FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

Dimension: px
Commencer à balayer dès la page:

Download "FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1"

Transcription

1 INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution í Reprçesentations graphiques írçesumçes numçeriques í Reprçesentations semi-graphiques. 4. Estimation FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

2 INTRODUCTION Populations - çechantillons En statistique, on appelle population une collection d'çelçements possçedant au moins une caractçeristique commune permettant de les regrouper. Un çelçement est un individu ou une unitçe statistique. Si le nombre d'çelçements est limitçe, la population est dite ænie. Si ce nombre est illimitçe ou diæcilement calculable, la population est dite inænie. On dçeænit un çechantillon comme un sous-ensemble de la population statistique. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 2

3 INTRODUCTION Les deux types de dçemarches statistiques POPULATION inænie et connue ænie, petite et connue - RECENSEMENT SONDAGE? çechantillon - STATISTIQUE EXPLORATOIRE on ne s'intçeresse qu'aux individus dont on a les mesures?? STATISTIQUE INF ç ERENTIELLE FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 3

4 VARIABLE ALçEATOIRE Notion de phçenomçene alçeatoire Dans de nombreux cas, la rçepçetition d'une expçerience dans des conditions apparemment identiques ne conduit pas toujours au m^eme rçesultat. Exemples: ímçelange ça parts çegales d'un produit A et d'un produit B et examen du rçesultat du mçelange: produit C; í semis de graines dans une terrine et comptage du nombre de levçees aprçes 5 jours; í lancement d'une piçece de monnaie; í jet d'un dçe et examen du nombre indiquçe sur la face supçerieure. Si le rçesultat d'une expçerience ne peut ^etre dçeterminçe par la connaissance des conditions initiales, nous dirons que le phçenomçene est alçeatoire. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 4

5 VARIABLE ALçEATOIRE Dçeænition d'une variable Une variable X est une application d'un ensemble æ d'çevçenements dans un ensemble S de valeurs numçeriques ou non appelçees rçealisations. æ est un ensemble discret d'objets, d'individus, d'occasions,...: æ=f! 1 ;! 2 ;æææ;! n g alors que S peut ^etre n'importe quoi. En particulier, les valeurs de S peuvent^etre numçeriques, ordinales ou nominales. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 5

6 VARIABLE ALçEATOIRE Exemples de variables Exemples: Soit æ une population d'individus et í X 1 la variable sexe prenant ses valeurs dans S =fhomme, femmeg; í X 2 la variable dipl^ome prenant ses valeurs dans S = fcertiæcat d'çetude,..., thçese g í X 3 la variable poids en kg prenant ses valeurs dans l'intervalle S = ë0;200ë; FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 6

7 VARIABLE ALçEATOIRE Dçeænition Une variable alçeatoire X est une variable associçee ça une expçerience alçeatoire et servant ça caractçeriser le rçesultat de cette expçerience. Autrement dit, ça chaque rçealisation valeur de S est associçee í une probabilitçe si la variable est discrçete; í une densitçe de probabilitçe si la variable est continue Ces deux notions seront vues plus loin. Exemples í On jette un dçe bleu et un dçe rouge et on considçere la somme X du dçe bleu et du dçe rouge; í On jette un dçe bleu et un dçe rouge et on considçere la valeur Y correspondant ça lavaleur absolue de la diæçerence entre les valeurs des 2 dçes. í On prend au hasard un ananas dans la rçecolte d'un champ et on considçere le poids Z de l'ananas. X, Y, Z sont des variables alçeatoires. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 7

8 VARIABLE ALçEATOIRE Il existe plusieurs types de variable alçeatoire. Les types les plus frçequents qui seront dçeænis sont: í les variables alçeatoires discrçetes Ex: somme de 2 dçes,... í les variables alçeatoires continues Ex: taille des individus dans une population,... FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 8

9 VARIABLE ALçEATOIRE DISCRçETE Dçeænition í l'ensemble des rçealisations possibles S d'une telle variable alçeatoire notçee X a un nombre æni ou inæni dçenombrable d'çelçements íça chacune des valeurs x 2 S que peut prendre la variable alçeatoire X, correspond une probabilitçe P x oup x ; Px=P x =PX=x í l'ensemble des valeurs x et des probabilitçes correspondantes P x dçeænit une distribution de probabilitçe; í l'ensemble des probabilitçes cumulçees dçeænit une fonction de rçepartition: F x =PXçx FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 9

10 VARIABLE ALçEATOIRE DISCRçETE Exemple Exemple: Jet de 2 dçes et calcul de la somme. x PrfX = xg F x FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 10

11 VARIABLE ALçEATOIRE CONTINUE Dçeænition í l'ensemble des rçealisations possibles d'une telle variable alçeatoire notçee X a un nombre de valeurs non dçenombrables; í il n'est plus possible d'associer ça chacune des valeurs x que peut prendre la variable alçeatoire X une probabilitçe P x oup x ; í par contre, il est possible de dçeænir une fonction de rçepartition: F x =PXçx í de m^eme on peut dçeænir la probabilitçe d'observer une valeur comprise dans un intervalle donnçe ëa;bë PaçXçb=Fb,Fa í si F est dçerivable on peut encore çecrire í F x +æx,fx lim æx!0 æx F x = æf = lim æx!0 æx = f x Z x,1 f xdx f est appelçee densitçe FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 11

12 REPRçESENTATION DES DONNçEES Exemple: rçepartition par ^age des agents INRA ^Age Eæectif Eæectif Frçequence cumulçe Frçequence cumulçee FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 12

13 REPRçESENTATION DES DONNçEES Les reprçesentations graphiques í Diagramme en B^atons í Histogramme í Densitçe ífonction de rçepartition Les reprçesentations numçeriques í de tendance centrale: mçediane, moyenne í de dispersion: variance, çecart-type, quantiles, çetendue Les reprçesentations semi-graphiques í bo^çte ça pattes box-plot í branchage stem and leaf FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 13

14 LES REPRçESENTATIONS GRAPHIQUES Diagramme en b^aton de la population INRA effectif age FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 14

15 effectif LES REPRçESENTATIONS GRAPHIQUES Histogramme des eæectifs des ^ages des agents INRA age FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 15

16 frequence LES REPRçESENTATIONS GRAPHIQUES Polygone des frçequences - Courbe de densitçe age histogramme et polygone des frçequences d'^ages densite courbe de densitçe pour une variable continue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 16

17 freq. cumulee LES REPRçESENTATIONS GRAPHIQUES Polygone des frçequences cumulçees Courbe de fonction de rçepartition age histogramme et polygone des frçequences cumulçees d'^ages freq. cumulee courbe de fonction de rçepartition pour une variable continue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 17

18 RçESUMçES NUMçERIQUES: Tendance centrale : espçerance et mçediane effectif age (mu= 41.7,m= 41 ) espçerance :moyenne arithmçetique des rçealisations pondçerçees par leur probabilitçe. EX=ç= X xp x : x2s mçediane :valeur m telle que PXém'PXém'1=2: FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 18

19 RçESUMçES NUMçERIQUES : Stabilitçe delamçediane effectif age (mu= 41.7,m= 41 ) effectif age (mu= 42.2,m= 41 ) FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 19

20 RçESUMçES NUMçERIQUES: tendance centrale 6= dispersion FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 20

21 RçESUMçES NUMçERIQUES: Dispersion : variance et çecart-type çecart ça l'espçerance : X, ç. Mesurer la dispersion par E X, ç? = 0 Carrçe del'çecart ça l'espçerance ç : X, ç 2. Variance : ç 2 =E X,ç 2ç. Formule de calcul : ç 2 = X x2s x, ç 2 P x : çecart-type : ç. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 21

22 RçESUMçES NUMçERIQUES Dispersion : çetendue, quartiles et IQR effectif min mediane max çetendue :valeur maximale, valeur minimale age effectif % Q1 25% Q2 25% Q3 25% age Quartiles : Q 1 ;Q 2 ;Q 3. Intervalle interquartile : Q 3, Q 1. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 22

23 RçESUMçES NUMçERIQUES Dispersion : quantiles k parties : i rrr rrr - k, 1 k min Q 1 Q 2 Q 3 Q i,1 Q i Q k,2 Q k,1 max 100 i k des observations ont une valeur infçerieure ça Q i FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 23

24 RçESUMçES NUMçERIQUES Dispersion : quantiles prob. cumulee Q1 Q2 Q3 courbe de fonction de rçepartition densite Q1 Q2 Q3 courbe de densitçe FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 24

25 LES REPRçESENTATIONS SEMI-GRAPHIQUES La bo^çte ça pattes - min Q 1 Q 2 Q 3 max 50 ç - IQR min Q 1 Q 2 Q 3 max FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 25

26 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemple : la bo^çte ça pattes de l'^age des agents INRA FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 26

27 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemples de bo^çtes ça pattes distribution uniforme distribution ëpointue" distribution ëcreuse" distribution bimodale FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 27

28 LES REPRçESENTATIONS SEMI-GRAPHIQUES Exemple : branchage de l'^age des agents INRA Histogramme des ^ages des 139 agents de Lille effectif age Branchage des ^ages du Centre de Lille N = 139 Median = 36 Quartiles = 31, 42 Decimal point is 1 place to the right of the colon 1: 9 2: : : : : : : : : FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 28

29 ESTIMATION estimation empirique 1 Sondage : 40 agents environ 0:5 de la population totale Distribution de la population et distribution de l'çechantillon FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 29

30 ESTIMATION estimation empirique 2 Bo^çtes ça pattes population echantillon Rçesumçes numçeriques paramçetres population çechantillon espçerance variance Q Q Q FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 30

31 PARAMçETRES - ESTIMATEURS Dçeænitions On appelle paramçetre la caractçeristique quantitative qui permet une reprçesentation condensçee de l'information contenue dans une ou plusieurs populations. L'expression mathçematique permettant de mesurer, ça partir des donnçees de l'çechantillon, un paramçetre de la population s'appelle un estimateur d'un paramçetre. C'est une variable alçeatoire dont on espçere que la valeur sera ësouvent proche" du paramçetre que l'on cherche ça estimer. EXEMPLE : Si on a observçe S = f1; 1; 4; 5g; alors la moyenne arithmçetique des observations X = est un estimateur de l'espçerance ç. Formule gçençerale : X = 1 n nx X n : i=1 FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 31

32 PARAMçETRES - ESTIMATEURS Propriçetçes des estimateurs estimateurs biaisés avec grande variance estimateurs non biaisés avec grande variance estimateurs biaisés avec petite variance estimateurs non biaisés avec petite variance FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 32

33 ESTIMATION Dçeænition L'estimation est la valeur prise par un estimateur pour un çechantillon particulier. L'estimation d'un paramçetre ça partir d'un çechantillon unique ne conduit gçençeralement pas ça la vraie valeur du paramçetre. Cette estimation va varier d'un çechantillon ça l'autre. La rçealisation d'un trçes grand nombre d'çechantillons de m^eme taille permet de construire la distribution d'çechantillonnage de l'estimateur. L'estimation d'un paramçetre peut ^etre ponctuelle ou par intervalle. FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 33

34 PARAMçETRES - ESTIMATEURS POPULATION ç ECHANTILLON æxe alçeatoire paramçetres thçeoriques versions empiriques = estimateurs ëtout est connu" INF ç ERENCE ëinformation" sur les paramçetres de la population inconnue FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 34

35 PARAMçETRES - ESTIMATEURS NOTATIONS paramçetres thçeoriques population version empiriques çechantillon mçediane m g X dm moyenne ç X cç variance ç 2 cç 2 S 2 fonction de rçepartition F c F FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 35

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Chapitre 1 : UE4 : Biostatistiques Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Professeur Philippe CINQUIN Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Le traçage logiciel d applications parallèles : conception et ajustement de qualité

Le traçage logiciel d applications parallèles : conception et ajustement de qualité Le traçage logiciel d applications parallèles : conception et ajustement de qualité Eric Maillet To cite this version: Eric Maillet. Le traçage logiciel d applications parallèles : conception et ajustement

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Schemas de communications globales dans les reseaux de processeurs : application a la grille torique

Schemas de communications globales dans les reseaux de processeurs : application a la grille torique Schemas de communications globales dans les reseaux de processeurs : application a la grille torique Philippe Michallon To cite this version: Philippe Michallon. Schemas de communications globales dans

Plus en détail

Arrondir à la troisième décimale

Arrondir à la troisième décimale Université Sidi Mohamed Ben Abdellah Faculté des sciences Juridiques, Economiques et Sociales - Fès- Année Universitaire 2004/2005 Filière: Sciences Economiques et Gestion S2 Module: Méthodes quantitatives

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets

Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets Appariement d images par invariants locaux de niveaux de gris. Application à l indexation d une base d objets Cordelia Schmid To cite this version: Cordelia Schmid. Appariement d images par invariants

Plus en détail

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale :

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale : Variables : samedi 14 novembre 2009 12:54 1. Quelques Exemples : C'est une caractéristique ou un facteur susceptible de prendre des valeurs différentes selon les individus. Exemples : o Couleur des cheveux

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Cours de statistique descriptive

Cours de statistique descriptive Cours de statistique descriptive Séance 1 : Les caractères et la mise en forme des données Lætitia Perrier Bruslé Cours de statistique descriptive Les statistiques et la géographie La géographie est une

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire?

Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Outils méthodologiques et astuces pour la thèse de médecine Les statistiques, comment faire? Cyril Ferdynus, USM, CHU RECUEIL DE DONNEES Recueil hors ligne Epidata (http://www.epiconcept.fr/html/epidata.html)

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

1 Données quantitatives discrètes

1 Données quantitatives discrètes Master 1 GSI - Mentions ACCIE et RIM - ULCO, La Citadelle, 2013/2014 Mesures et Analyses Statistiques de Données - Probabilités TP 1.2 - Analyse de données quantitatives avec le logiciel R 1 Données quantitatives

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

STATISTIQUE DESCRIPTIVE. On divise généralement l'étude de la statistique générale en deux parties :

STATISTIQUE DESCRIPTIVE. On divise généralement l'étude de la statistique générale en deux parties : STATISTIQUE DESCRIPTIVE 1. Vocabulaire de base On divise généralement l'étude de la statistique générale en deux parties : - La statistique descriptive, qui est un ensemble de méthodes permettant de décrire

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

Élément 424b Introduction à la statistique descriptive

Élément 424b Introduction à la statistique descriptive CTU Master AGPS De la donnée à la connaissance : traitement, analyse et transmission Élément 44b Introduction à la statistique descriptive Prof. Marie-Hélène de Sède-Marceau Année / Statistique Introduction

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Techniques Quantitatives

Techniques Quantitatives GOL Techniques Quantitatives 1.2 HERVÉ BOULET 08/11/2013 Légende Table des matières Objectifs 5 Introduction 7 I - Généralités 9 A. Terminologie...9 1. Objet de la statistique...9 2. Population statistique...10

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

Planification de mouvements pour un robot mobile autonome tout-terrain : une approche par utilisation des modèles physiques

Planification de mouvements pour un robot mobile autonome tout-terrain : une approche par utilisation des modèles physiques Planification de mouvements pour un robot mobile autonome tout-terrain : une approche par utilisation des modèles physiques Moez Cherif To cite this version: Moez Cherif. Planification de mouvements pour

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

Pourquoi étudier les statistiques? Et comment les enseigner?

Pourquoi étudier les statistiques? Et comment les enseigner? Pourquoi étudier les statistiques? Et comment les enseigner? Etape 1 Les statistiques Où les rencontre-t-on? A quoi servent-elles? Pour résumer des données (sous forme de tableau) Pour décrire des données

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013 ISCID-CO - PRÉPA 1ère année STATISTIQUES ET PROBABILITÉS Université du Littoral - Côte d Opale Laurent SMOCH Janvier 2013 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

DjVu: Un Systçeme de Compression d'images pour la Distribution Rçeticulaire de Documents Numçerisçes. Lçeon Bottou, Patrick Haæner, Yann LeCun, Paul Howard, Pascal Vincent, Bill Riemers AT&T Labs - Research

Plus en détail

Le traitement des données

Le traitement des données Exploitation analyse et valorisation des données issues d une enquête de population IFSI Carcassonne, Octobre 2015 Elodie Lagneaux, directrice CODES11 Le traitement des données 1 Définition Le traitement

Plus en détail

Chapitre 4. Statistiques

Chapitre 4. Statistiques . Statistiques hapitre Le programme ontenus apacités attendues ommentaires Présentation des données Utilisation des connaissances hoisir la présentation la plus On partira des acquis des classes antérieures

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

EXERCICES. Statistique descriptive univariée : révisions

EXERCICES. Statistique descriptive univariée : révisions U.F.R. S.P.S.E. UNIVERSITE PARIS X NANTERRE licence de psychologie L3 PLPSTA02 Bases de la statistique inférentielle 2008-2009 EXERCICES Statistique descriptive univariée : révisions Exercice 1 Pour 12

Plus en détail

Exercices de révision pour l examen 2

Exercices de révision pour l examen 2 Exercices de révision pour l examen 2 1) Lors d une étude sur la rainette aux yeux rouges (une grenouille vivant au sud du Mexique), nous avons observé un échantillon de 150 grenouilles pour mesurer la

Plus en détail

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3 Cours de statistique descriptive 1. Analyse univariée Support de cours destiné aux étudiants de la licence MOMR : Université Charles-de-Gaulle Lille 3 UFR MSES O. Torrès Année universitaire 007-8 Version

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

T.P. 1 Exercice 1 Pourquoi les statistiques? (Corrigé)

T.P. 1 Exercice 1 Pourquoi les statistiques? (Corrigé) T.P. 1 Exercice 1 Pourquoi les statistiques? (Corrigé) Connaissances préalables : Buts spécifiques : Outils nécessaires : Consignes : Notions d hypothèse et d échantillon aléatoire Évaluer la compréhension

Plus en détail

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Quelques bases de donnçees d'çetoiles doubles et. Abstract. The increasing proportion of double stars makes necessary

Quelques bases de donnçees d'çetoiles doubles et. Abstract. The increasing proportion of double stars makes necessary Etoiles Doubles Ecole CNRS de Goutelas XXIII è2000è Editçe par D. Egret, J.-L. Halbwachs & J.M. Hameury Quelques bases de donnçees d'çetoiles doubles et multiples Edouard Oblak Observatoire de Besançcon

Plus en détail

Description simple d une base de données

Description simple d une base de données Description simple d une base de données Sommaire I. Estimation des principaux paramètres de la statistique descriptive : moyenne, écart-type, pourcentage... 1 II. Les Graphiques dans Excel 2007... 3 A.

Plus en détail

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840 Première L Statistiques Cours 1. Définitions 1 2. Données Gaussiennes 5 3. Médiane et quartiles 6 4. Diagramme en boîte 9 5. Exercices corrigés 12 1. Définitions Une série statistique est la donnée d objets

Plus en détail

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique Centre de Recherche sur l'information Scientifique et Technique Post graduation spécialisée en ligne Option Information Scientifique et Technique Module Recueil et Traitement Statistique des Données: Introduction

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Chapitre 2 Les graphiques

Chapitre 2 Les graphiques Chapitre Les graphiques. Généralités C est la partie des statistiques la moins souvent oubliée dans l enseignement secondaire car elle mobilise la notion de proportionnalité sous ses différentes formes.

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Universitçe Paul Sabatier et Centre d'etude Spatiale des. Abstract. Based on the fundamental review by Narayan et

Universitçe Paul Sabatier et Centre d'etude Spatiale des. Abstract. Based on the fundamental review by Narayan et Etoiles Doubles Ecole CNRS de Goutelas XXIII è2000è Editçe par D. Egret, J.-L. Halbwachs & J.M. Hameury Les ADAF : Application aux binaires X Jean-Françcois Olive Universitçe Paul Sabatier et Centre d'etude

Plus en détail

C3 : Manipulations statistiques

C3 : Manipulations statistiques C3 : Manipulations statistiques Dorat Rémi 1- Génération de valeurs aléatoires p 2 2- Statistiques descriptives p 3 3- Tests statistiques p 8 4- Régression linéaire p 8 Manipulations statistiques 1 1-

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Département Biosciences Végétales Module : Statistique 1. J. Gergaud

Département Biosciences Végétales Module : Statistique 1. J. Gergaud Département Biosciences Végétales Module : Statistique 1 J. Gergaud 19 septembre 26 Table des matières 1 Introduction 1 1 Image de la statistique............................................ 1 2 Exemples

Plus en détail

Traitement des données avec EXCEL 2007

Traitement des données avec EXCEL 2007 Traitement des données avec EXCEL 2007 Vincent Jalby Octobre 2010 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation (questionnaire),

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand

UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

- Ressources pour les classes

- Ressources pour les classes Mathématiques Collège - Ressources pour les classes de 6 e, 5 e, 4 e, et 3 e du collège - - Organisation et gestion de données au collège - Ce document peut être utilisé librement dans le cadre des enseignements

Plus en détail

Premiers pas vers l analyse de données...

Premiers pas vers l analyse de données... Fiche TD avec le logiciel : tdr1101 Premiers pas vers l analyse de données... A.B. Dufour & D. Clot Cette fiche comprend des exercices portant sur les paramètres descriptifs principaux et les représentations

Plus en détail

TP1 Master Finance logiciels Introduction à R

TP1 Master Finance logiciels Introduction à R TP1 Master Finance logiciels Introduction à R Emeline Schmisser, emeline.schmisser@math.univ-lille1.fr, bureau 314 (bâtiment M3). 1 Séquences, Vecteurs, Matrice Tableaux (arrays) Pour obtenir l aide de

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R².

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R². Statistiques - Cours Page 1 L I C E N C E S c i e n t i f i q u e Cours Henri IMMEDIATO S t a t i s t i q u e s 1 Gén éralités Statistique descriptive univari ée 1 Repr é s e n t a t i o n g r a p h i

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

1 Générateurs à Congruences Linéaires (GCL)

1 Générateurs à Congruences Linéaires (GCL) TP 4 : Générateurs pseudo-aléatoires et applications Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Licence Pro Amélioration Végétale

Licence Pro Amélioration Végétale Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail