Statistique : Résumé de cours et méthodes
|
|
- Lucien Gaulin
- il y a 2 ans
- Total affichages :
Transcription
1 Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue les caractères discrets qui ne peuvent prendre qu un nombre fini de valeurs (notes à un devoir...) et les caractères continus dont on regroupe les valeurs par intervalles (taille, durée d écoute...). 2-1 Classement des données 2 Séries statistiques associées à un caractère discret On appelle série statistique la donnée simultanée (dans un tableau) des valeurs du caractère étudié (noté x i ), rangées dans l ordre croissant, et des effectifs (notés n i ) de ces valeurs. Remarque : A la place des effectifs (n i ), on peut aussi utiliser les fréquences f i = n i (où N représente l effectif total) ou les N fréquences en pourcentages f i = n i N 100. Exemple : Les notes sur 20 obtenues lors d un devoir de mathématiques dans une classe de seconde sont les suivantes : 10, 8, 11, 9, 12, 10, 8, 10, 7, 9, 10, 11, 12, 10, 8, 9, 10, 9, 10, 11. La population étudiée est la classe et les individus sont les élèves. L effectif total est égal à 20 et la note obtenue au devoir est le caractère discret que l on étudie. La série statistique définie par les effectifs est la suivante : Valeurs du caractère (notes) x i Effectifs (nb d élèves ayant la note) n i La série statistique définie par les fréquences en pourcentage est la suivante : Valeurs du caractère (notes) x i Fréquences en % f i = n i % 15 % 20 % 35 % 15 % 10 % 2-2 Effectifs cumulés L effectif cumulé croissant d une valeur x est la somme des effectifs des valeurs y tels que y x. L effectif cumulé décroissant d une valeur x est la somme des effectifs des valeurs y tels que y > x. Avec l exemple des notes, on a : Valeurs x i Effectif cumulé croissant Effectif cumulé décroissant * : nombre d élèves ayant eu une note 8 ; ** : nombre d élèves ayant eu une note > Représentation graphique Pour les caractères quantitatifs discrets, on utilise le diagramme en bâton : Dans un repère orthogonal, pour chaque valeur de la série statistique on trace un trait vertical dont la hauteur est proportionnelle Seconde - Statistique c P.Brachet - 1
2 à l effectif (dans l unité choisie). Avec l exemple des notes : effectif valeur Paramètres de position a) Moyenne On appelle moyenne d une série statistique d effectif total N, le réel x = n 1x 1 + n 2 x n k x k. N (k représente le nombre de valeurs prises par le caractère) Avec l exemple des notes, on a : Valeurs du caractère x i x = Effectifs n i = 9,7 Remarques : En utilisant les fréquences, on a : x = f 1 x 1 + f 2 x f k x k. Avec les fréquences en pourcentages, on a : x = f 1x 1 + f 2 x f k x k. 100 PROPRIÉTÉ Si on ajoute à toutes les valeurs d une série statistique le même nombre b, on augmente la moyenne de cette série par b. Si les valeurs d une série statistique sont multipliées ou divisées par un même nombre a, la moyenne de cette série est aussi multipliée ou divisée par a. PROPRIÉTÉ Si une population d effectif N est composée d une partie d effectif N 1 et de moyenne x 1 et d une autre partie d effectif N 2 et de moyenne x 2, alors la moyenne x de la population totale est telle que : x = N 1x 1 + N 2 x 2 N Exemple : Si dans une classe, les 15 garçons d une classe mesurent en moyenne 182 cm et si les 20 filles mesurent en moyenne cm, alors la taille moyenne d un élève de cette classe est égale à = 174 cm c P.Brachet - Seconde - Statistique
3 b) Médiane L idée générale est que la médiane est une valeur du caractère qui partage la population en deux parties de même effectif. De façon plus précise, on appelle médiane d une série statistique discrète toute valeur M du caractère telle qu au moins 50% des individus aient une valeur du caractère inférieure ou égale à M et au moins 50% des individus aient une valeur du caractère supérieure ou égale à M. Recherche pratique de la médiane : On range les valeurs du caractère une par une dans l ordre croissant (chaque valeur du caractère doit apparaître un nombre de fois égal à l effectif correspondant). Si l effectif total est impair, la médiane M est la valeur du caractère située au milieu. Si l effectif total est pair, la médiane M est la demi-somme des 2 valeurs situées au milieu. Exemple 1 : On considère la série statistique suivante : Valeurs du caractère x i Effectifs n i ; 7 ; 8 ; 9 ; 10 ; 11 ; 11 ; 14 ; 16 ; 16 } {{ } L effectif total est pair : la médiane M est la demi-somme des 2 valeurs situées au milieu. D où, M = Exemple 2 : On considère la série statistique suivante : Valeurs du caractère x i Effectifs n i ; 6 ; 6 ; 8 ; 9 ; 9 ; }{{} 12 ; 13 ; 13 ; 13 ; 17 ; 17 ; 17 L effectif total est impair : la médiane M est la valeur située au milieu. D où, M = = 10, Paramètres de dispersion Ces paramètres permettent de mesurer la façon dont les valeurs du caractère sont réparties autour de la moyenne et de la médiane. a) Paramètre de dispersion associé à la médiane L idée générale est de partager la population en quatre parties de même effectif. Etant donné une série statistique de médiane M dont la liste des valeurs est rangée dans l ordre croissant (il s agit de la même liste que celle qu on utilise pour déterminer la médiane). En coupant la liste en deux sous-séries de même effectif (Attention : quand l effectif total est impair, la médiane ne doit pas être incluse dans les sous-séries) : On appelle premier quartile le réel noté Q 1 égal à la médiane de la sous-série inférieure. On appelle troisième quartile le réel noté Q 3 égal à la médiane de la sous-série supérieure. L écart interquartile est égal à Q 3 Q 1. ]Q 1 ;Q 3 [ est appelé intervalle interquartile. Seconde - Statistique c P.Brachet - 3
4 Le diagramme en boîtes d une série statistique se construit alors de la façon suivante : (les valeurs du caractère sont en abscisse - min et max représentent les valeurs minimales et maximales du caractère) min Q1 M Q3 max Interprétation : 25% de la population admet une valeur du caractère entre min et Q 1 25% de la population admet une valeur du caractère entre Q 1 et M 25% de la population admet une valeur du caractère entre M et Q 3 25% de la population admet une valeur du caractère entre Q 3 et max Exemple 1 : On reprend la série statistique suivante : Valeurs du caractère x i Effectifs n i ; 7 ; {}}{ 8 ; 9 ; 10 ; 11 ; 11 ; {}}{ 14 ; 16 ; 16 } {{ } } {{ } sous série inférieure sous série supérieure L effectif de chaque sous-série est ½¼ impair ½½ : Q 1 ½¾ = 8 (valeur ½ située ½ au ½ milieu ½ de la sous-série inférieure) et Q 3 = 14 (valeur située au milieu de la sous-série supérieure). Le diagramme en boîtes de la série est le suivant : Exemple 2 : On reprend la série statistique suivante : Valeurs du caractère x i Effectifs n i ; 6 ; {}}{ 6 ; 8 ; 9 ; 9 ; 12 ; 13 ; 13 ; 13 { }} ; 17 { ; 17 ; 17 } {{ } } {{ } sous série inférieure sous série supérieure L effectif de chaque sous-série est pair : Q 1 = 7 (demi-somme des deux valeurs situées au milieu de la sous-série inférieure) et Q 3 ½¼ ½½ ½¾ ½ ½ ½ ½ ½ = 15 (demi-somme des deux valeurs situées au milieu de la sous-série supérieure). Le diagramme en boîtes de la série est le suivant : 4 c P.Brachet - Seconde - Statistique
5 3 Séries statistiques associées à un caractère continu 3-1 Classement des données La seule différence par rapport aux caractères discrets, c est que les valeurs du caractère sont regroupées dans des intervalles (appelés classes du caractère). Exemple : Temps passé devant la télévision par 34 élèves pendant une certaine journée. temps en minutes [0, 15[ [15, 30[ [30, 60[ [60, 120[ [120, 180[ nombre d élèves Représentation graphique Pour la représentation graphique d un caractère continu, on utilise généralement un histogramme : dans un repère orthogonal on porte en abscisse les valeurs des bornes des intervalles (selon l unité choisie), puis pour chaque intervalle on trace un rectangle dont l aire est proportionnelle à l effectif (selon l unité choisie). Remarque : En pratique, il est conseillé de commencer par construire un tableau donnant la largeur et l aire de chaque rectangle (selon les unités choisies). On peut alors facilement en déduire la hauteur de chaque rectangle ce qui facilite la construction graphique de l histogramme. Pour l exemple proposé ci-dessus : (unités : en abscisse 1 cm représente 15 min et 1 cm 2 représente 1 élève) temps en minutes [0, 15[ [15, 30[ [30, 60[ [60, 120[ [120, 180[ aire du rectangle en cm largeur du rectangle en cm hauteur du rectangle en cm = aire largeur , Calcul des paramètres de position et de dispersion Pour calculer les différents paramètres d une série statistique associé à un caractère continu, on prend comme valeur du caractère le milieu de chaque classe. Pour l exemple, la série devient : Seconde - Statistique c P.Brachet - 5
6 valeur (milieu de chaque intervalle) x i 7,5 22, effectif n i On en déduit que : 7 7, , x = c P.Brachet - Seconde - Statistique
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés
I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue
Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique
I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue
STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire
STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs
Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :
Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.
Statistiques 0,14 0,11
Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières
STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES
STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode
Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique
I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue
STATISTIQUES À UNE VARIABLE
STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Ch6 : Statistiques descriptives - analyse des données
Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de
1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].
1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]
Corrigé des exercices
THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5
STATISTIQUES I) UN PEU DE VOCABULAIRE
STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre
Séries Statistiques Simples
1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &
Statistiques à une variable
Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Paramètres de position
Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion
Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES
STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations
Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1
Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une
Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle
Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique
1ES Février 2013 Corrigé
1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5
STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE
Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer
1 élève. 0 8 12 16 20 Note
L'histogramme est utilisé dans le cas d'une série regroupée en classe. Pour construire un histogramme, on porte les classes en abscisse et sur chacune d'elles pris comme base, on construit un rectangle
SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.
SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.
Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible
Classe de 3ème. Effectif partiel n Effectif total N
Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La
Statistiques. Un diagramme circulaire, dans lequel la mesure des secteurs angulaires est proportionnelle à l effectif.
I. Vocabulaire : Statistiques. L ensemble sur lequel on travaille en statistique est appelé la population. Si cet ensemble est trop vaste, on en restreint l étude à une partie appelée échantillon. Un élément
CUEEP Département Mathématiques T801 : Histogrammes et courbes cumulatives p1/8
Histogrammes et courbes cumulatives Situation L'association de course à pieds VIVALURE a une équipe féminine bien représentée. Ci-dessous, le tableau donne les derniers temps aux 1 Km des participantes.
Examen d accès - 1 Octobre 2009
Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont
EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)
EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on
8. Statistique descriptive
8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Probabilités et Statistiques. Chapitre 1 : Statistique descriptive
U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs
16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?
T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter
Statistiques descriptives (1/2)
Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus
Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques
CRPE S0. Autour de la GESTION DE DONNEES Probabilités, Statistiques om Mise en route1 A. Alimentation L étiquette d'un paquet de céréales affiche : «30g de muesli croustillant dans 100g de lait donnent
STATISTIQUES DESCRIPTIVES
1 sur 7 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif
1. Vocabulaire : Introduction au tableau élémentaire
L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie
Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51
Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77
CHAPITRE 7 : Statistiques Seconde, 2014, L. JAUNATRE
CHAPITRE 7 : Statistiques Seconde, 2014, L. JAUNATRE 1. Introduction 1.1. Statistique Définition 1. La statistique est le domaine des mathématiques qui vise à recueillir des données et les interpréter,
Statistiques: rappels et compléments
Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.
Statistique descriptive. Analyse de données
Chapitre Statistique descriptive. Analyse de données Énigme On note x le prix au kg du produit. 5 % de remise en caisse : le prix au kg devient x 5 x = 0,85x. + 5 % de produit gratuit : le prix au kg devient
Chapitre 3 : Statistiques
Chapitre 3 : Statistiques En mathématiques, la notion de statistique est utilisée depuis l Antiquité afin de faire des recensements de la population. Aujourd hui, elle aide beaucoup afin d interpréter
DEVOIR COMMUN DE MATHÉMATIQUES
Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il
Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité
Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité NOM : Prénom : Exercice 1 : Elections régionales 1999 Le tableau ci-dessous donne les pourcentages des voix obtenues par le
Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18
Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1
1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques
1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux
Statistiques. Objectifs du chapitre. Énigme du chapitre.
Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à
Les statistiques descriptives et les intervalles de confiance
Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2
Cours 9 Une variable numérique : distribution et répartition
Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,
Fiche de travail - Paramètres d une série statistique. Exercice 1
Fiche de travail - Paramètres d une série statistique Exercice 1 On a réalisé une enquête portant sur le nombre de livres lus pendant l année par les élèves d une classe de seconde. Les résultats sont
T. D. n o 3 Analyse de données quantitatives avec le logiciel R
T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description
Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel
Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles
Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.
Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010
Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.
Première L juin 2008 A B C D E F G
Première L juin 2008 Liban 1. Exercice 1 (10 points) On fournit ci-dessous un tableau statistique relatif aux accidents de la route avec des piétons en France. Ce tableau est obtenu à l'aide d'un tableur,
chap S1 : Statistiques descriptives Eléments de correction des exercices
2ndes chap S1 : Statistiques descriptives Eléments de correction des exercices Objectifs : mieux comprendre les notions de moyenne et médiane utiliser des statistiques pour prendre des décisions Moyenne
2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17
STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant
Chapitre 2: Présentation des données (OpenOffice)
PRÉSENTATION DES DONNÉES (OPENOFFICE) 13 Chapitre 2: Présentation des données (OpenOffice) 2.1 Détermination des effectifs: v.s qualitative ou quantitative discrète Étape 1: Données brutes à disposition
TD d exercices statistiques et pourcentages.
TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres
Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous
NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites
DOCUMENT DE RÉVISION MAT-4104
CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005
Séquence 4. Statistique descriptive Notion de probabilité. Sommaire
Séquence 4 Statistique descriptive Notion de probabilité Sommaire 1. Prérequis 2. Statistique descriptive 3. Notion de probabilité 4. Algorithmique 5. Synthèse de la séquence 6. Exercices d approfondissement
SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION
SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité
Statistique Descriptive I (M1102)
Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités
COURS STATISTIQUES. Etude statistique de la couleur des yeux des stars de cinéma américaines. Population : Individu : Variable étudiée :
I) Vocabulaire de la statistique COURS STATISTIQUES Exemple : pour se rendre au collège des Chênes à Chambéry, 46 élèves utilisent un deux roues, 284 élèves utilisent les transports en commun, 163 élèves
Pourquoi étudier les statistiques? Et comment les enseigner?
Pourquoi étudier les statistiques? Et comment les enseigner? Etape 1 Les statistiques Où les rencontre-t-on? A quoi servent-elles? Pour résumer des données (sous forme de tableau) Pour décrire des données
CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8
CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2
Statistiques. Christophe ROSSIGNOL. Année scolaire 2013/2014
Statistiques Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Vocabulaire 2 1.1 Population, caractère, effectif, fréquence............................ 2 1.2 Représentations graphiques...................................
Statistiques. 1 Quelques graphiques pour commencer. Lettres. Philo 11 % 18 % Fra 13 % H-G 11 % 5 % EPS 11 % 11 % 10 % LV 1. Spé 5 % Sci.
Statistiques 1 Quelques graphiques pour commencer 1.1 Diagramme en toile d araignée Relevé des notes d un élève à l issue du trimestre. Matières EPS LV1 LV2 Fra H-G SES SVT Phys Math Notes 15 18 18 17
VI) Utilisation du tableur excel pour l étude d une série statistique :
VI) Utilisation du tableur excel pour l étude d une série statistique : 1) Opérations simples : Mettons une valeur dans la case 1 et une valeur dans la case 2. 2 3 On se positionne en 3 et effectuons l
LES FONCTIONS : GENERALITES ET VARIATIONS
1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21
TABLEUR GRAPHIQUES. 1 ) Fonctions : Exemple : Représenter graphiquement la fonction f : x ï (x 1) 2 + 2
1 ) Fonctions : Exemple : Représenter graphiquement la fonction f : x ï (x 1) 2 + 2 a) Tableau de valeurs : Il est facile de construire un tableau de valeurs à l aide d Excel. On choisit des nombres dans
STATISTIQUES A UNE VARIABLE
STATISTIQUES A UNE VARIABLE 1 ) VOCABULAIRE A ) GÉNÉRALITES L ensemble sur lequel on travaille en statistique est appelé population. Si cet ensemble est trop vaste, on en restreint l étude à une partie
ATELIER "STATISTIQUES "
ATELIER "STATISTIQUES " Médiane et quartiles Se référer au document d'accompagnement des programmes de premières des séries générales, annexe "boîtes et quantiles". Médiane Me La définition à adopter est
Statistiques descriptives Variance et écart type
Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences
Statistiques. Remarque : L'effectif total de la série est le nombre total d'individus de la population étudiée.
Statistiques 1 / 6 Lorsque l on mène une enquête, on s intéresse à une population d individus (ex : élèves d une classe) et on étudie une propriété commune à ces individus appelée un caractère (ex : leur
Une année de Mathématiques en classe de Seconde
Une année de Mathématiques en classe de Seconde Freddy Mérit Année scolaire 01-013 Ce manuel, à destination des élèves de Seconde, a été en partie réalisé à partir de la consultation des ouvrages suivants
Représenter graphiquement une série statistique
Représenter graphiquement une série statistique Objectifs : - savoir identifier le caractère étudié - représenter une série statistique par une représentation graphique - savoir exploiter des données statistiques
Emilien Suquet, suquet@automaths.com
STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de
TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision
Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques
Statistiques descriptives à une variable
Statistiques descriptives à une variable Introduction Les statistiques descriptives ont pour but de donner une vision d ensemble d une population à partir de renseignements collectés sur les individus
Statistiques. Christophe ROSSIGNOL. Année scolaire 2016/2017
Statistiques Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Quelques rappels sur la moyenne 2 2 Médiane, quartiles, diagramme en boîte 2 2.1 Médiane..................................................
STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013
ISCID-CO - PRÉPA 1ère année STATISTIQUES ET PROBABILITÉS Université du Littoral - Côte d Opale Laurent SMOCH Janvier 2013 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du
EXAMEN : C.A.P. - B.E.P.
SESSION 1999 ACADEMIE DE ROUEN EXAMEN : C.A.P. - B.E.P. EPREUVE DE MATHEMATIQUES DUREE DE L'EPREUVE : 1 heure NOMBRE DE PAGES COMPOSANT LE SUJET : DE 1/5 à 5/5 B.E.P. & C.A.P. EXERCICE 1 : Un magasin a
Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction
Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année
Statistiques - Alternance HSE
Statistiques - Alternance HSE Anne Fredet, Jean-Marie Gourdon 8 janvier 2006 Table des matières 1 Statistique descriptive 2 1.1 Définitions............................. 2 1.2 Effectif, moyenne, médiane
Utilisation du logiciel Excel pour des analyses simples de bases données
Utilisation du logiciel Excel pour des analyses simples de bases données Catherine Raux (interne Santé Publique) et Benoît Lepage (AHU), Service d Epidémiologie du CHU de Toulouse Version 1.1 Avril 2012
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques
STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques 1) Caractère qualitatif : représentations graphiques Moyen de locomotion pour venir à l école. x i
Partie I : Séries statistiques descriptives univariées (SSDU)... 1
Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....
STATISTIQUES. La population est l ensemble des individus sur lesquels portent l étude statistique
Chapitre 4 : STATISTIQUES I Définitions et vocabulaire des statistiques La population est l ensemble des individus sur lesquels portent l étude statistique Le caractère (ou variable statistique) d une
Seconde 4 DS1 statistiques Sujet 1
Seconde 4 DS1 statistiques 01-013 Sujet 1 Exercice 1 : Espérance de vie (10 points) Le tableau ci-dessous donne l espérance de vie, à la naissance, des hommes (H) et des femmes (F) en France. Année 1999
2010 My Maths Space Page 1/6
A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.
STATISTIQUES DESCRIPTIVES
STATISTIQUES DESCRIPTIVES ORGANISATION DES DONNÉES Etude de population 53 784 56 28 4 13 674 8375 9974 60 Consommation annuelle du lait Dossier n 1 Juin 2005 Tous droits réservés au réseau AGRIMÉDIA Conçu
Chapitre 11 : Statistiques
Chapitre 11 : Statistiques Objectifs : *Savoir faire une étude statistiques d un problème * Connaitre tous les outils statistiques à disposition ( fréquence, effectif cumulé croissant, représentations
CHAPITRE 7 Fonction carré et fonction inverse
CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation