Statistiques Descriptives à une dimension

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques Descriptives à une dimension"

Transcription

1 I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des méthodes numériques permettant d analyser et d interpréter les informations pour en tirer des conclusions. Mathématiquement, une statistique est une application X d un ensemble Ω vers un autre ensemble X : Ω C ω X(ω) Exemple : On étudie la situation familiale des travailleurs du département d informatique. Alors : Ω est l ensemble des travailleurs du département d informatique, C = {célibataire, marié, divorcé, veuf }, X(ω) = la situation familiale du travailleur ω. 2. Vocabulaire statistique Population : l ensemble d éléments assez nombreux au sujet desquelles on désire tirer des conclusions. La population doit être définie en fonction de l objectif de l étude. Supposons qu on décide de mener une enquête sur l évolution de la consommation de tabac. Veut -on étendre les conclusions à la population algérienne? mondiale? S intéresse-t-on à toutes les catégories de la population? Seulement aux hommes? Cible-t -on seulement les jeunes? Les moins de 15 ans? Dans ce cas, les conclusions de l enquête ne pourront absolument pas être étendues à une autre population. Individu : c est l unité statistique, élément de la population, sur lequel on fait l étude. Un individu peut être une personne, un animal ou un objet. Echantillon : une partie représentative de la population Il est généralement impossible de réunir l'information relative à tous les individus de la population. Parmi les raisons qui justifient un échantillonnage plutôt que de travailler sur la globalité de la population : - les données à collecter sont illimitées. - les ressources (humaines, financières,...) disponibles sont limitées. - l'expérimentation peut être destructive. Caractère : s est l aspect particulier et commun que l on se propose d étudier chez les individus. En statistiques descriptives à une dimension, on se limite à étudier un seul caractère pour les individus. Un caractère peut être qualitatif ou quantitatif. Qualitatif : non mesurable, il décrit un état. En général, il répond à la question : Comment...? Exemples : la situation familiale, la couleur des yeux, la citoyenneté, le sexe, la langue maternelle Quantitatif : mesurable, lorsque les données sont numériques. En général, il répond à la question : Combien...? Exemples : nombre d enfants, nombre de langues parlées, la taille, le poids, le salaire, Un caractère, qu il soit qualitatif ou quantitatif, prend différentes valeurs appelées modalités. Un caractère qualitatif est dit ordinal si les modalités peuvent être ordonnées sinon on dira qu il est nominal. Variable statistique : un caractère quantitatif est appelé aussi variable statistique (v.s.) 1

2 Une variable statistique peut être discrète ou continue. Une variable discrète est une variable qui ne prend que des valeurs isolées. Une variable continue est une variable qui peut prendre n importe quelle valeur dans un intervalle d IR. Exemples de v. s. discrètes : nombre d enfants, nombre de langues parlées,,, Exemples de v. s. continues : Les mesures de longueur (largeur, épaisseur ), le temps, le poids (la masse) et les mesures qui en dépendent (surface, volume, vitesse, densité.), la taille, le salaire Si la v. s. est continue, on regroupe les données dans des classes qui sont des intervalles deux à deux disjoints et dont la réunion englobe l ensembles des observations. Chaque classe est considérée comme étant une seule modalité. Soit la statistique X : Ω C ω i X(ω i ) = x i On appelle fréquence partielle ( ou effectif partiel) de la modalité x i X(Ω) C, le cardinal de X -1 ({x i }) noté n i. C est le nombre d individus qui ont la même modalité x i. Exemple : Prenons l'exemple de situation familiale des travailleurs du département d informatique. x i = X(ω i ) = la situation familiale du travailleur ω i. Si on a 100 travailleurs au département d informatique, on obtient une série statistique de 100 valeurs. Marié, marié, célibataire, marié, marié, marié, marié, célibataire, célibataire, célibataire, célibataire, marié, marié, veuf, marié, marié, célibataire,.. Se contenter d'énumérer les 100 valeurs, l'information ne sera pas pratique. Une façon commode de représenter les résultats consiste à créer une distribution statistique des fréquences. On reprend l'ensemble des modalités observées (les situations familiales) et pour chacune, on donne le nombre n i d individus qui ont cette situation. x i (modalités) n i marié n 1 célibataire n 2 divorcé n 3 veuf n =100 Pour un caractère qualitatif, les modalités sont classées selon l ordre décroissant des fréquences. On a : = N = effectif total On peut établir la distribution de fréquences relatives partielles f i = dans laquelle chaque fréquence est exprimée en proportion (comprise entre 0 et 1) ou en pourcentage (compris entre 0 et 100) de l'effectif. = 1 Si le caractère est quantitatif ou qualitatif ordinal, on définit la fréquence cumulée n ic de la modalité x i par n = = n + n + + n et la fréquence relative cumulée F i par F = 2

3 Chapitre I 3. Représentation d une série statistique On a à faire à une série statistique expérimentale, les données sont brutes, on doit y mettre de l ordre afin de les présenter d une façon claire. Pour cela on dispose de tableau statistique ou de graphiques 3.1 Représentation dans un tableau : le tableau statistique comporte le titre, le corps et la source des informations. Le titre est ainsi libellé : répartition (ou distribution) de tels individus selon tel caractère. En bas du tableau on indique la source d où proviennent les informations, on peut ajouter la date et le lieu. Le corps du tableau: pour une série statistique qualitative, il comporte 3 colonnes : on met les modalités x i dans la 1 ère, dans la seconde les fréquences n i et dans la 3 ième les fréquences relatives en pourcentages (100 f i ) Pour une série statistique quantitative continue, il faut définir au préalable le nombre de classes et leur positionnement. Certaines règles sont utiles : Les classes ( [a 1, a 2 [, [a 2, a 3 [,..., [a k, a k+1 [ ) sont des ensembles mutuellement disjoints et leur réunion englobe l ensemble des données. Le nombre de classes k ne doit être ni trop petit ni trop grand et doit dépendre du nombre de données N : 5 k 15 Le nombre moyen de données par classe = N/k 5 S il est possible, pour des raisons pratiques, on prend des classes de même amplitudes (longueur) e Dans ce cas e = = (! "#$%! "& ) et donc k = ) On mentionne dans la première colonne les classes, les autres colonnes sont les mêmes que pour une série discrète. On peut ajouter une colonne pour les centres des classes. 3.2 Représentation graphique Représentation d une série qualitative La représentation par secteurs: chaque modalité est représentée par un secteur (une portion) du disque. La surface (et donc l angle au centre) du secteur est proportionnelle à la fréquence de la modalité. α i = 360 x f i La représentation par tuyaux d orgues: les modalités sont représentées sur un repère cartésien par des rectangles de base constante et des hauteurs proportionnelles aux fréquences 3

4 Représentation d une série quantitative : Il existe deux types de représentations : Le diagramme différentiel: il correspond à la représentation par rapport aux fréquences partielles (ou fréquences relatives partielles ). Le diagramme intégral: il correspond à la représentation par rapport aux fréquences cumulées (ou fréquences relatives cumulées ). Le diagramme différentiel d une série discrète est un diagramme en bâtons. Sur un repère cartésien, de chaque point de coordonnées (x i, 0) est tracé un bâton de longueur proportionnelle à n i ou f i Le diagramme différentiel d une série continue est appelé histogramme : c est la figure obtenue en traçant de chaque base [a i, a i+1 [ un rectangle de surface ( et non pas la hauteur) proportionnelle à n i ou f i Histogramme Diagramme en bâtons Le diagramme intégral (ou courbe cumulative) pour une série discrète, est la représentation graphique de la fonction de répartition définie par : F(x) = f = f + f + + f si i x < C est un graphique en escalier. Le diagramme intégral pour une série continue: sur un repère cartésien, on représente chaque classe [a i, a i+1 [ par un point de coordonnées ( a i+1, n ic ). On joint les points successifs par des segments de droites pour obtenir le polygone des fréquences cumulées. On polit ensuite ce polygone pour obtenir la courbe cumulative (le diagramme intégral) Diag. intégral (cas discret) Diag. intégral (cas continu)

5 . Paramètres de tendance centrale pour une série statistique à caractère quantitatif Le mode (M o ) : c est la valeur de la vs qui a la plus grande fréquence partielle. Si la vs est continue, on définit la classe modale. C est la classe qui a la plus grande fréquence moyenne par unité d intervalle. On a M o = a i où a i : borne inférieure de la classe modale 3 e i : amplitude de la classe modale 1 : fréquence de la classe modale - fréquence de la classe précédente 2 : fréquence de la classe modale - fréquence de la classe suivante La médiane (M e ) : c est la valeur de la vs qui partage en 2 parties égales les observations constituants la série préalablement rangées par ordre croissant ou décroissant Pour une série statistique discrète x 1, x 2,...,x N où N est l effectif total Si N est impair : 5 6 = Si N est pair : 5 6 = ( ) Pour une série statistique continue, on détermine la classe médiane. La i ème classe [a i,a i+1 [ est la classe médiane si F i 1 1/2 F i ou bien 5 6 = : + ; 2 (%)> = : + 2 F % f Quartiles, quintiles, déciles et centiles La médiane est une valeur telle que 50% des données sont plus petites qu elle i.e. elle partage la distribution en 2 parties égales. On peut généraliser cette idée et partager la distribution des fréquences en quatre parties égales on obtient les 3 quartiles Q 1, Q 2 et Q 3. Si on partage la distribution des fréquences en cinq parties égales on obtient les quintiles q 1, q 2, q 3 et q. Si on partage la distribution des fréquences en dix parties égales on obtient les 9 déciles d 1, d 2,...,d 9. Si on partage la distribution des fréquences en cent parties égales on obtient les 99 centiles c 1, c 2,...,c 99. Le centile d ordre α, c α, est défini par : - Pour une vs discrète? Si est entier alors c α = (xab + xab ) 2CC 2CC? Si n est pas entier, c α est la donnée x i dont le rang i est l entier qui suit?. Pour une vs continue, on détermine la classe [a i, a i+1 [ contenant c α. C est la 1ère classe où la fréquence cumulée atteint ou dépasse? c E = a + 5 AB 2CC % (G2) e ou c E = a + B 2CC %H G2 I e

6 Les quartiles sont les 25 ème, 50 ème et 75 ème centiles. Q 1 = c 25, Q 2 =c 50 et Q 3 = c 75 Les quintiles sont les 20 ème, 0 ème, 60 ème et 80 ème centiles. q 1 = c 20, q 2 =c 0, q 3 = c 60 et q = c 80 Les déciles sont les 10 ème, 20 ème,..., 90 ème centiles. d 1 = c 10, d 2 =c 20,..., d 9 = c 90 La moyenne arithmétique ( X ) La moyenne arithmétique est la valeur que devraient avoir toutes les données pour que leur somme totale soit inchangée. 1 X = f x = N n x Pour une vs continue, les x i sont remplacées par les centres des classes c i. La moyenne géométrique (G) : La moyenne géométrique est la valeur que devraient avoir toutes les données pour que leur produit soit inchangé. A G = Mx 2 x 3 x O Exemple : une quantité positive Q 0 évolue de t 1 % une première année puis t 2 % l année suivante. Quel est le taux moyen annuel d évolution? Soit P = 1 + Q 2 et P = 1 + Q 3 Alors après les 2 années, la quantité est Q 2 = c 1 c 2 Q 0 c 1 et c 2 sont appelés les coefficients multiplicateurs des 2 années. Soit t le taux moyen annuel et c le coefficient multiplicateur correspondant à t On a alors Q 2 = c 2 Q 0 d où c = c c et comme c = 1 + S alors t = (c - 1)100 La moyenne harmonique (H): H = ; Exemple : si un train fait un trajet aller-retour entre 2 villes à la vitesse constante V 1 pour l aller et la vitesse constante V 2 pour le retour. La vitesse moyenne du trajet est V moy = = 2 ]2 2 = H c est la moyenne harmonique ]3 T = T Q UVVWX Q \ XWYZ[X ]2 \ ]3 6

7 5. Paramètres de dispersion L étendue (W) : W = x max - x min La variance V(X) : c est la moyenne arithmétique des carrés des écarts à la moyenne. L écart-type V(X) = 1 N n (x X) = 1 N n x σ X =_`(a) X L écart absolu: E c = n dx Xd Le coefficient de variation cv = e f g Si cv > 0.15 (ou 15%) alors la série est dispersée Le coefficient de dissymétrie : CD = (g %h W) i e f Si CD > 0 alors la distribution est étalée vers la droite. L écart interquartile : EIQ = Q 3 - Q 1 L écart semi-interquartile est : ESIQ = j k% j 2 6. Changement de variable Soit Y une nouvelle variable transformée de X Y = g%m où a et b sont 2 constantes et a 0 c On a alors X = a Y + b et V(X)= a 2 V(Y) Si a et b sont bien choisis alors les calculs de Y et V(Y) sont plus faciles que les calculs directs de X et V(X). En pratique, on prendra a = pgcd (x i ) et b = le mode si la vs est discrète Si la vs est continue, on prendra a = pgcd (e i ) et b = le centre de la clase modale 7

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

Chacune des valeurs d une variable en est une modalité particulière.

Chacune des valeurs d une variable en est une modalité particulière. Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant

Plus en détail

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013 ISCID-CO - PRÉPA 1ère année STATISTIQUES ET PROBABILITÉS Université du Littoral - Côte d Opale Laurent SMOCH Janvier 2013 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2?

16. Comment introduire les valeurs prises par la variable SPORT pour les 30 premiers sujets introduits dans L2? T.P. 5 partie 1 Variable ordinale Calcul manuel de quantiles Utilisation des fonctions intégrées de la TI-84 Utilisation du programme D1 (Corrigé pour 30 cas) V. Prise en compte de 30 cas (pour éviter

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3 Cours de statistique descriptive 1. Analyse univariée Support de cours destiné aux étudiants de la licence MOMR : Université Charles-de-Gaulle Lille 3 UFR MSES O. Torrès Année universitaire 007-8 Version

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

Corrigé des exercices

Corrigé des exercices THEME : STATISTIQUES Corrigé des exercices Exercice n : Détermine la valeur médiane des listes de valeurs suivantes : a) 6 8 6 9,5 8 7,5 b) 6,5,5 9 9,5 c) 5, 9,7 5, 8,5 50, 9, 5,8 d) 5, 7 9,6, 6,6 9,,5

Plus en détail

Chapitre 2 Les graphiques

Chapitre 2 Les graphiques Chapitre Les graphiques. Généralités C est la partie des statistiques la moins souvent oubliée dans l enseignement secondaire car elle mobilise la notion de proportionnalité sous ses différentes formes.

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Arrondir à la troisième décimale

Arrondir à la troisième décimale Université Sidi Mohamed Ben Abdellah Faculté des sciences Juridiques, Economiques et Sociales - Fès- Année Universitaire 2004/2005 Filière: Sciences Economiques et Gestion S2 Module: Méthodes quantitatives

Plus en détail

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

Notes de cours de Mathématiques en première ES/L

Notes de cours de Mathématiques en première ES/L Notes de cours de Mathématiques en première ES/L O. Lader 1 Table des matières 1 Pourcentages, taux d évolution (4S) 3 1.1 Évolution........................................... 3 2 Fonctions du second degré

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale :

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale : Variables : samedi 14 novembre 2009 12:54 1. Quelques Exemples : C'est une caractéristique ou un facteur susceptible de prendre des valeurs différentes selon les individus. Exemples : o Couleur des cheveux

Plus en détail

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Chapitre 1 : UE4 : Biostatistiques Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Professeur Philippe CINQUIN Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Outils statistiques. Notes de cours.

Outils statistiques. Notes de cours. 1 Outils statistiques Notes de cours. Clotilde Fermanian Françoise Lucas Année 2010 2011 L2-L3 Université Paris 12 Val de Marne. 2 Avertissement : Ce texte constitue des notes qui couvrent ce qui a été

Plus en détail

Première L juin 2008 A B C D E F G

Première L juin 2008 A B C D E F G Première L juin 2008 Liban 1. Exercice 1 (10 points) On fournit ci-dessous un tableau statistique relatif aux accidents de la route avec des piétons en France. Ce tableau est obtenu à l'aide d'un tableur,

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

PROGRAMMES DE MATHEMATIQUES

PROGRAMMES DE MATHEMATIQUES RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L ÉDUCATION & DE LA FORMATION DIRECTION GÉNÉRALE DU CYCLE PREPARATOIRE & DE L'ENSEIGNEMENT SECONDAIRE Direction de la Pédagogie & des Normes Du cycle préparatoire et

Plus en détail

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

TD d exercices statistiques et pourcentages.

TD d exercices statistiques et pourcentages. TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840 Première L Statistiques Cours 1. Définitions 1 2. Données Gaussiennes 5 3. Médiane et quartiles 6 4. Diagramme en boîte 9 5. Exercices corrigés 12 1. Définitions Une série statistique est la donnée d objets

Plus en détail

Introduction à la statistique descriptive

Introduction à la statistique descriptive Chapitre chapitre 1 Introduction à la statistique descriptive Les méthodes de la statistique descriptive (statistique déductive) permettent de mener des études à partir de données exhaustives, c est-à-dire

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Statistiques. Objectifs du chapitre. Énigme du chapitre.

Statistiques. Objectifs du chapitre. Énigme du chapitre. Statistiques C H A P I T R E 2 Énigme du chapitre. Objectifs du chapitre. Proposer, si possible, une série de 9 valeurs telle que sa moyenne est égale à son premier quartile et son étendue soit égale à

Plus en détail

Cours de mathématiques Première ES/L

Cours de mathématiques Première ES/L Cours de mathématiques Première ES/L Chapitre 1 Pourcentages...3 I Proportions...3 II Taux d'évolution...3 a) Détermination d'un taux d'évolution...3 b) Appliquer un taux d'évolution...4 III Taux réciproque...4

Plus en détail

Mathématiques Secondes

Mathématiques Secondes Mathématiques Secondes 2 Table des matières 0 Algorithmique 5 1 Repérage 9 2 Équations et Inéquations du premier degré 13 3 Géométrie dans l espace 17 4 Généralités sur les fonctions 19 5 Statistiques

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Exercices de révision pour l examen 2

Exercices de révision pour l examen 2 Exercices de révision pour l examen 2 1) Lors d une étude sur la rainette aux yeux rouges (une grenouille vivant au sud du Mexique), nous avons observé un échantillon de 150 grenouilles pour mesurer la

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Année universitaire 2012-2013. Université de Toulouse Le Mirail LICENCE 1 DE PSYCHOLOGIE. PY0106X - Statistique Descriptive. Exercices de Statistique

Année universitaire 2012-2013. Université de Toulouse Le Mirail LICENCE 1 DE PSYCHOLOGIE. PY0106X - Statistique Descriptive. Exercices de Statistique Année universitaire 2012-2013 Université de Toulouse Le Mirail LICENCE 1 DE PSYCHOLOGIE PY0106X - Statistique Descriptive Exercices de Statistique Frédéric Ferraty 2 Table des matières 1 De l enquête aux

Plus en détail

Étendue, moyenne, médiane

Étendue, moyenne, médiane Étendue, moyenne, médiane 1 Climat Ce tableau compare les températures mensuelles moyennes (en C) au cours d'une année dans deux villes Alpha (A) et Gamma (G). A 6 9 1 10 11 19 24 28 21 10 4 3 G 5 7 9

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique Centre de Recherche sur l'information Scientifique et Technique Post graduation spécialisée en ligne Option Information Scientifique et Technique Module Recueil et Traitement Statistique des Données: Introduction

Plus en détail

Cours de statistique descriptive

Cours de statistique descriptive Cours de statistique descriptive Séance 1 : Les caractères et la mise en forme des données Lætitia Perrier Bruslé Cours de statistique descriptive Les statistiques et la géographie La géographie est une

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Résumé du Cours de Statistique Descriptive. Yves Tillé

Résumé du Cours de Statistique Descriptive. Yves Tillé Résumé du Cours de Statistique Descriptive Yves Tillé 15 décembre 2010 2 Objectif et moyens Objectifs du cours Apprendre les principales techniques de statistique descriptive univariée et bivariée. Être

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Le traitement des données

Le traitement des données Exploitation analyse et valorisation des données issues d une enquête de population IFSI Carcassonne, Octobre 2015 Elodie Lagneaux, directrice CODES11 Le traitement des données 1 Définition Le traitement

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Une année de Mathématiques en classe de Seconde

Une année de Mathématiques en classe de Seconde Une année de Mathématiques en classe de Seconde Freddy Mérit Année scolaire 01-013 Ce manuel, à destination des élèves de Seconde, a été en partie réalisé à partir de la consultation des ouvrages suivants

Plus en détail

MATHÉMATIQUES. Mat-4104

MATHÉMATIQUES. Mat-4104 MATHÉMATIQUES Pré-test D Mat-404 Questionnaire e pas écrire sur le questionnaire Préparé par : M. GHELLACHE Mai 009 Questionnaire Page / 0 Exercice ) En justifiant votre réponse, dites quel type d étude

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html MDEM22E - Cours et TD de statistiques descriptives à partir de données d enquête Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html Objectif du

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail