Précision d un résultat et calculs d incertitudes

Dimension: px
Commencer à balayer dès la page:

Download "Précision d un résultat et calculs d incertitudes"

Transcription

1 Précision d un résultat et calculs d incertitudes PSI* Lycée Chaptal

2

3 3 Table des matières Table des matières 1. Présentation d un résultat numérique Notations a) Notation scientifique b) Notation ingénieur Chiffres significatifs a) Nombre de chiffres significatif d un résultat numérique b) Précision d un résultat numérique Chiffres significatifs et opérations Présentation d un résultat expérimental Résultat d une mesure Chiffres significatifs du résultat d une mesure Incertitudes des mesures Erreur systématique et erreur aléatoire Calculs classiques d incertitude a) Méthode b) Incertitude liée à un appareil de mesure c) Critiques d) Intérêts des calculs d incertitudes classiques e) Exemple de calcul : célérité d une onde ultrasonore Analyse statistique d une série de mesures Mesures indépendantes Loi gaussienne Exploitation statistique d une série de mesures a) Estimations de la valeur exacte et de l écart-type b) Intervalle de confiance (méthode de Student) Intérêt de choisir la moyenne comme estimateur de la grandeur mesurée Exemple

4 1. Présentation d un résultat numérique 1. Présentation d un résultat numérique Notations a) Notation scientifique La notation (ou écriture) scientifique est une représentation d un nombre réel sous la forme d un produit de deux facteurs. Le premier facteur est un nombre décimal dont la valeur absolue de la partie entière est un chiffre comprise entre 1 et 9. Le second facteur est une puissance entière de 10. Exemple : T = 298 K s écrit en notation scientifique T = 2, K. b) Notation ingénieur La notation ingénieur consiste à exprimer un nombre réel sous la forme x 10 n, où x est un nombre compris entre 1 et 999 et n est un entier multiple de 3. Exemple : U = 0, 045 V s écrit en notation ingénieur U = V = 45 mv. 1.2 Chiffres significatifs a) Nombre de chiffres significatif d un résultat numérique Dans un résultat numérique, tous les chiffres autre que zéro sont significatifs. Les zéros sont significatifs lorsqu ils se trouvent entre d autres chiffres ou à leur droite ; ils ne le sont pas lorsqu ils se trouvent à leur gauche. Exemples : 3, 2 contient 2 chiffres significatifs ; 3, 20 contient 3 chiffres significatifs ; 0, 32 contient 2 chiffres significatifs ; 3200 contient 4 chiffres significatifs. Signalons qu un nombre entier naturel est considéré comme possédant un nombre illimité de chiffres significatifs ; il en est de même de son inverse. b) Précision d un résultat numérique La précision d un résultat numérique augmente avec le nombre de chiffres significatifs exprimé. Le dernier chiffre est alors incertain. Exemples : L = 12, 597 km = 12, m (5 chiffres significatifs) signifie que 12596, 5 m < L < 12597, 5 m ; L = 12, 60 km = 12, m (4 chiffres significatifs) signifie que m < L < m ; L = 12, 6 km = 12, m (3 chiffres significatifs) signifie que m < L < m.

5 5 2. Présentation d un résultat expérimental 1.3 Chiffres significatifs et opérations Il faut toujours arrondir le résultat final fourni par la calculatrice afin de l exprimer avec une précision égale à celle de la donnée utilisée la moins précise. Par exemple, le résultat de la multiplication 36, 54 58, 4 = 2133, 936 doit être arrondi à 2, , car la données la moins précise (58, 4) contient 3 chiffres significatifs. De même, après une addition ou une soustraction, le résultat ne doit pas avoir plus de décimales que le nombre qui en comporte le moins : 220, , , 51 = 1175, 804 doit être arrondi à 1175, Présentation d un résultat expérimental 2.1 Résultat d une mesure Considérons une grandeur physique A dont la valeur exacte est notée a e. Une mesure n étant jamais parfaite, la valeur a e n est pas accessible par l expérience, il s agit d une valeur inconnue pour l expérimentateur. Une mesure est en effet toujours entachée d erreurs dont les causes sont multiples : matériel employé, qualification de l expérimentateur effectuant la mesure, méthode utilisée, influence de l environnement de la grandeur mesurée... Pour chaque mesure d une grandeur physique A, il faut idéalement présenter le résultat de la mesure sous la forme d un intervalle : où A = â ± a â est l estimateur de la valeur exacte a e ; ε a = â a e représente alors l erreur commise sur la mesure de A ; a est l incertitude sur la mesure de A telle que la probabilité p pour que l intervalle numérique [â A ; â+ A] contienne la valeur exacte a e soit assez élevée (par exemple p = 95%). Exemple : U = 2, 48±0, 02 V signifie que la valeur exacte de la tension U a une probabilité élevée d appartenir à l intervalle [2, 46 V ; 2, 50 V]. 2.2 Chiffres significatifs du résultat d une mesure On expliquera dans les prochains chapitres la manière d évaluer l incertitude d une mesure. Mais retenons d ores et déjà les règles d écriture du résultat d une mesure, règles qui découlent des conséquences des arrondis de â et a sur les variations tolérables de l intervalle de mesure.

6 3. Incertitudes des mesures 6 On exprimera l incertitude a avec au plus 2 chiffres significatifs. On conservera pour l estimateur â les chiffres significatifs qui interviennent dans a. Exemple : le résultat U = 2, 5785 ± 0, 0127 V devra être mis sous la forme finale U = 2, 578 ± 0, 013 V. En l absence de calcul d incertitude, le résultat d une mesure sera écrit avec au plus 3 chiffres significatifs. En effet, avec le matériel utilisé au lycée, la précision est en général de l ordre de 1%, ce qui conduit à écrire les résultats des mesures avec 2 ou 3 chiffres significatifs. 3. Incertitudes des mesures 3.1 Erreur systématique et erreur aléatoire Une erreur systématique affecte le résultat constamment et toujours dans le même sens, elle contribue à toujours surévaluer, ou toujours sous-évaluer, la valeur mesurée. Exemples de causes d erreurs systématiques Mauvais étalonnage d un appareil. Mauvais réglage du zéro d un appareil (balance par exemple). Vieillissement des composants. Le protocole expérimental peut introduire une erreur systématique. Par exemple, si l on desire mesurer à la fois la tension aux bornes d un dipôle et le courant qui le traverse, on peut réaliser deux montages possibles : Montage longue dérivation : V Montage courte dérivation : V A dipôle A dipôle E E

7 7 3. Incertitudes des mesures Ces deux montages introduisent des erreurs systématiques. Dans le montage longue dérivation, le voltmètre mesure la somme des différences de potentiel du dipôle et de l ampèremètre. Dans le montage courte dérivation, l ampèremètre mesure la somme des courants traversant le dipôle et le voltmètre. Notons que pour des multimètres numériques, le montage courte-dérivation est à privilégier car le courant traversant un voltmètre numérique est très faible (résistance interne de l ordre de 10 MΩ) alors que la chute de tension due à un ampèremètre numérique n est pas négligeable. Une erreur est aléatoire lorsque, d une mesure à l autre, la valeur obtenue peut être surévaluée ou sous-évaluée par rapport à la valeur exacte de la grandeur. Exemples de causes d erreurs aléatoires Un exemple d erreur aléatoire est la mesure du temps avec un chronomètre. L erreur vient du temps de réaction de l expérimentateur au démarrage et à l arrêt du chronomètre. Comme ce temps de réaction n est pas toujours le même, la valeur mesurée peut être surévaluée ou sous-évaluée. Parasites du circuit d alimentation en électronique. Fluctuations des paramètres physiques de l environnement (température, pression, humidité de l aire...). Remarque : une erreur donnée peut, suivant les conditions, apparaître comme systématique ou aléatoire. Considérons par exemple le cas de l erreur de parallaxe 1 : si l opérateur se place toujours sous le même angle par rapport à la perpendiculaire à la graduation d un appareil de mesure, il introduira une erreur systématique dans ses lectures. Par contre, s il se place de manière aléatoire par rapport à la perpendiculaire à la graduation, l erreur de parallaxe sera aléatoire. 3.2 Calculs classiques d incertitude a) Méthode Soit une grandeur A = f(x, y, z) où x, y et z représentent les mesures primaires. L incertitude sur la grandeur A peut être exprimée en donnant : soit l incertitude absolue A ; soit l incertitude relative A/A. Expression de la différentielle de f : df = f f f dx + dy + x y z dz. On note x, y et z, les incertitudes absolues sur les mesures primaires. La quantité 1 l erreur de parallaxe est l angle entre la direction du regard d un observateur et la perpendiculaire à la graduation d un appareil de mesure, amenant à une erreur de lecture de la mesure effectuée.

8 A = f x x + f y y + f z z donne une estimation de l incertitude de mesure sur la grandeur A. Règles de calcul classiques : A = x + y + z = A = x + y + z ; A = x m y n = A A = m x x + n y y. b) Incertitude liée à un appareil de mesure 3. Incertitudes des mesures 8 Afin d évaluer l incertitude liée à un appareil de mesure, on peut utiliser les indications du constructeurs (notice). Cette procédure demeure valable si l appareil est régulièrement ré-étalonné. Pour un appareil à aiguille, il est préférable de l utiliser, si possible, pas trop loin de la pleine échelle afin d obtenir une incertitude relative faible. Un appareil à aiguille de classe p signifie qu il introduit une incertitude relative de p % sur une mesure égale au calibre. Exemple : un appareil de classe 2 comportant 150 divisions introduira une incertitude absolue de soit 3 divisions et ceci quelle que soit l amplitude de 100 la déviation. Pour les appareils numériques, l incertitude absolue comprend souvent un pourcentage de la valeur mesurée plus un terme constant. Par exemple, la notice d un voltmètre donne comme information sur l incertitude : 0, 5% +1 digit (c est-à-dire 1 unité sur le dernier chiffre). Mesurons une même tension U en utilisant deux calibres différents. Affichage du voltmètre sur le calibre 200 mv : 150,0. L incertitude de mesure vaut alors : U = 0, 5 150, 0 + 0, 1 soit U = 0, 85 mv ; 100 Affichage du voltmètre sur le calibre 20 V : 00,15. L incertitude de mesure vaut alors : U = 0, , , 01 = 1, V soit U = 10, 75 mv ; On pourra retenir qu il faut utiliser le plus petit calibre possible (ici 200 mv) pour bénéficier du maximum de précision lors de la mesure. c) Critiques Cette étude ne prend pas en compte toutes les causes d erreur. Par exemple, lors de l étude de la résonance d un circuit RLC, il faut apprécier la fréquence pour laquelle le courant passe par un maximum. Cette imprécision est, en général, très supérieure à celle déduite de l indication d un fréquencemètre. Les incertitudes sur les mesures primaires sont souvent estimées de manière empirique, à moins de disposer de la notice des appareils de mesure.

9 9 3. Incertitudes des mesures Le niveau de confiance qu on peut accorder aux diverses incertitudes n est pas précisé. On suppose qu il est proche de 100%. Pour garder un tel niveau de confiance, le calcul considère que toutes les erreurs vont dans le mauvais sens (d où les valeurs absolues dans les calculs) et cela conduit à des incertitudes assez grandes. d) Intérêts des calculs d incertitudes classiques Les calculs d incertitudes classiques ont tout de même des qualités. Ils permettent de voir les grandeurs sur lesquelles devra porter l amélioration de la précision. Exemple : la loi pour la chute libre g = 2h/t 2 montre qu une erreur sur la mesure du temps t aura plus de répercussion qu une erreur sur la hauteur h. Ils fournissent un ordre de grandeur correct. En particulier, s il s agit de mesurer une même grandeur par plusieurs méthodes, il est utile de pouvoir dire quelle est la plus précise. Au final, il est nécessaire d adapter le nombre de chiffres significatifs d une mesure à son incertitude (cf. chapitre 2). e) Exemple de calcul : célérité d une onde ultrasonore La mesure de la longueur d onde λ d une onde ultrasonore fournit le résultat : λ = 8, 630 ± 0, 018 mm. D où l incertitude relative sur λ : λ λ = 0, 018 8, 630 = 2, La notice de l émetteur de l onde ultrasonore fournit comme valeur de la fréquence f 0 = 40, 0 khz, par conséquent Hz < f 0 < Hz. L incertitude relative sur la fréquence a donc pour valeur : f 0 f 0 = 50 40, = 1, Valeur de la célérité de l onde : c = λf 0 = 345, 24 m s 1. En différentiant de façon logarithmique la relation c = λf 0, on obtient l incertitude relative puis absolue sur c : c c = λ λ + f 0 f 0 = 3, soit c = 1, 1 m s 1. D où la valeur expérimentale de la mesure de la célérité : c = 345, 2 ± 1, 1 m s 1.

10 4. Analyse statistique d une série de mesures Analyse statistique d une série de mesures L analyse statistique représente une autre alternative pour les calculs d incertitudes. Cette démarche s applique aux erreurs aléatoires. 4.1 Mesures indépendantes Des mesures sont considérées comme indépendantes si elles sont effectuées par des manipulateurs différents sur des appareillages différents (mais du même type) en suivant le même protocole. Exemple : mesure d une grandeur physique d un même objet par différents groupes de TP équipés du même type de matériel. Dans le cas contraire (manipulateurs utilisant successivement le même matériel ou manipulateur unique utilisant successivement plusieurs appareils), les mesures sont dites corrélées. 4.2 Loi gaussienne Supposons que nous disposions d un grand nombre n de mesures indépendantes x i d une même grandeur X. On note x, la moyenne arithmétique de ces mesures : n i=1 x = x i. n En l absence d erreur systématique, on estime que la moyenne x des mesures tend vers la valeur exacte x e lorsque n tend vers l infini : lim x = x e. n On note P (x) la distribution de probabilité associée à la variable aléatoire x : la quantité P (x)dx représente alors la probabilité de trouver la valeur de la mesure dans l intervalle [x; x + dx]. Dans un grand nombre de situations, la probabilité de trouver une valeur x en mesurant la grandeur X, obéit à une loi de Gauss : P (x) = 1 [ σ 2π exp (x x ] e) 2 (expression non exigible) 2σ 2 où la quantité σ est appelé écart-type quadratique moyen ; la constante 1/σ 2π permet de normaliser la loi de probabilité : P (x)dx = 1. Cette loi est très répandue car il suffit que les causes des erreurs aléatoires soient multiples et d importance comparable pour qu elle soit vérifiée.

11 11 4. Analyse statistique d une série de mesures La valeur exacte de X représente la moyenne de cette distribution de probabilité : x e = x = xp (x)dx. L écart-type quadratique moyen vérifie la relation σ = (x x e ) 2 = (x x e ) 2 P (x)dx. La probabilité qu une mesure x i tombe dans l intervalle [x e 2σ, x e + 2σ] est xe+2σ x e 2σ P (x)dx = 0, 954. Le tableau suivant donne la probabilité qu une mesure x i tombe dans un intervalle centré sur la valeur exacte x e : Intervalle de confiance Probabilité [x e σ, x e + σ] 68% [x e 1, 96σ, x e + 1, 96σ] 95% [x e 2σ, x e + 2σ] 95, 4% [x e 2, 58σ, x e + 2, 58σ] 99% [x e 3σ, x e + 3σ] 99, 7% P(x) σ 2 x e 2σ 3σ x

12 4. Analyse statistique d une série de mesures Exploitation statistique d une série de mesures Comme expérimentalement, on n a souvent qu un petit nombre n de mesures indépendantes (n variant de 5 à 20 par exemple), on n a accès ni à x e, ni à σ mais seulement à une estimation de ces grandeurs. a) Estimations de la valeur exacte et de l écart-type Les mathématiques permettent de montrer que le meilleur estimateur x de la valeur exacte x e (valeur moyenne de la distribution P (x)) est la moyenne arithmétique des n mesures indépendantes, de qualité comparable (donc après avoir écarté les mesures manifestement aberrantes, signes d un incident de manipulation) : x = x = n i=1 x i n. On admettra également que le meilleur estimateur de σ est donné par l écart-type expérimental de la série de mesure : σ n 1 = n i=1 (x i x) 2 n 1. Propriété : lim σ n 1 = σ. n Remarque : repérer σ n 1 dans la liste des fonctions pré-programmées de vos calculatrices 1. b) Intervalle de confiance (méthode de Student) Dans l hypothèse où toute erreur systématique a été écartée et où les mesures individuelles x i sont réparties selon une loi gaussienne, il est possible d approcher la valeur exacte x e de la grandeur X avec une certaine probabilité. Soit t n,p un coefficient, appelé coefficient de Student, dépendant du nombre n de mesures et du degré de probabilité souhaité (p %). La valeur exacte x e a alors une probabilité de p % de se trouver dans l intervalle défini ci-dessous, appelé intervalle de confiance : [ ] σ n 1 σ x t n,p n 1 ; x + t n,p. n n Par conséquent : X = ˆx ± x avec x = x = n i=1 x i n et x = t n,p σ n 1 n. 1 la notation de cette fonction peut changer d une calculatrice à l autre, σ n 1 est parfois noté S n ou S x

13 13 4. Analyse statistique d une série de mesures Le coefficient t n,p est tabulé en fonction du nombre de mesures n pour différents niveaux de confiance p. Par exemple, pour p = 95% et p = 99%, on a n t n,95% 4, 30 3, 18 2, 78 2, 57 2, 45 2,37 2,31 2,26 2,23 2,20 t n,99% 9, 93 5, 84 4, 60 4, 03 3, 71 3,50 3,36 3,25 3,17 3,11 n t n,95% 2,18 2,16 2,14 2,13 2,12 2,11 2,10 2,09 2,09 2,08 t n,99% 3, 05 3, 01 2,98 2,95 2,92 2,90 2,88 2,86 2,85 2,83 Limites des coefficients de Student pour les niveaux de confiance p = 95% et p = 99% : lim t n,95% = 1, 96 et lim t n,99% = 2, 58. n + n + Commentaires Pour un même nombre n de mesures indépendantes, le coefficient de Student t n,p augmente avec le niveau de confiance p souhaité. Pour un même niveau de confiance p donné, t n,p décroît lorsque n augmente. Mais les variations de t n,p avec n sont assez faibles. Par exemple, pour n 10, on a : 1, 96 t n,95% 2, 26 et 2, 58 t n,99% 3, 25. Le coefficient de Student t n,p variant assez faiblement avec n, la largeur de l intervalle de confiance, liée à la précision de la mesure, x = t n,p σ n 1 n dépend donc essentiellement du facteur n qui divise σ n Intérêt de choisir la moyenne comme estimateur de la grandeur mesurée Cas d une mesure unique. Nous avons établis que la probabilité pour qu une mesure unique x i appartienne à l intervalle [x e 1, 96σ, x e + 1, 96σ] est de 95%. Cas d une série de mesure. Pour n 20, la valeur exacte x e a une probabilité de 95% d appartenir à l intervalle [ ] σ n 1 σ x t n,95 n 1 ; x + t n,95 avec t n,95% 2. n n σ n 1 étant un bon estimateur de σ, le fait de choisir la moyenne arithmétique x comme estimateur de la grandeur mesurée permet donc de diminuer l incertitude sur la mesure d un facteur n par rapport à une mesure unique.

14 4. Analyse statistique d une série de mesures 14 Dans le cas où les coefficients de Student ne sont pas fournis, on pourra écrire le résultat d une série de mesures sous la forme (valable pour n 10) : X = ˆx ± x avec x = x = n i=1 x i n et x 2 σ n 1 n pour p 95%. 4.5 Exemple Série de mesures (n = 6) de l intensité du champ de pesanteur g (m s 2 ) : Valeur moyenne de g : g = 9, m s 2. Méthode de Student : 9, 68 ; 9, 85 ; 9, 85 ; 9, 77 ; 9, 87 ; 9, 79. σ n 1 = 7, ; t n,95% = 2, 57 pour n = 6 mesures. Incertitude sur la moyenne : g = 2, 57 Résultat de la série de mesures : Intervalle de confiance à 95% : 7, = 0, 075 m s 2. g = 9, 802 ± 0, 075 m s 2. [9, 802 0, 075 ; 9, , 075] = [9, 727 ; 9, 877]. - - FIN - -

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. . MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision

Plus en détail

Fiche technique expérimentale 3. Utilisation d un multimètre (I)

Fiche technique expérimentale 3. Utilisation d un multimètre (I) Fiche technique expérimentale 3 Utilisation d un multimètre (I) D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Dans cette fiche, on ne s intéresse qu au mesure de tension et d intensité en régime continu mais,

Plus en détail

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable

MODULE 3. Performances-seuils. Les appareils de mesure. Appareils de mesure Choix et utilisation. L élève sera capable MODULE 3. Les appareils de mesure. Performances-seuils. L élève sera capable 1. de choisir un appareil de mesure ; 2. d utiliser correctement un appareil de mesure ; 3. de mesurer courant, tension et résistance.

Plus en détail

RESULTATS de MESURES et PRECISION

RESULTATS de MESURES et PRECISION Licence de physique, parcours Physique appliquée aux Sciences de la Vie et de la Planète Année 2005-2006 RESULTATS de MESURES et PRECISION Fascicule à lire avant de commencer les Travaux Pratiques Sommaire

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

Chapitre 3 : Mesure et Incertitude.

Chapitre 3 : Mesure et Incertitude. Chapitre 3 : Mesure et ncertitude. Le scientifique qui étudie un phénomène naturel se doit de faire des mesures. Cependant, lors du traitement de ses résultats ce pose à lui la question de la précision

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales Incertitudes expérimentales F.-X. Bally et J.-M. Berroir Février 2013 Table des matières Introduction 4 1 Erreur et incertitude 4 1.1 Erreurs............................................. 4 1.1.1 Définition

Plus en détail

Mesure, précision, unités...

Mesure, précision, unités... 1. Introduction Mesure, précision, unités... La physique, science expérimentale, impose un recours à l'expérience pour élaborer, infirmer ou confirmer les théories. Mais cette démarche qui fait qu'une

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier)

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier) Lycée Clemenceau PCSI 1 (O.Granier) Présentation de l AOP Liens vers : TP-Cours AOP n 1 TP-Cours AOP n 2 TP-Cours AOP n 3 I Présentation et propriétés de l AOP : 1 Description de l AOP : Aspects historiques

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3

CALCUL SCIENTIFIQUE. 1 Erreur absolue et erreur relative 2. 2 Représentation des nombres sur ordinateur 3 MTH1504 2011-2012 CALCUL SCIENTIFIQUE Table des matières 1 Erreur absolue et erreur relative 2 2 Représentation des nombres sur ordinateur 3 3 Arithmétique flottante 4 3.1 Absorption........................................

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

TRAVAUX PRATIQUES D ELECTROTECHNIQUE

TRAVAUX PRATIQUES D ELECTROTECHNIQUE REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Abou Bekr Belkaid Tlemcen Faculté de Technologie Département Sciences et

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

TP - Cours d Électrocinétique n 1 Instrumentation en électronique

TP - Cours d Électrocinétique n 1 Instrumentation en électronique TP - Cours d Électrocinétique n 1 en électronique PCSI 01 013 I Connectique, composants passifs et appareils de mesure. 1. Câbles de connexion utilisés 1.a. Câble banane - banane Il s agit du classique

Plus en détail

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

TP : Incertitude et mesure. X = x± x

TP : Incertitude et mesure. X = x± x 1 TP : Incertitude et mesure. Sciences Physiques MP TP : Incertitude et mesure. En général, on doit donner avec le résultat d une mesure expérimentale effectuée en TP une évaluation de l incertitude de

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales Centre de Préparation Interuniversitaire à l Agrégation de Physique de Montrouge Ecole Normale Supérieure, Universités Paris 6, Paris 7, Paris 11 Année Incertitudes expérimentales F.-X. Bally et J.-M.

Plus en détail

Fractions et décimaux

Fractions et décimaux Fractions et décimaux Scénario : le pliage des bandes de papier Cette fiche n est pas un programme pédagogique. Elle a pour but de faire apercevoir la portée de l approche «pliage de bandes» et les conséquences

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

La tension et l intensité du courant électrique

La tension et l intensité du courant électrique ÉLECTRICITE 1 La tension et l intensité du courant électrique OUVERTURE Le lecteur mp3 Les élèves peuvent remarquer que ce type d indications est présent sur tous les appareils électriques. Il peut être

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Plan du document. Introduction. Lexique. Documents utilisés CHAPITRES

Plan du document. Introduction. Lexique. Documents utilisés CHAPITRES Plan du document Introduction Lexique Documents utilisés CHAPITRES Chapitre I : Vocabulaire de la métrologie I - Définitions II - La notion d erreur aléatoire III - La notion d erreur systématique IV -

Plus en détail

Chap1 : Intensité et tension.

Chap1 : Intensité et tension. Chap1 : Intensité et tension. Items Connaissances cquis ppareil de mesure de l intensité. Branchement de l appareil de mesure de l intensité. Symbole normalisé de l appareil de mesure de l intensité. Unité

Plus en détail

TP oscilloscope et GBF

TP oscilloscope et GBF TP oscilloscope et GBF Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : ce travail a pour buts de manipuler l oscilloscope et le GBF. A l issu de celui-ci, toutes les fonctions essentielles

Plus en détail

TP 1 : sources électriques

TP 1 : sources électriques Objectif : étudier différents dipôles actifs linéaires ou non linéaires. Les mots générateur et source seront considérés comme des synonymes 1 Source dipolaire linéaire 1.1 Méthode de mesure de la demie-tension

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Optimisation des périodicités d étalonnage

Optimisation des périodicités d étalonnage Optimisation des périodicités d étalonnage C. Eischen Directeur Technique AIB-Vinçotte Luxembourg Sommaire. Problématique 2. Méthodes existantes 3. Pourquoi cette méthode OPPERET? 4. Prérequis de cette

Plus en détail

UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO

UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO UTILISATION D UN MULTIMETRE ANCIEN ANALOGIQUE TYPE MX430 GL pour BRICOVIDEO Les cordons de mesure doivent être équipés de fiches double puits comme en photo ci-dessous, excepté le cordon jaune formellement

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

ALLUMAGE AUTOMATIQUE DES PHARES

ALLUMAGE AUTOMATIQUE DES PHARES Université Paul Sabatier TP Physique du Tronc Commun de CIMP Introduction Travaux Pratiques d Electronique ALLUMAGE AUTOMATIQUE DES PHARES D UNE AUTOMOBILE EN CAS D OBSCURITE L électronique est un secteur

Plus en détail

Plan. 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre

Plan. 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre LES MULTIMETRES ( VOLTMETRE, AMPEREMETRE,OHMMETRE,..) Plan 1 caractéristiques communes 2 Les multimètres analogiques 3 Les multimètres numériques 4 l ohmmètre LES MULTIMETRES ( VOLTMETRE, AMPEREMETRE,OHMMETRE,..)

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES «Génie Électronique» Session 2012 Épreuve : PHYSIQUE APPLIQUÉE Durée de l'épreuve : 4 heures Coefficient : 5 Dès que le sujet vous est

Plus en détail

ÉLECTRICITÉ - MAGNÉTISME

ÉLECTRICITÉ - MAGNÉTISME METHODE D'ÉTALONNAGE : L'accréditation COFRAC ÉTALONNAGE porte sur les appareils listés ci-dessous. L'étalonnage est réalisé suivant un programme défini conjointement. Type d'appareils Méthode A Méthode

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

TP - cours : LE MULTIMETRE

TP - cours : LE MULTIMETRE MP : TP-OU~1.DO - 1 - TP - cours : LE MULTMETRE ) Présentation et mise en garde Deux types d'appareil : - à aiguille (ou analogique), - numérique Rôle : le même appareil permet de mesurer plusieurs grandeurs

Plus en détail

La régression linéaire et ses conditions d application

La régression linéaire et ses conditions d application Nº 752 BULLETIN DE L UNION DES PHYSICIENS 353 La régression linéaire et ses conditions d application par R. JOURNEAUX GHDSO/LIREST Université Paris XI, 91400 Orsay Dans un article récent publié dans le

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

Fiche technique expérimentale 5. Notions sur l acquisition numérique

Fiche technique expérimentale 5. Notions sur l acquisition numérique Fiche technique expérimentale 5 Notions sur l acquisition numérique D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Ce bref guide traite de quelques éléments important sur l acquisition numérique des signaux

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Chap2 : Les lois des circuits.

Chap2 : Les lois des circuits. Chap2 : Les lois des circuits. Items Connaissances Acquis Loi d additivité de l intensité dans un circuit comportant une dérivation. Loi d unicité des tensions aux bornes de deux dipôles en dérivation.

Plus en détail

Optique géométrique. Compte rendu de TP

Optique géométrique. Compte rendu de TP Licence de Physique Optique géométrique Compte rendu de TP TP2 : Les lentilles minces et application : lunette astronomique B. F. D.S. P. G. M. Page 1/17 I. Rappel sur les lentilles Voir TP II. Manipulations

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

INCERTITUDES DES MESURES DE GRANDEUR

INCERTITUDES DES MESURES DE GRANDEUR INCERTITUDES DES MESURES DE GRANDEUR Vers les années 1960, le livre de physique le plus utilisé en classe de terminale S, le «Cessac et Treherne» à couverture verte et bleue, s ouvrait sur un chapitre

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

MODULE 4. Performances-seuils. Loi d Ohm Puissance Energie Effet Joule. L élève sera capable

MODULE 4. Performances-seuils. Loi d Ohm Puissance Energie Effet Joule. L élève sera capable MODLE 4 MODLE 4. Loi d Ohm. uissance. Energie. Effet Joule erformances-seuils. L élève sera capable 1. de calculer une des grandeurs physiques intervenant sur un circuit électrique élémentaire ; 2. de

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 t Séance 1 Le coupe-circuit À quoi sert un coupe-circuit dans une installation électrique? t Séance 2 L énergie électrique À quoi sert un compteur électrique? Que nous apprend

Plus en détail

B31+B32 - Lignes. Ces grandeurs dépendent de la longueur l de la ligne : ce sont des grandeurs dites "réparties".

B31+B32 - Lignes. Ces grandeurs dépendent de la longueur l de la ligne : ce sont des grandeurs dites réparties. G. Pinson - Physique Appliquée Lignes B31+B32-TP / 1 B31+B32 - Lignes But : on veut transmettre des données numériques sous forme d'impulsions binaires dans une ligne, en veillant à minimiser les perturbations

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Filtrage - Intégration - Redressement - Lissage

Filtrage - Intégration - Redressement - Lissage PCSI - Stanislas - Electrocinétique - TP N 3 - Filtrage - Intégration - Redressement - Lissage Filtrage - Intégration - Redressement - Lissage Prenez en note tout élément pouvant figurer dans un compte-rendu

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

MESURE DE LA PUISSANCE

MESURE DE LA PUISSANCE Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe

Plus en détail

TECHNIQUES DE MESURE EN HAUTE TENSION

TECHNIQUES DE MESURE EN HAUTE TENSION ours de A. Tilmatine HAPITE IX TEHNIQES DE MESE EN HATE TENSION I) VOLTMETE ELETOSTATIQE Il fonctionne suivant le principe de la force d attraction électrique F e entre deux charges. G M B P Le disque

Plus en détail

TP 6 initiation à l utilisation d un oscilloscope numérique

TP 6 initiation à l utilisation d un oscilloscope numérique TP 6 initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique Tektronix TDS (210 ou 1001B) bicourbe,

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Département de physique

Département de physique Département de physique Etude de la densité spectrale de puissance du bruit thermique dans une résistance Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

Plus en détail

CONCOURS POUR LE RECRUTEMENT DE :

CONCOURS POUR LE RECRUTEMENT DE : CONCOURS POUR LE RECRUTEMENT DE : Techniciens supérieurs de la météorologie de première classe, spécialité «instruments et installations» (concours interne et externe). ***************** SESSION 205 *****************

Plus en détail

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image?

Quelles sont les caractéristiques de l image d un journal? Pourquoi l œil ne distingue-t-il pas la trame de l image? TP spécialité élec. N 1Conversion d une image en signal électrique. Principe de la TV. 1 / 7 I- Perception des images. 1)- La perception. - Une image est destinée à être vue par l œil. La prise de vue,

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Cours d électrocinétique EC4-Régime sinusoïdal

Cours d électrocinétique EC4-Régime sinusoïdal Cours d électrocinétique EC4-Régime sinusoïdal 1 Introduction Dans les premiers chapitres d électrocinétique, nous avons travaillé sur les régimes transitoires des circuits comportant conducteur ohmique,

Plus en détail

1 Utilisation d un pont réflectomètre et d un analyseur de spectre à balayage

1 Utilisation d un pont réflectomètre et d un analyseur de spectre à balayage Caractérisation haute fréquences de composants passifs JULIEN FLAMANT julien.flamant@ens-cachan.fr SIMON SELLEM simon.sellem@ens-cachan.fr Motivation Le domaine des «hautes fréquences» est le domaine privilégié

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés.

3- Mesurer l intensité du courant dans un circuit Faire le schéma du montage en utilisant les symboles normalisés. 1 1 Connaître la grandeur et l unité de l intensité électrique. Faire un schéma d un circuit électrique et indiquer le sens du courant 1- Sens du courant et Nature du courant De nombreuses expériences

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

L C D T P I è r e B C P a g e 1. TP 3: Oscilloscope

L C D T P I è r e B C P a g e 1. TP 3: Oscilloscope L C D T P I è r e B C P a g e 1 TP 3: Oscilloscope L C D T P I è r e B C P a g e 2 Partie I : familiarisation avec l oscilloscope 1. Description et mise en marche Utilité : Un oscilloscope permet d analyser

Plus en détail

GENERALITES SUR LES APPAREILS DE MESURE

GENERALITES SUR LES APPAREILS DE MESURE Chapitre 2 GENERALITES SUR LES APPAREILS DE MESURE I- LES APPAREILS DE MESURE ANALOGIQUES: Un appareil de mesure comprend généralement un ou plusieurs inducteurs fixes ( aimant permanant ou électroaimant)

Plus en détail

Bases mathématiques pour l économie et la gestion

Bases mathématiques pour l économie et la gestion Bases mathématiques pour l économie et la gestion Bases mathématiques Pour l économie et la gestion - Table des matières PREMIERE PARTIE : QUELQUES OUTILS Chapitre : Traitement de systèmes d'équations..

Plus en détail

Observer TP Ondes CELERITE DES ONDES SONORES

Observer TP Ondes CELERITE DES ONDES SONORES OBJECTIFS CELERITE DES ONDES SONORES Mesurer la célérité des ondes sonores dans l'air, à température ambiante. Utilisation d un oscilloscope en mode numérique Exploitation de l acquisition par régressif.

Plus en détail

ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER. 1.1 Représentation d un signal sinusoïdal

ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER. 1.1 Représentation d un signal sinusoïdal Annexe Fourier I ANNEXE ANALYSE DE FOURIER 1. REPRESENTATION DE FOURIER 1.1 Représentation d un signal sinusoïdal On peut représenter un signal sinusoïdal de la forme s(t) = s 0 cos"t = s 0 cos(2#f 0 t)

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Titre : Etude des lois de l intensité électrique Niveau : 4ème

Titre : Etude des lois de l intensité électrique Niveau : 4ème Titre : Etude des lois de l intensité électrique Niveau : 4ème Type d activité TP «virtuel» à faire à la maison Connaissances : - L intensité du courant est la même en tout point d un circuit en série.

Plus en détail

SOURCE DE TENSION ET SOURCE DE COURANT

SOURCE DE TENSION ET SOURCE DE COURANT 59 E1 SOUCE DE TENSON ET SOUCE DE COUNT.- BUT DE L'EXPEENCE Les sources de tension et de courant sont des modèles que l'on ne rencontre pas dans la nature. Néanmoins, toute source d'énergie électrique

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

Visualiser une tension variant dans le temps (correction)

Visualiser une tension variant dans le temps (correction) Visualiser une tension variant dans le temps (correction) La maîtrise de la visualisation temporelle de tensions est capitale en sciences expérimentale : la plupart des capteurs utilisés génèrent un signal

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Calcul Formel et Numérique

Calcul Formel et Numérique Cours de calcul numérique p. 1/67 Calcul Formel et Numérique INFO-F-205 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de calcul numérique p.

Plus en détail

NOTICE DE LOGICIEL OHMNIBUS

NOTICE DE LOGICIEL OHMNIBUS NOTICE DE LOGICIEL OHMNIBUS DEPARTEMENT SCIENCES Mars 2005 OHMNIBUS I CHARGER L EXERCICE «DOC» A PARTIR DE LA FENETRE D ENTREE DANS LE LOGICIEL Exercice sélectionné par un click de souris et qui apparaît

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail