue est strictement inférieure à 3. a) Les évènements A et B sont-ils contraires? b) Les évènements B et C sont-ils incompatibles? c) Traduire par une phrase l évènement C d) Les évènements A et C sont-ils incompatibles? Exercice 3. Soient A, B et C trois évènements d un espace probabilisé. On suppose que P (A) = P (B) = P (C) = 1/2 et que P (A B) = p(a C) = P (B C) = 1/4. Quelles sont les valeurs possibles pour P (A B C)? Soient A, B et C trois évènements d un espace probabilisé. On suppose que si A et B sont réalisés, alors C est réalisé. Montrer alors que P (A) + P (B) 1 + P (C). Soient A et B deux évènements d un espace probabilisé. Soit C l évènement A est réalisé seul ou B est réalisé seul. Montrer que P (C) = P (A) + P (B) 2P (A B). Soient A et B deux événements incompatibles tels que p(a) = 0, 3 et p(b) = 0, 5. Quelle est la probabilité que a) A ou B a lieu? b) A a lieu mais pas B? c) Ni A ni B n ont lieu? d) A et B ont lieu? Exercice 7. Lors d un référendum deux questions étaient posées. A la première, 65% des personnes ont répondu oui, à la seconde 51% ont répondu oui, et 46% ont répondu oui aux deux questions. a) Quelle est la probabilité qu une personne ait répondu oui à l une ou l autre des questions? b) Quelle est la probabilité qu une personne ait répondu non aux deux questions? Exercice 8. Une université propose à ses 320 étudiants deux cours de mathématiques, un en analyse, et un en probabilités. On sait qu il y a 140 étudiants qui choisissent l analyse, 170 qui n assistent pas au cours de probabilités, et 190 qui suivent exactement un cours de mathématiques. On choisit un étudiant au hasard avec une probabilité uniforme. Quelle est la probabilité pour qu il ne suive aucun cours de mathématiques? qu il suive l analyse mais pas les probabilités?

3 3 Dénombrer Exercice 1. Quel est le plus probable : sortir au moins un 6 en lançant quatre fois un dé, ou sortir au moins un double 6 en lançant vingt-quatre fois deux dés? Exercice 2. Un groupe de h hommes et f femmes attendent le bus en file. Quelle est la probabilité que la personne au i-ème rang (1 i h + f) soit une femme? Exercice 3. Six personnes lancent chacune un dé équilibré. Quelle est la probabilité de chacun des évènements suivants : A = tous obtiennent le 6. B = au moins l une d elles obtient le 6. C = ni le 6 ni le 5 ne sont obtenus. D = les six résultats obtenus sont différents. Une personne se trouve devant une porte fermée à clé. Elle dispose d un trousseau de n clés parmi lesquelles une seule ouvre la porte. Elle essaye les clés au hasard l une après l autre, sans essayer deux fois la même clé. Quelle est la probabilité qu elle ouvre la porte au k-ième essai? On considère une assemblée de p personnes toutes nées en janvier. Quelle est la probabilité que deux, au moins, aient le même anniversaire? Pour quelle valeur de p cette probabilité dépasse-t-elle 1/2? Dans la pièce où vous vous trouvez, il y a p autres personnes. Quelle est la probabilité que l une ait le même anniversaire que vous? Pour quelle valeur de p cette probabilité dépasse-t-elle 1/2? Exercice 7. On jette plusieurs fois un dé à six faces non truqué. Combien de lancers faut-il faire pour obtenir au moins un as avec une probabilité d au moins 50%? d au moins 99%? Exercice 8. Un appareil contient 6 transistors dont 2 exactement sont défectueux. On les identifie en testant les transistors l un après l autre. Le test d arrête lorsque les 2 transistors défectueux sont trouvés. Calculer la probabilité pour que le test 1. soit terminé au bout de 2 opérations ; 2. nécessite strictement plus de 3 opérations. Exercice 9. Une urne contient 4 boules blanches, 3 boules noires et 2 boules rouges. On effectue dans cette urne trois tirages d une boule avec remise. Quelle est la probabilité d obtenir a) trois boules de la même couleur? b) trois boules de couleurs différentes? c) deux boules de même couleur et la troisième différente? Exercice 18. Répondre aux questions de l exercice précédent, mais cette fois-ci en piochant simultanément les trois boules dans l urne.

4 4 Probabilités conditionnelles Exercice 1. On lance deux dés équilibrés. On nous indique qu un des deux dés a donné un score impair. Quels sont alors les scores totaux possibles et leurs probabilités respectives? Exercice 2. Jouons quatre fois à pile ou face. 1. Trouvez la probabilité d obtenir au moins deux faces. 2. Trouvez la probabilité d obtenir au moins deux faces sachant qu il y a au moins une face. 3. Trouvez la probabilité de n obtenir que des faces sachant qu il y en a au moins deux. Exercice 3. Une urne contient cinq boules rouges et cinq boules noires. On tire une boule au hasard, puis on la remet en en ajoutant une autre de la même couleur. On tire ensuite une seconde boule. Calculer les probabilités que : a) les deux boules tirées sont rouges ; b) la première est rouge et la seconde est noire ; c) la seconde est rouge ; d) la seconde est noire ; Lors d une donne au bridge, je vois mon jeu et celui de mon partenaire qui est étalé sur la table. Je constate que nous avons 8 des 13 piques. Mes deux adversaires ont, eux aussi, chacun 13 cartes, mais je ne les vois pas. Quelle est la probabilité que mon voisin de gauche ait exactement 3 piques? Une première urne contient 4 boules rouges et 3 boules vertes, et une autre urne contient 5 boules rouges et 3 boules vertes. On tire au hasard une boule dans la première sans l y remettre, puis on procède au tirage d une deuxième boule, dans la même urne si la première boule tirée est rouge, dans l autre urne si la première boule tirée est verte. 1. Écrire l arbre pondéré des possibilités. 2. Quelle est la probabilité d obtenir deux boules vertes? deux boules rouges? 3. Quelle est la probabilité d obtenir deux boules de couleurs différentes? 4. On sait que les deux boules tirées sont de même couleur. Quelle est la probabilité qu elles soient rouges? On doit choisir une commission de 3 personnes parmi un groupe de 6 femmes et 9 hommes. Pour cela on procède de la façon suivante : tout d abord on choisit une des 6 femmes au hasard et on choisit un des 9 hommes au hasard. Ensuite, on écrit le nom de chaque femme qui n a pas été choisie sur a papiers. De même, on écrit le nom de chaque homme qui n a pas été choisi sur b papiers. On met tous ces papiers dans une urne et on tire un papier au hasard. Le nom indiqué sur ce papier correspond à la troisième personne de la commission. 1. Trouver des valeurs pour a et b de façon que chacune des 15 personnes ait la même probabilité d être choisie. 2. Même question avec f femmes et h hommes (on trouvera des conditions sur f et h car ce n est pas toujours possible d avoir la même probabilité pour toutes les personnes).

5 Exercice 7. On dispose de trois jetons. Le premier jeton possède deux faces noires, le second deux faces blanches et le troisième une face blanche et une face noire. On pioche un jeton au hasard. La face visible est noire. Calculer la probabilité pour que ses deux faces soient noires. Exercice 8. Un joueur apprend que sur trois machines à sous, une permet de gagner avec une probabilité de 1/2 et les deux autres avec une probabilité de seulement 1/3. Le joueur choisit une machine au hasard et joue deux fois. Quelle est la probabilité qu il perde la première fois et gagne la seconde? Exercice 9. Un cochon mange les épluchures de pommes avec une probabilité de 0, 6. La probabilité qu il mange les fanes de carottes est de 0, 4 s il ne mange pas les épluchures de pommes, et de 0, 2 sinon. 1. Dresser l arbre pondéré des possibilités? 2. Quelle est la probabilité qu il mange épluchures et fanes? 3. Quelle est la probabilité qu il mange les fanes? 4. Quelle est la probabilité qu il mange les épluchures sachant qu il mange les fanes? Exercice 10. Le quart d une population a été vacciné contre une maladie contagieuse. Au cours de l épidémie, on constate qu il y a, parmi les malades, un vacciné pour quatre non vaccinés. On sait de plus qu une personne vaccinée sur douze tombe malade. 1. Montrer que la probabilité de tomber malade est 5/ Quelle est la probabilité de tomber malade pour un non vacciné? 3. Le vaccin est-il efficace? Exercice 11. Dans une ville, 36% des familles ont un chien et 30% des familles ont un chat. De plus 22% de celle qui ont un chien ont aussi un chat. 1. Quelle est la probabilité qu une famille choisie au hasard possède un chien et un chat? 2. Quelle est la probabilité qu une famille possédant un chat possède aussi un chien? Exercice 12. On distribue les 52 cartes d un jeu à quatre joueurs : 13 cartes à chacun. Quelle est la probabilité que chacun des joueurs ait un as? Exercice 13. Une urne contient au départ une boule blanche et une boule noire. On effectue des tirages dans cette urne de la façon suivante : si l on tire une boule blanche, on la remet dans l urne avec une boule blanche supplémentaire, et on arrête le tirage dès que la boule noire est obtenue. Quelle est la probabilité de s arrêter au n e tirage? Exercice 14. On choisit au hasard une carte dans un jeu de 52. Montrer qu obtenir un as et obtenir un pique sont deux événements indépendants. On pioche maintenant deux cartes. Montrer qu obtenir un as en premier et obtenir une paire sont deux événements indépendants. Que dire de obtenir au moins un as et obtenir une paire?

6 5 Exercice 1. Dans une course de 20 chevaux où toutes les arrivées sont équiprobables, quelle est la probabilité, en jouant 3 chevaux, de gagner le tiercé a) dans l ordre? b) dans l ordre ou le désordre? c) dans le désordre? Exercice 2. On choisit au hasard un comité de 3 personnes parmi huit américains, cinq anglais et trois français. Quelle est la probabilité : qu il ne se compose que d américains? qu aucun américain ne figure dans ce comité? qu au moins un membre de chaque nation figure dans le comité? Exercice 3. Alice, Bob, Charly et Denis jouent au bridge, et reçoivent chacun 13 cartes d un même jeu de 52 cartes. Sachant qu Alice et Charly ont à eux deux 8 piques, on en déduit que Bob et Denis ont 5 piques à eux deux. Quelle est la probabilité pour que les piques soient bien répartis, c est-à-dire, pour que la répartition des 5 piques soit 3 pour Bob et 2 pour Denis ou vice et versa? Une urne A contient 3 boules noires et 4 boules rouges, alors que l urne B contient 7 boules noires et 8 boules rouges. On tire deux boules de chaque urne. 1. Dans l urne A, quelle est la probabilité de tirer 2 boules noires? 2 boules rouges? une boule noire et une boule rouge? Même question pour l urne B. 2. Quelle est la probabilité que : a) les quatre boules soient de même couleur? b) deux boules soient noires et deux rouges? c) Est-il plus probable d obtenir un nombre pair ou un nombre impair de boules noires? Dans une population de n individus on prélève, au hasard, sans répétition et 2 fois de suite de manière indépendante avec remise entre deux tirages, 2 groupes de cardinaux respectifs r et s. Quelle est la probabilité que les deux échantillons n aient pas d éléments communs? Une forêt contient 20 cerfs dont 5 sont capturés, marqués puis relâchés. Un an plus tard, 4 de ces 20 cerfs sont à nouveau capturés. Quelle est la probabilité que 2 de ces 4 cerfs soient marqués? Exercice 7. Dans une urne il y a n jetons dont deux seulement sont gagnants. Un joueur a le droit d utiliser une des deux stratégies suivantes : prendre simultanément deux jetons ; tirer un jeton, noter le résultat, le replacer dans l urne et recommencer une fois. 1. Comparer les probabilités de succès, c est-à-dire avoir au moins un jeton gagnant, des deux stratégies. 2. Répondre à la même question avec m jetons gagnants.

7 Exercice 8. On pioche 5 cartes dans un jeu classique de 52 cartes. On ne les regarde pas. a) Quelle est la probabilité d avoir les 4 as parmi ces 5 cartes? b) On regarde deux cartes, ce sont des as. Quelle est la probabilité qu on ait les 4 as parmi nos 5 cartes? Exercice 9. On lance deux fois un dé. On considère les événements suivants : A : le premier dé est pair. B : le deuxième dé est impair. C : le total est impair. Montrer que ces trois événements sont deux à deux indépendants, mais ne sont pas globalement indépendants. Exercice 10. On lance deux dés équilibrés. 1. Si on sait qu au moins un des deux donne un score pair, quelle est la probabilité que l autre donne un score impair? 2. Quelle est la probabilité d avoir un total pair si au moins un des deux scores est impair? 3. Quelle est la probabilité d avoir au moins un score impair si le total est pair? 4. Les événements obtenir un total pair et obtenir au moins un score impair sont-ils indépendants? Exercice 11. Considérons deux événements E et F d un espace probabilisé (Ω, p). a) Montrer l équivalence E F et E F sont indépendants p(e F ) = 1 ou p(e F ) = 0 b) Montrer que si les événements E et F sont indépendants, alors on a l équivalence E F et E F sont indépendants p(e) = 1 ou p(e) = 0 ou p(f ) = 1 ou p(f ) = 0 Exercice 12. Soit Ω un ensemble de possibles et fixons a Ω. Soit p l application définie, pour un sous-ensemble A de Ω, par p(a) = 0 si a A et p(a) = 1 si a A. 1. Montrer que p est une probabilité sur Ω. 2. Montrer que deux événements E et F sont toujours indépendants. Exercice 13. Le problème de points au cours de parties. Deux joueurs A et B jouent en trois manches gagnantes. Pour chaque manche, la probabilité de victoire de A est p et la probabilité de victoire de B est q = 1 p. À ce moment de la partie, le joueur A a gagné deux manches et le joueur B en a gagné une. 1. Quelle est la probabilité que A perde la partie? 2. Même question lorsque A mène une manche à zéro. 3. Maintenant A et B vont jouer n manches, quelle est la probabilité que A gagne au moins k manches? Exercice 14. Un système d alarme fonctionne ainsi : s il y a un danger, la probabilité que l alarme se déclenche est 0,99 ; en l absence de danger, elle se déclenche avec une probabilité de 0,005. La probabilité qu un danger se présente est 0, Quelle est la probabilité que l alarme se déclenche? 2. L alarme se déclenche. Quelle est la probabilité qu un danger se présente? Quelle est la probabilité de fausse alerte?

8 6 Exercice 1. Dans un élevage de moutons, 30% des animaux ont la maladie M. Un test T est disponible pour dépister cette maladie. Pour un mouton sain, la probabilité d avoir une réaction négative au test est 0,9. Pour un mouton malade, la probabilité d avoir une réaction positive est 0,8. Si on choisit un mouton au hasard, quelle est la probabilité, si la réaction au test T est positive, que l animal soit malade? Exercice 2. Une usine d ampoules électriques possède trois ateliers. L atelier A assure 20% de la production, l atelier B 30% et l atelier C le reste. Il y a 5% des ampoules produites par l atelier A qui sont défectueuses, pour l atelier B, c est 4% et pour l atelier C, c est 1%. 1. Calculer la probabilité qu une ampoule produite par cette usine soit défectueuse. 2. On choisit au hasard une ampoule produite par cette usine et on constate qu elle est défectueuse. Calculer la probabilité pour qu elle sorte de l atelier A, de l atelier B ou de l atelier C. Exercice 3. On dispose de deux urnes. L urne A contient 5 balles rouge et 7 balles vertes. L urne B contient 3 balles rouges et 12 balles vertes. On lance une pièce équilibrée. Si elle retombe sur face, on pioche une balle dans l urne A, et si elle tombe sur pile, on pioche une balle sur l urne B. C est une balle verte qui est piochée. Quelle est la probabilité que la pièce soit tombée sur face? Un laboratoire dispose d un test de dépistage d une maladie. Si le patient est malade, le test est positif dans 99% des cas. Si le patient n est pas malade, le test est positif dans 5% des cas. Dans une population, il y a 0,5% de malades. On fait le test à un patient, il est positif. Quelle est la probabilité que le patient soit effectivement malade? On refait le test, indépendamment du premier test. Il est à nouveau positif. Quelle est la probabilité pour que le patient soit vraiment malade? On choisit au hasard un des nombres entiers parmi 1, 2,..., n, tous les choix étant équiprobables. Soit p un entier non nul inférieur ou égal à n. Soit E p l événement le nombre choisi est divisible par p. 1. Quelle est la probabilité de cet événement lorsque p divise n? 2. Montrer que si p 1, p 2,..., p k sont des diviseurs premiers distincts deux à deux de n, alors les événements E p1, E p2,..., E pk sont indépendants. 3. On appelle indicatrice d Euler la fonction ϕ définie sur les entiers naturels dont la valeur ϕ(n) est égale au nombre d entiers inférieurs à n et premiers avec n. Montrez que pour tout entier naturel n, on a : ϕ(n) = n ( 1 1 ) p p premier, p n Un tireur atteint sa cible avec une probabilité 0,6. On suppose que les tirs sont indépendants. Montrer qu il faut qu il faut au moins huit tirs pour que la probabilité d atteindre au moins deux fois sa cible dépasse 99%. Exercice 7. On lance une pièce équilibrée 1000 fois. Quelle est la probabilité d obtenir 545 pile ou plus?

9 7 Variables aléatoires Exercice 1. On choisit deux boules au hasard dans une urne qui contient 8 boules blanches, 4 boules noires et 2 boules oranges. Supposons qu on gagne 2 euros pour chaque boule noire tirée, et qu on perde 1 euro pour chaque boule blanche tirée. Soit X la variable aléatoire égale au gain du joueur. a) Quelles sont les valeurs possibles de X? b) Quelle est la loi de probabilité de la variable aléatoire X? Exercice 2. Cinq hommes et cinq femmes sont classés dans l ordre de leur note à l examen. Supposons que les notes sont toutes différentes, et que tous les classements sont équiprobables. Soit X le rang le plus élevé obtenu par une femme, par exemple X = 1 si la meilleure note est obtenue par une femme. a) Combien y a-t-il de classements possibles? b) Calculer P (X = i), pour i = 1, 2, 3,..., 8, 9, 10. Exercice 3. On lance un dé deux fois. Quelles sont les valeurs possibles des variables aléatoires suivantes? a) la valeur maximale des deux lancers ; b) la valeur minimale des deux lancers ; c) la somme des deux lancers. d) La différence entre la valeur du premier lancer et celle du deuxième lancer. e) En supposant que le dé est équilibré, calculer les lois des variables aléatoires définies par les questions a) à d). Un jeu de loterie consiste à tirer 5 numéros parmi les nombres de 1 à 50. Quelle est la probabilité qu au moins un des numéros tirés soit supérieur ou égal à 48? à 45? à 40? Loi de Bernoulli et loi binomiale Un homme prétend avoir des super pouvoirs. Pour le prouver, il affirme pouvoir prévoir sur quelle face une pièce équilibrée va tomber. Lors d une expérience, il donne la bonne réponse 7 fois sur 10. Quelle est la probabilité d avoir fait au moins aussi bien sans super pouvoir? Lors d un questionnaire à choix multiple avec 3 choix pour chacune des 5 questions, quelle est la probabilité pour qu un étudiant ait 4 réponses correctes en répondant au hasard? Exercice 7. Lors d un vol en avion, un moteur tombe en panne avec une probabilité 1 p. Les pannes des différents moteurs sont indépendantes. On suppose qu un avion a besoin qu une majorité de ses moteurs fonctionne pour atteindre sa destination. Pour quelle valeur de p est-il préférable de voler à bord d un avion à 5 moteurs plutôt qu à bord d un avion à 3 moteurs?

10 Exercice 8. Lors d un procès, il faut que le jury vote avec au moins 9 voix sur 12 pour déclarer un accusé coupable. On suppose qu un juré vote innocent lorsque l accusé est coupable avec une probabilité de 20%, et qu il vote coupable lorsque l accusé est innocent avec une probabilité de 10%. a) Si chaque juré vote indépendamment des autres et si 65% des accusés sont coupables, trouver la probabilité pour que le jury rende une décision correcte. b) Quelle est le pourcentage des accusés qui sont déclarés coupables? Exercice 9. Le gérant d un magasin de télévisions s imagine que 45% des personnes qui entrent dans son magasin achèteront un poste ordinaire, 15% achèteront un écran plasma et les autres ne feront que flâner dans le magasin. Si un jour 5 personnes entrent dans le magasin, quelle est la probabilité pour qu il vende exactement deux postes ordinaires et un écran plasma? Lois conjointes Exercice 10. On lance deux dés équilibrés. Trouver la probabilité conjointe des variables aléatoires X et Y, c est-à-dire toutes les valeurs P (X = a, Y = b), lorsque a) X est la plus grande valeur et Y est la somme des valeurs. b) X est la valeur du premier dé, et Y est la plus grande valeur. c) X est la plus petite valeur, et Y est la plus grande valeur. Exercice 11. Une urne contient n boules rouges et 2 boules vertes. On pioche les boules les unes après les autres sans remise. Soit X 1 le rang de sortie de la première boule verte et soit X 2 le rang de la seconde boule verte. a) Déterminer la loi conjointe des variables aléatoires X 1 et X 2. b) Quelle est la loi de la variable X 1? Exercice 12. On considère une suite de variables aléatoires de Bernoulli indépendantes, toutes de paramètre p dont les valeurs sont 0 ou 1. Soit X 1 le nombre de 0 qui précèdent le premier 1, et soit X 2 le nombre de 0 entre les deux premiers 1. Trouver la loi conjointe de X 1 et X 2.

11 8 Exercice 1. un exercice théorique sur la loi binomiale Démontrer que si X est une variable aléatoire qui suit une loi binomiale de paramètres n et p, alors la probabilité P (X = i) augmente avec l entier i 0 tant que i < (n + 1)p. Variables aléatoires indépendantes Exercice 2. théorique Soient X et Y deux variables aléatoires discrètes et finies, à valeur dans un ensemble E. Démontrer que les deux définitions suivantes de l indépendance de X et Y sont équivalentes : a) pour tous sous-ensembles finis A et B de E, on a p(x A, Y B) = p(x A)p(Y B). b) pour tous éléments a et b de E, on a p(x = a, Y = b) = p(x = a)p(y = b) Indication : Pour b) = a), utiliser p(x A, Y B) = a A,b B p(x = a, Y = b) =... Exercice 3. avec ou sans calcul On lance un dé autant de fois que nécessaire jusqu à ce qu on obtienne le score 1 ou 6. On pose N égal au nombre de lancers effectués et X égal au score du dernier lancer (1 ou 6). Ces deux variables aléatoires sont-elles indépendantes? Espérance, variance Lançons une paire de dés équilibrés à trois reprises. Vous gagnez si vous obtenez au moins une fois le score total de 7, et vous perdez sinon. Si vous perdez vous devez payer 3 euros. Quelle somme doit-on vous verser en cas de victoire pour que le jeu soit équitable? Deux adversaires jouent jusqu à ce que l un d eux gagnent n manches. Les manches sont indépendantes et chacune est gagnée par le joueur A avec probabilité p. 1. Soit X la variable aléatoire égale au nombre de manches jouées. Quelle est l espérance de X a) pour n = 2? b) pour n = 3? 2. Démontrer que dans les deux cas, elle est maximale pour p = 1/2. 3. Quelle est la variance de X pour n = 2 et p = 1/2? Une boîte contient cinq tickets rouges et cinq tickets verts. Deux tickets sont piochés au hasard. S ils sont de la même couleur vous gagnez 1,10 euro et s ils sont de couleur différente, vous perdez 1 euro. Quelle est votre espérance gain? Quelle est la variance? Exercice 7. Soit X une variable aléatoire d espérance égale à 1 et de variance égale à 5 Calculer l espérance de (2 + X) 2. Calculer la variance de 4 + 3X.

12 Exercice 8. Une urne contient 12 boules rouges et 18 boules vertes. On pioche au hasard 5 boules avec remise. Quelle est l espérance du nombre de boules rouges piochées? Même question si la pioche est sans remise. Somme de variables aléatoires Exercice 9. On choisit un entier 0 ou 1 avec les probabilités respectives 1/3 et 2/3. On on lance un dé équilibré. Calculez l espérance de la somme de l entier choisi et du score du dé. Exercice 10. On joue à pile ou face avec trois pièces. La première est équilibrée, la seconde donne face avec une probabilité égale à 2/3 et la troisième avec une probabilité égale à 3/4. Quelle est l espérance du nombre total de faces obtenus lors de ces trois lancers? Quelle est sa variance? Loi hypergéométrique Exercice 11. On pioche trois cartes dans un jeu de 52. On appelle X le nombre d as piochés. Quelles sont la loi, l espérance et la variance de la variable aléatoire X? Exercice 12. Un nombre inconnu N d animaux vivent dans une forêt. On en capture m et on les marque. Quelques jours plus tard, on en capture n. On suppose que la population n a pas évolué durant ces quelques jours et que les animaux capturés et non capturés la première fois peuvent être capturés avec la même probabilité la seconde fois. 1. Appelons X le nombre d animaux marqués capturés la seconde fois. Quelle est la loi de X? 2. Soit a la valeur constatée pour X. Calculez pour quelle valeur de N, la probabilité P (X = a) est la plus grande. Markov et Chebyshev. Exercice 13. Soit X une variable aléatoire d espérance et variance toutes les deux égales à 20. Que peut-on dire de P (0 < X < 40)? Exercice 14. La note des étudiants à l examen est une variable aléatoire d espérance égale à Donnez une majoration de la probabilité pour un étudiant, d avoir On précise que la variance, sur les notes, est égale à 5. Que peut-on dire alors de la probabilité, pour un étudiant, d avoir entre 9 et 15? Exercice 15. Soit X une variable aléatoire positive telle que P (X 100) > 1/2. Que peut-on dire sur l espérance de X?

13 9 Loi faible des grands nombres Exercice 1. Supposons que vous avez conçu un jeu dont l espérance de gain est E = 0, 01e. Les assertions suivantes sont-elles vraies? Justifiez vos réponses. a) Si vous jouez un nombre n assez grand de parties, vous allez gagner plus de ne avec une probabilité supérieure à 0,99. b) Si vous jouez un nombre n assez grand de parties, vous allez gagner plus de 0, 009 ne avec une probabilité supérieure à 0,99. Exercice 2. Calculer le nombre de lancers de pile ou face, où pile a une probabilité p de survenir, qu il suffit d effectuer pour que la proportion de pile obtenue se situe strictement entre p 0, 02 et p+0, 02 avec une probabilité supérieure à 90%. Application : Calculer ce nombre pour p = 1/100, pour p = 1/10 et pour p = 1/2. Loi géométrique Exercice 3. Calculer l espérance du nombre de lancers d une paire de dés équilibrés jusqu à obtenir la somme des deux dés égale à 7 pour la dixième fois. Soit X une variable aléatoire obéissant à une loi géométrique. Montrez que pour tout entier n et k strictement positifs, la probabilité que X vaut n + k sachant que X > n vaut p(x = k), d abord par un raisonnement intuitif, puis par le calcul. Quelle est la valeur la plus probable prise par une variable aléatoire qui suit une loi géométrique de paramètre p non nul? On suppose que la probabilité, pour un nouveau-né, d être un garçon, est 1/2. On pose X la variable aléatoire égale au rang de naissance du premier garçon de la famille. a) À partir de combien d enfants, la probabilité que la famille comporte au moins un garçon est-elle plus grande que 95%, c est-à-dire pour quelle valeur de k a-t-on p(x > k) < 0, 05? b) Quelle est l espérance de la variable aléatoire X, c est-à-dire quel est, en moyenne, le rang de naissance du premier garçon? c) J ai déjà une fille, combien d enfants, en moyenne, dois-je encore avoir si je veux un garçon? d) Combien d enfants, au minimum, une famille doit-elle comporter en moyenne pour avoir deux garçons? Loi de Poisson Exercice 7. (problème de fréquentation) Les clients arrivent à la banque, pour une période d une heure, selon une loi de Poisson de paramètre 40. Sachant que 30 clients sont arrivés la première heure, quelle est la probabilité que 60 clients arrivent pendant les 90 premières minutes?

14 Exercice 8. Supposons qu il y a, en moyenne, 2 tremblements de terre par semaine dans cette région. Quelle est la probabilité de voir au moins 3 tremblements de terre dans les 2 semaines qui viennent? Exercice 9. (approximation le la loi binomiale par la loi de Poisson) Une machine fabrique des jouets selon des tirages de Bernoulli et la probabilité de fabriquer un jouet défectueux est, à chaque tirage, égale à 0,001. Utiliser l approximation par la loi de Poisson pour calculer la probabilité d obtenir exactement deux jouets défectueux pour 1000 tirages. Exercice 10 Le nombre de buts marqués par le club de football de ma ville au cours d un match obéit à une loi de Poisson. La probabilité qu il marque au moins un but est 83,5%. Quelle est la probabilité qu il marque au moins 2 buts? Exercice 11. Montrer que si X et Y sont deux variables aléatoires qui suivent une loi de Poisson de paramètres respectifs λ et µ et si X et Y sont indépendantes, alors X + Y suit de Poisson de paramètre λ + µ. Exercice 12. Soit X une variable aléatoire de loi de Poisson de paramètre λ. a) Montrer que p(x = k) croît puis décroît lorsque k varie de 0 à + et que le maximum est atteint lorsque k est égal au plus grand entier inférieur ou égal à λ. b) Inversement, pour k fixé, quelle est la valeur de λ qui maximise la valeur de p(x = k)?

15 10 Axiomes des probabilités Exercice 1. On rappelle qu un espace probabilisé est un triplet (Ω, F, p), où Ω est un ensemble quelconque, F est un ensemble de parties de Ω contenant Ω et stable par complément et par réunion dénombrable, et p est une application F R qui satisfait les trois axiomes suivants, appelés axiomes de Kolmogorov : A1 Pour tout élément E de F, on a 0 p(e) 1. A2 P (Ω) = 1. A3 Si (E i ) i I est une famille dénombrable d éléments de F deux à deux disjoints, alors ( ) p E i = p(e i ) i I i I Démontrer les conséquences suivantes de ces trois axiomes : 1. p( ) = Pour tout élément E de F, on a P (E) = 1 p(e). 3. Pour tout élément E et F de F, on a l implication E F = p(e) p(f ). 4. (inclusion-exclusion) Pour tout élément E et F de F, on a P (E F ) = p(e) + p(f ) p(e F ). 5. (inégalité de Benferroni) Pour tout élément E et F de F, on a p(e F ) p(e) + p(f ) (inégalité de Boole) Pour toute famille dénombrable (E i ) i I d éléments de F, on a ( ) p E i p(e i ). i I i I 7. Si (E n ) n N est une famille croissante pour l inclusion, alors ( p n N E n ) = lim n p(e n). Si (E n ) n N est une famille décroissante pour l inclusion, alors ( p n N E n ) = lim n p(e n). Exercice 2. Supposons qu on répète une expérience aléatoire n fois. Pour tout événement E, notons n(e) le nombre de fois que l événement E se produit au cours de ces n répétitions, et posons f(e) = n(e) n. Montrer que l application f satisfait les trois axiomes des probabilités. Exercice 3. On considère les axiomes de Kolmogorov et la propriété B : p( ) = Montrer la fonction identiquement nulle satisfait A1, B et A3, mais pas A2. 2. Pourrait-on remplacer l axiome A2 par la propriété B?

16 Loi continue uniforme Supposons que vous cassiez un bâton en un point aléatoire uniformément choisi sur le bâton. Quelle est la probabilité que le plus long morceau soit plus de deux fois plus grand que le plus court? Les bus quittent l arrêt à tous les quart d heure à partir de 18h. Si Félix et Lola arrivent aléatoirement et indépendamment à l arrêt du bus dans l heure entre 18 et 19 heures, quelle est la proba qu ils soient dans le même bus. Montrez, en utilisant la densité, que si X est une variable aléatoire réelle de loi uniforme sur l intervalle [a, b] alors E[X] = (a + b)/2. Exercice 7. Soit X une variable aléatoire réelle distribuée uniformément sur l intervalle [ a; a], où a > 0. Déterminez a de sorte que a) p(x > 1) = 1/3 ; b) p(x < 1/2) = 0, 7. Loi normale Exercice 8. Soit Z la variable aléatoire normale centrée réduite. a) Que vaut p(1, 62 Z 1, 94)? b) Trouvez un entier k tel que p(z > k) = 0, 025. Exercice 9. On a établi que les notes à des tests servant à sélectionner des candidats, suivent une loi normale d espérance 500 et d écart type 50. a) Quelles ont les chances sur 100 qu un candidat obtienne une note inférieure ou égale à 550? b) Trouver une borne inférieure de la note que 60% des candidats qui se présentent à ce test sélectif obtiendront. c) Un candidat qui a bien réussi pense être dans les 5% les meilleurs. Quelle note faut-il obtenir pour cela? d) En deça de la note de 400, le candidat est recalé. Combien de candidats seront refusés sachant qu ils étaient au départ 800? Exercice 10. Si dans une population 50% des sujets de sexe masculin ont un poids supérieur à 70 kg, et si l écart type de la distribution est 10, quel proportion des sujets pèsent plus de 100kg? Quelle hypothèse est nécessaire pour pouvoir calculer? Exercice 11. somme de variables aléatoires indépendantes Une entreprise met en boîte des céréales dont le poids en gramme est suit une loi normale de moyenne µ = 450 et variance égale à 9. Ces boîtes sont livrées par caisse de 24. a) À quelle loi obéit le poids total Y des boîtes contenues dans une caisse? Précisez également la moyenne et la variance. b) À quelle loi obéit le poids moyen, égal à Y/24 des boîtes contenues dans la caisse? Quelles sont les valeurs de l espérance du poids moyen, de sa variance et de son écart-type?

17 Exercice 12. approximation de la loi binomiale Dans un village canadien, 40% des habitants parlent le francais. Quelle est la probabilité que, dans un échantillon de 200 habitants, ceux qui parlent français soient majoritaires. Exercice 13. Un examen consiste en un questionnaire à choix multiples de 60 questions avec quatre réponses pour chaque question. Il y a seulement une bonne réponse par question, qui fait gagner un point. La note de passage est 30. a) Jean, qui n est pas prêt pour l examen, répond au hasard. Combien de bonnes réponses peut-il espérer obtenir? b) Quelle est la probabilité qu il obtienne au moins la note de passage? c) Son ami s est mieux préparé et connaît 24 réponses. S il répond au hasard aux autres questions, quelle est la probabilité qu il passe l examen? Exercice 14. Les fourmis rouges du Haut Plateau de Katanga ont les yeux bleus, exceptées les albinos qui ont les yeux jaunes. Chaque fourmi a une chance sur 10 d être albinos. Un éléphant vient s abreuver au bord du lac. Il écrase 453 fourmis rouges. Soit X le nombre de victimes aux yeux jaunes. a) Quelle est la loi de X? Calculer E(X) et l ecart-type σ(x). b) Par quelle loi de probabilité peut-on approcher la loi de X? c) Calculez la probabilité p(20 < X < 50). Loi exponentielle Exercice 15 Soit X une variable aléatoire qui suit une loi exponentielle, appelons µ son espérance E(X). Quelle est la probabilité que X > µ? et que X > 2µ? Exercice 16. Déterminez le paramètre λ d une loi exponentielle pour qu elle ait 5 chances sur 100 de dépasser la valeur 1. Exercice 17. La durée de vie des pneus de ma voiture obéit à une loi exponentielle de moyenne km. a) Quelle est la probabilité qu un nouveau pneu dure plus de kilomètres? b) Si un pneu a déjà roulé kilomètres, quelle est la probabilité qu il dure, en tout, plus de kilomètres?

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.

Statistiques II. Alexandre Caboussat alexandre.caboussat@hesge.ch. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge. Statistiques II Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Andrey Nikolaevich Kolmogorov

Andrey Nikolaevich Kolmogorov PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien

Plus en détail

Thème 19: Probabilités

Thème 19: Probabilités PROBABILITÉS 79 Thème 19: Probabilités Introduction: Blaise Pascal Andrey Nikolaevich Kolmogorov La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D ailleurs, le

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Séquence 3. Probabilité : conditionnement et indépendance

Séquence 3. Probabilité : conditionnement et indépendance Séquence 3 Probabilité : conditionnement et indépendance Sommaire. Pré-requis. Conditionnement par un événement de probabilité non nulle 3. Indépendance 4. Synthèse Dans cette première séquence sur les

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique - IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond

Plus en détail

Probabilités et Statistique pour SIC Exercices

Probabilités et Statistique pour SIC Exercices Probabilités et Statistique pour SIC Exercices Exercice Combien de mots de passe de 8 symboles peut-on créer avec 66 caractères? Exercice Dans un pays, les voitures ont des plaques d immatriculation composées

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 t t t t t t t t t Séance 1...................................................................................................... 7 Je découvre la notion de probabilité.....................................................................

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

UE Ma401. 1.1 probabilité conditionnelle, indépendance, dénombrement

UE Ma401. 1.1 probabilité conditionnelle, indépendance, dénombrement UE Ma401 1 EXERCICES 1.1 probabilité conditionnelle, indépendance, dénombrement Exercice 1 La probabilité pour une population d être atteinte d une maladie A est p donné; dans cette même population, un

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

201-DUA-05 Probabilités et statistique

201-DUA-05 Probabilités et statistique 1. La longueur de tiges usinées est une variable de moyenne 47,0 cm et d écart-type 0,36 cm. (a) Si l on prélève un échantillon aléatoire de taille 51, alors quelle est la probabilité que la moyenne échantillonnale

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6 ARTHUR CHARPENTIER 1 Supposons que le nombre X de coups de téléphone durant une heure suive une loi de Poisson avec moyenne λ. Sachant que P (X = 1 X 1) = 0.8, trouver

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail