FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

Dimension: px
Commencer à balayer dès la page:

Download "FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1"

Transcription

1 INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution í Reprçesentations graphiques írçesumçes numçeriques í Reprçesentations semi-graphiques. 4. Estimation FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

2 INTRODUCTION Populations - çechantillons En statistique, on appelle population une collection d'çelçements possçedant au moins une caractçeristique commune permettant de les regrouper. Un çelçement est un individu ou une unitçe statistique. Si le nombre d'çelçements est limitçe, la population est dite ænie. Si ce nombre est illimitçe ou diæcilement calculable, la population est dite inænie. On dçeænit un çechantillon comme un sous-ensemble de la population statistique. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 2

3 INTRODUCTION Les deux types de dçemarches statistiques POPULATION inænie et connue ænie, petite et connue - RECENSEMENT SONDAGE? çechantillon - STATISTIQUE EXPLORATOIRE on ne s'intçeresse qu'aux individus dont on a les mesures?? STATISTIQUE INF ç ERENTIELLE FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 3

4 VARIABLE ALçEATOIRE Notion de phçenomçene alçeatoire Dans de nombreux cas, la rçepçetition d'une expçerience dans des conditions apparemment identiques ne conduit pas toujours au m^eme rçesultat. Exemples: ímçelange ça parts çegales d'un produit A et d'un produit B et examen du rçesultat du mçelange: produit C; í semis de graines dans une terrine et comptage du nombre de levçees aprçes 5 jours; í lancement d'une piçece de monnaie; í jet d'un dçe et examen du nombre indiquçe sur la face supçerieure. Si le rçesultat d'une expçerience ne peut ^etre dçeterminçe par la connaissance des conditions initiales, nous dirons que le phçenomçene est alçeatoire. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 4

5 VARIABLE ALçEATOIRE Dçeænition d'une variable Une variable X est une application d'un ensemble æ d'çevçenements dans un ensemble S de valeurs numçeriques ou non appelçees rçealisations. æ est un ensemble discret d'objets, d'individus, d'occasions,...: æ=f! 1 ;! 2 ;æææ;! n g alors que S peut ^etre n'importe quoi. En particulier, les valeurs de S peuvent^etre numçeriques, ordinales ou nominales. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 5

6 VARIABLE ALçEATOIRE Exemples de variables Exemples: Soit æ une population d'individus et í X 1 la variable sexe prenant ses valeurs dans S =fhomme, femmeg; í X 2 la variable dipl^ome prenant ses valeurs dans S = fcertiæcat d'çetude,..., thçese g í X 3 la variable poids en kg prenant ses valeurs dans l'intervalle S = ë0;200ë; FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 6

7 VARIABLE ALçEATOIRE Dçeænition Une variable alçeatoire X est une variable associçee ça une expçerience alçeatoire et servant ça caractçeriser le rçesultat de cette expçerience. Autrement dit, ça chaque rçealisation valeur de S est associçee í une probabilitçe si la variable est discrçete; í une densitçe de probabilitçe si la variable est continue Ces deux notions seront vues plus loin. Exemples í On jette un dçe bleu et un dçe rouge et on considçere la somme X du dçe bleu et du dçe rouge; í On jette un dçe bleu et un dçe rouge et on considçere la valeur Y correspondant ça lavaleur absolue de la diæçerence entre les valeurs des 2 dçes. í On prend au hasard un ananas dans la rçecolte d'un champ et on considçere le poids Z de l'ananas. X, Y, Z sont des variables alçeatoires. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 7

8 VARIABLE ALçEATOIRE Il existe plusieurs types de variable alçeatoire. Les types les plus frçequents qui seront dçeænis sont: í les variables alçeatoires discrçetes Ex: somme de 2 dçes,... í les variables alçeatoires continues Ex: taille des individus dans une population,... FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 8

9 VARIABLE ALçEATOIRE DISCRçETE Dçeænition í l'ensemble des rçealisations possibles S d'une telle variable alçeatoire notçee X a un nombre æni ou inæni dçenombrable d'çelçements íça chacune des valeurs x 2 S que peut prendre la variable alçeatoire X, correspond une probabilitçe P x oup x ; Px=P x =PX=x í l'ensemble des valeurs x et des probabilitçes correspondantes P x dçeænit une distribution de probabilitçe; í l'ensemble des probabilitçes cumulçees dçeænit une fonction de rçepartition: F x =PXçx FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 9

10 VARIABLE ALçEATOIRE DISCRçETE Exemple Exemple: Jet de 2 dçes et calcul de la somme. x PrfX = xg F x FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 10

11 VARIABLE ALçEATOIRE CONTINUE Dçeænition í l'ensemble des rçealisations possibles d'une telle variable alçeatoire notçee X a un nombre de valeurs non dçenombrables; í il n'est plus possible d'associer ça chacune des valeurs x que peut prendre la variable alçeatoire X une probabilitçe P x oup x ; í par contre, il est possible de dçeænir une fonction de rçepartition: F x =PXçx í de m^eme on peut dçeænir la probabilitçe d'observer une valeur comprise dans un intervalle donnçe ëa;bë PaçXçb=Fb,Fa í si F est dçerivable on peut encore çecrire í F x +æx,fx lim æx!0 æx F x = æf = lim æx!0 æx = f x Z x,1 f xdx f est appelçee densitçe FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 11

12 REPRçESENTATION DES DONNçEES Exemple: rçepartition par ^age des agents INRA ^Age Eæectif Eæectif Frçequence cumulçe Frçequence cumulçee FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 12

13 REPRçESENTATION DES DONNçEES Les reprçesentations graphiques í Diagramme en B^atons í Histogramme í Densitçe ífonction de rçepartition Les reprçesentations numçeriques í de tendance centrale: mçediane, moyenne í de dispersion: variance, çecart-type, quantiles, çetendue Les reprçesentations semi-graphiques í bo^çte ça pattes box-plot í branchage stem and leaf FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 13

14 LES REPRçESENTATIONS GRAPHIQUES Diagramme en b^aton de la population INRA effectif age FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 14

15 effectif LES REPRçESENTATIONS GRAPHIQUES Histogramme des eæectifs des ^ages des agents INRA age FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 15

16 frequence LES REPRçESENTATIONS GRAPHIQUES Polygone des frçequences - Courbe de densitçe age histogramme et polygone des frçequences d'^ages densite courbe de densitçe pour une variable continue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 16

17 freq. cumulee LES REPRçESENTATIONS GRAPHIQUES Polygone des frçequences cumulçees Courbe de fonction de rçepartition age histogramme et polygone des frçequences cumulçees d'^ages freq. cumulee courbe de fonction de rçepartition pour une variable continue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 17

18 RçESUMçES NUMçERIQUES: Tendance centrale : espçerance et mçediane effectif age (mu= 41.7,m= 41 ) espçerance :moyenne arithmçetique des rçealisations pondçerçees par leur probabilitçe. EX=ç= X xp x : x2s mçediane :valeur m telle que PXém'PXém'1=2: FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 18

19 RçESUMçES NUMçERIQUES : Stabilitçe delamçediane effectif age (mu= 41.7,m= 41 ) effectif age (mu= 42.2,m= 41 ) FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 19

20 RçESUMçES NUMçERIQUES: tendance centrale 6= dispersion FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 20

21 RçESUMçES NUMçERIQUES: Dispersion : variance et çecart-type çecart ça l'espçerance : X, ç. Mesurer la dispersion par E X, ç? = 0 Carrçe del'çecart ça l'espçerance ç : X, ç 2. Variance : ç 2 =E X,ç 2ç. Formule de calcul : ç 2 = X x2s x, ç 2 P x : çecart-type : ç. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 21

22 RçESUMçES NUMçERIQUES Dispersion : çetendue, quartiles et IQR effectif min mediane max çetendue :valeur maximale, valeur minimale age effectif % Q1 25% Q2 25% Q3 25% age Quartiles : Q 1 ;Q 2 ;Q 3. Intervalle interquartile : Q 3, Q 1. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 22

23 RçESUMçES NUMçERIQUES Dispersion : quantiles k parties : i rrr rrr - k, 1 k min Q 1 Q 2 Q 3 Q i,1 Q i Q k,2 Q k,1 max 100 i k des observations ont une valeur infçerieure ça Q i FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 23

24 RçESUMçES NUMçERIQUES Dispersion : quantiles prob. cumulee Q1 Q2 Q3 courbe de fonction de rçepartition densite Q1 Q2 Q3 courbe de densitçe FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 24

25 LES REPRçESENTATIONS SEMI-GRAPHIQUES La bo^çte ça pattes - min Q 1 Q 2 Q 3 max 50 ç - IQR min Q 1 Q 2 Q 3 max FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 25

26 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemple : la bo^çte ça pattes de l'^age des agents INRA FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 26

27 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemples de bo^çtes ça pattes distribution uniforme distribution ëpointue" distribution ëcreuse" distribution bimodale FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 27

28 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemple : branchage de l'^age des agents INRA Histogramme des ^ages des 139 agents de Lille effectif age Branchage des ^ages du Centre de Lille N = 139 Median = 36 Quartiles = 31, 42 Decimal point is 1 place to the right of the colon 1: 9 2: : : : : : : : : FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 28

29 ESTIMATION estimation empirique 1 Sondage : 40 agents environ 0:5 de la population totale Distribution de la population et distribution de l'çechantillon FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 29

30 ESTIMATION estimation empirique 2 Bo^çtes ça pattes population echantillon Rçesumçes numçeriques paramçetres population çechantillon espçerance variance Q Q Q FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 30

31 PARAMçETRES - ESTIMATEURS Dçeænitions On appelle paramçetre la caractçeristique quantitative qui permet une reprçesentation condensçee de l'information contenue dans une ou plusieurs populations. L'expression mathçematique permettant de mesurer, ça partir des donnçees de l'çechantillon, un paramçetre de la population s'appelle un estimateur d'un paramçetre. C'est une variable alçeatoire dont on espçere que la valeur sera ësouvent proche" du paramçetre que l'on cherche ça estimer. EXEMPLE : Si on a observçe S = f1; 1; 4; 5g; alors la moyenne arithmçetique des observations X = est un estimateur de l'espçerance ç. Formule gçençerale : X = 1 n nx X n : i=1 FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 31

32 PARAMçETRES - ESTIMATEURS Propriçetçes des estimateurs estimateurs biaisés avec grande variance estimateurs non biaisés avec grande variance estimateurs biaisés avec petite variance estimateurs non biaisés avec petite variance FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 32

33 ESTIMATION Dçeænition L'estimation est la valeur prise par un estimateur pour un çechantillon particulier. L'estimation d'un paramçetre ça partir d'un çechantillon unique ne conduit gçençeralement pas ça la vraie valeur du paramçetre. Cette estimation va varier d'un çechantillon ça l'autre. La rçealisation d'un trçes grand nombre d'çechantillons de m^eme taille permet de construire la distribution d'çechantillonnage de l'estimateur. L'estimation d'un paramçetre peut ^etre ponctuelle ou par intervalle. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 33

34 PARAMçETRES - ESTIMATEURS POPULATION ç ECHANTILLON æxe alçeatoire paramçetres thçeoriques versions empiriques = estimateurs ëtout est connu" INF ç ERENCE ëinformation" sur les paramçetres de la population inconnue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 34

35 PARAMçETRES - ESTIMATEURS NOTATIONS paramçetres thçeoriques population version empiriques çechantillon mçediane m g X dm moyenne ç X cç variance ç 2 cç 2 S 2 fonction de rçepartition F c F FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 35

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge. Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Jeudi 10 décembre 2013

Jeudi 10 décembre 2013 Analyse de Analyse de IUT de Roubaix, Département STID Jeudi 10 décembre 2013 2 Analyse de Quelle est la population étudiée? Les lycéens de terminale? Les lycéens du lycée Saint Rémi de Roubaix? Quelles

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Chapitre 1 : UE4 : Biostatistiques Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Professeur Philippe CINQUIN Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

Les diamants Prix et caractéristiques

Les diamants Prix et caractéristiques Exploration d un fichier de données Valérie Fontanieu - Ingénieur statisticien Institut National de Recherche Pédagogique Les diamants Prix et caractéristiques Données parues dans le Singapore s Business

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

Cours de statistique descriptive

Cours de statistique descriptive Cours de statistique descriptive Séance 1 : Les caractères et la mise en forme des données Lætitia Perrier Bruslé Cours de statistique descriptive Les statistiques et la géographie La géographie est une

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale :

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale : Variables : samedi 14 novembre 2009 12:54 1. Quelques Exemples : C'est une caractéristique ou un facteur susceptible de prendre des valeurs différentes selon les individus. Exemples : o Couleur des cheveux

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Arrondir à la troisième décimale

Arrondir à la troisième décimale Université Sidi Mohamed Ben Abdellah Faculté des sciences Juridiques, Economiques et Sociales - Fès- Année Universitaire 2004/2005 Filière: Sciences Economiques et Gestion S2 Module: Méthodes quantitatives

Plus en détail

I. INTRODUCTION : Depuis quand? Pourquoi? Comment? Utilisations actuelles? Et en 1 ère S?

I. INTRODUCTION : Depuis quand? Pourquoi? Comment? Utilisations actuelles? Et en 1 ère S? 1 ère S FICHE n 3 Outils statistiques I. INTRODUCTION : Depuis quand? Pourquoi? Comment? Utilisations actuelles? Et en 1 ère S? Depuis quand? Les statistiques dans le temps Les premiers relevés d hommes

Plus en détail

Math 04 : Probabilités et Statistiques

Math 04 : Probabilités et Statistiques Centre Universitaire Ain Témouchent Math 04 : Probabilités et Statistiques Dr. AISSA MAMOUNE Sidi Mohammed Département des Sciences et Technologie Institut des Sciences et Technologie E-mail : aissa_mamoune@yahoo.fr

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles

Plus en détail

VI) Utilisation du tableur excel pour l étude d une série statistique :

VI) Utilisation du tableur excel pour l étude d une série statistique : VI) Utilisation du tableur excel pour l étude d une série statistique : 1) Opérations simples : Mettons une valeur dans la case 1 et une valeur dans la case 2. 2 3 On se positionne en 3 et effectuons l

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

1 Données quantitatives discrètes

1 Données quantitatives discrètes Master 1 GSI - Mentions ACCIE et RIM - ULCO, La Citadelle, 2013/2014 Mesures et Analyses Statistiques de Données - Probabilités TP 1.2 - Analyse de données quantitatives avec le logiciel R 1 Données quantitatives

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire?

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Cyril Ferdynus, USM, CHU RECUEIL DE DONNEES Recueil hors ligne Epidata (http://www.epiconcept.fr/html/epidata.html)

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Le traçage logiciel d applications parallèles : conception et ajustement de qualité

Le traçage logiciel d applications parallèles : conception et ajustement de qualité Le traçage logiciel d applications parallèles : conception et ajustement de qualité Eric Maillet To cite this version: Eric Maillet. Le traçage logiciel d applications parallèles : conception et ajustement

Plus en détail

STATISTIQUE DESCRIPTIVE. On divise généralement l'étude de la statistique générale en deux parties :

STATISTIQUE DESCRIPTIVE. On divise généralement l'étude de la statistique générale en deux parties : STATISTIQUE DESCRIPTIVE 1. Vocabulaire de base On divise généralement l'étude de la statistique générale en deux parties : - La statistique descriptive, qui est un ensemble de méthodes permettant de décrire

Plus en détail

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours.

Heureusement, le tableau ci-dessus est complété par l'histogramme ci-dessous où un centimètre carré représente 10 jours. Exercice 1 Le comptable des Tacauds Blancois vient de comptabiliser le nombre de passagers transportés par les taxis de son entreprise pour chaque jour de l'année 2011. Pour que son travail soit plus compréhensible

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

CHAPITRE 1 : INTRODUCTION

CHAPITRE 1 : INTRODUCTION Chargé de cours : RENARD X. Année scolaire 009-010 0 TABLE DES MATIERES CHAPITRE 1 : Introduction... CHAPITRE : Eléments de statistiques descriptives... 3 1. Introduction... 3. Les différents types de

Plus en détail

Schemas de communications globales dans les reseaux de processeurs : application a la grille torique

Schemas de communications globales dans les reseaux de processeurs : application a la grille torique Schemas de communications globales dans les reseaux de processeurs : application a la grille torique Philippe Michallon To cite this version: Philippe Michallon. Schemas de communications globales dans

Plus en détail

Statistiques descriptives. Pierre Neuvial, Evry, M1 SGO, automne 2014

Statistiques descriptives. Pierre Neuvial,  Evry, M1 SGO, automne 2014 Démarche Statistique 1 Statistiques descriptives Pierre Neuvial, http://stat.genopole.cnrs.fr/~pneuvial Evry, M1 SGO, automne 2014 Introduction Variables quantitatives Définition: variable mesurant une

Plus en détail

Statistiques descriptives

Statistiques descriptives République Algérienne Démocratique et Populaire Ministère de l enseignement supérieur et de la recherche scientifique Cours de statistique Chapitre 1 Statistiques descriptives École Normale Supérieure

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Statistiques - Alternance HSE

Statistiques - Alternance HSE Statistiques - Alternance HSE Anne Fredet, Jean-Marie Gourdon 8 janvier 2006 Table des matières 1 Statistique descriptive 2 1.1 Définitions............................. 2 1.2 Effectif, moyenne, médiane

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Pourquoi étudier les statistiques? Et comment les enseigner?

Pourquoi étudier les statistiques? Et comment les enseigner? Pourquoi étudier les statistiques? Et comment les enseigner? Etape 1 Les statistiques Où les rencontre-t-on? A quoi servent-elles? Pour résumer des données (sous forme de tableau) Pour décrire des données

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Statistiques I: Séance informatique - Corrections

Statistiques I: Séance informatique - Corrections Haute Ecole de Gestion Automne 2010 Geneva School of Business Administration Mercredi 8h15-10h00 A. Caboussat, STAT I Statistiques I: Séance informatique - Corrections Part I Exercices sur Excel Problème

Plus en détail

Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets

Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets Cordelia Schmid To cite this version: Cordelia Schmid. Appariement d images par invariants

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction -

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction - CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L ECO - Correction - EXERCICE (5 points) Le nombre de téléphones portables vendus en France entre 2005 et 2008 a connu plusieurs évolutions successives : il

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE

PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLACE DES STATISTIQUES DANS LA RECHERCHE MEDICALE PLAN Définition des statistiques Échantillonnage Mise en place d une étude Interprétation des résultats Petits échantillons Analyse des bases de données

Plus en détail

Traitement des données avec EXCEL 2007

Traitement des données avec EXCEL 2007 Traitement des données avec EXCEL 2007 Vincent Jalby Octobre 2010 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation (questionnaire),

Plus en détail

Statistique descriptive

Statistique descriptive Statistique descriptive Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Statistique Année 2015/2016 1 / 13 1 Moyenne d une série statistique Définition et exemples

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

Visualisation de données. Fabrice Rossi Télécom ParisTech

Visualisation de données. Fabrice Rossi Télécom ParisTech Visualisation de données Fabrice Rossi Télécom ParisTech Plan Introduction Analyses univariées Variables numériques Histogramme Densité Boxplot et statistiques Conditionnement Variables nominales Analyses

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Chapitre 4 Statistiques COTEUS CAPACITÉS ATTEDUES COMMETAIRES Statistique descriptive, analyse de données Caractéristiques de dispersion : variance, écart-type. Diagramme en boîte. Utiliser de façon appropriée

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques CRPE S0. Autour de la GESTION DE DONNEES Probabilités, Statistiques om Mise en route1 A. Alimentation L étiquette d'un paquet de céréales affiche : «30g de muesli croustillant dans 100g de lait donnent

Plus en détail

Séquence 4. Statistique descriptive Notion de probabilité. Sommaire

Séquence 4. Statistique descriptive Notion de probabilité. Sommaire Séquence 4 Statistique descriptive Notion de probabilité Sommaire 1. Prérequis 2. Statistique descriptive 3. Notion de probabilité 4. Algorithmique 5. Synthèse de la séquence 6. Exercices d approfondissement

Plus en détail

COURS. STATISTIQUE et PROBABILITÉS

COURS. STATISTIQUE et PROBABILITÉS Cycles préparatoires du Service Commun de Formation Continue de l INPL COURS de STATISTIQUE et PROBABILITÉS Cours et exercices : Philippe Leclère 1 1-Statistiques descriptives à une variable 1 Statistique,

Plus en détail

Description simple d une base de données

Description simple d une base de données Description simple d une base de données Sommaire I. Estimation des principaux paramètres de la statistique descriptive : moyenne, écart-type, pourcentage... 1 II. Les Graphiques dans Excel 2007... 3 A.

Plus en détail

Chapitre 2 Les graphiques

Chapitre 2 Les graphiques Chapitre Les graphiques. Généralités C est la partie des statistiques la moins souvent oubliée dans l enseignement secondaire car elle mobilise la notion de proportionnalité sous ses différentes formes.

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques

STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques STATISTIQUE avec la calculatrice TI-nspire. Applications : Tableur & listes - Données et statistiques 1) Caractère qualitatif : représentations graphiques Moyen de locomotion pour venir à l école. x i

Plus en détail

Statistique descriptive unidimensionnelle

Statistique descriptive unidimensionnelle 1 Statistique descriptive unidimensionnelle Statistique descriptive unidimensionnelle Résumé Les objectifs et la démarche d un première exploration d un jeu de données, les outils de la description statistique

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Calcul des paramètres statistiques TI-82stats.fr? Déterminer les paramètres de la série statistique : Valeurs 0 2 3 5 8 Effectifs 16 12 28 32 21? Accès au mode statistique Touche

Plus en détail

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité

Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité Première L 2010-2011 DS4 quartiles et diagrammes en boîtes plages de normalité NOM : Prénom : Exercice 1 : Elections régionales 1999 Le tableau ci-dessous donne les pourcentages des voix obtenues par le

Plus en détail

Introduction et concepts de base

Introduction et concepts de base Introduction et concepts de base Les statistiques sont un ensemble de procédures destinées à traiter des données quantitatives. Elles remplissent deux fonctions fondamentales: il s'agit tout d'abord de

Plus en détail

TABLEUR GRAPHIQUES. 1 ) Fonctions : Exemple : Représenter graphiquement la fonction f : x ï (x 1) 2 + 2

TABLEUR GRAPHIQUES. 1 ) Fonctions : Exemple : Représenter graphiquement la fonction f : x ï (x 1) 2 + 2 1 ) Fonctions : Exemple : Représenter graphiquement la fonction f : x ï (x 1) 2 + 2 a) Tableau de valeurs : Il est facile de construire un tableau de valeurs à l aide d Excel. On choisit des nombres dans

Plus en détail