Chapitre 2 Le problème de l unicité des solutions

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 Le problème de l unicité des solutions"

Transcription

1 Université Joseph Fourier UE MAT 127 Mathématiques année Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y) admettant 2 solutions distinctes pour une même donnée initiale, l existence et l unicité de solutions de l équation de Malthus et de l équation logistique y = ay by 2 ; la résolution explicite de l équation logistique. le théorème général d existence et d unicité pour une équation différentielle y = f(t,y), lorsque f est assez régulière. l étude qualitative des solutions de l équation autonome y = f(y). les isoclines. 1 Le problème et quelques réponses : 1.1 Un exemple Montrer que l équation différentielle : y = 3 ( y 2) 1/3 a 2 solutions différentes ȳ : t 0 et ỹ : t t 3 correspondant à la même donnée initiale ȳ(0) = ỹ(0) = 0. Faire une représentation graphique de ces deux solutions. Y-a-t-il une unique solution y de donnée initiale y(0) = 0? 1.2 Unicité dans la loi de Malthus : Etant donnée une constante non nulle a, considérons l équation différentielle : y = ay (1) ce qui signifie qu une fonction y est solution de cette équation différentielle si et seulement si, pour toute valeur t pour laquelle y(t) est définie, y est dérivable et vérifie y (t) = ay(t). a) Soit t y(t) une solution de cette équation. Fixons-nous un instant initial de référence t 0 et posons z(t) = y(t)e a(t t 0). (i) Montrer que y est une solution de l équation différentielle (1) si et seulement si z est une solution de l équation différentielle z = 0 et que y(t) est définie au point t dès que z(t) est définie au même point. 1

2 (ii) En déduire que z et y sont définies sur R tout entier. Calculer z(t) et y(t) pout tout t en fonction de la valeur y(t 0 ). b) Montrer que 2 solutions ȳ et ỹ de l équation différentielle (1) qui se croisent (i. e. telles qu il existe une valeur t 1 telle que ȳ(t 1 ) = ỹ(t 1 )) coïncident pour tout t. 1.3 Existence et unicité dans la loi logistique : Etant données des constantes strictement positives a et b, considérons l équation différentielle : y = ay by 2 (2) ce qui signifie qu une fonction y est solution de cette équation différentielle si et seulement si, pour toute valeur t pour laquelle y(t) est définie, y est dérivable et vérifie y (t) = ay(t) by(t) 2. Une expression agréable de l équation est y = ay(1 b a y) = ay(1 y K ) (3) où on pose K = a b. On appelle K la capacité d accueil, et on verra pourquoi dans la suite. Problème 1) Montrer que les fonctions constantes ȳ et ỹ, définies par ȳ(t) = K et ỹ(t) = 0 pour tout t, sont les seules solutions constantes de l équation différentielle (2) définies sur R tout entier. Dans la suite nous les appelerons solutions stationnaires de l équation différentielle (2). Cherchons d autres solutions de (2), i.e. non constantes. Commençons par chercher les solutions y(t) satisfaisant y(t) 0,K, pour tout t D y où D y R est un intervalle sur lequel y(t) est défini. Nous verrons à la fin que les solutions non constantes sont nécessairement de cette forme, i.e. qu elles ne peuvent pas prendre la valeur 0 ou K. Pour simplifier les calculs, on pose x(t) = y(t) N. 2) Montrer que y(t) est solution de (3) sur un intervalle D si et seulement si x(t) est solution de x = ax(1 x). (4) 3) On suppose que x(t) 0,1 sur D. Montrer que (4) équivaut à x x + x 1 x = a. 4) Fixons un instant initial quelconque t 0 D et notons x 0 = x(t 0 ). Déduire de c) par intégration que x(t) est solution de (4) si et seulement si x(t) 1 x(t) = x 0 1 x 0 e a(t t 0 ) puis que ceci équivaut à x(t) = (x 0 1 1)e a(t t 0) 2

3 Indication : On rappelle que (ln u ) = u u. Attention, il y a un passage délicat lorsqu on veut enlever les valeurs absolues. 5) Pour x 0 0,1 et t 0 R, posons X(t) := (x 0 1 1)e a(t t 0) (5) (i) Calculer l intervalle de définition 1 D X de X(t) contenant t 0, en fonction de x 0 et t 0 (il y aura à considérer les cas x 0 < 0, x 0 (0,1), x 0 > 1). (ii) Montrer que X(t) est une solution de (4), satisfait X(t 0 ) = x 0 et X(t) 0,1 pour tout t D X. (iii) Faire les tableaux de variation de X selon les cas x 0 < 0, x 0 (0,1), x 0 > 1. (iv) Dessiner le graphe de X(t) selon diverses valeurs de x 0. On va voir maintenant que cette solution est maximale, au sens suivant : 6) Soit x(t) une solution de (4), définie sur un intervalle D et satisfaisant x(t) 0,1 sur D. On prend t 0 D et on pose x(t 0 ) = x 0. Montrer que D D X et que x(t) = X(t) sur D, où X est définie par (5). Indication : On pourra raisonner par contradiction, en supposant D D X, et ne traiter que le x 0 > 1, le cas x 0 < 1 étant similaire et sans pertinence biologique. Il reste à traiter le cas des solutions x(t) non constantes quelconques, i.e. où on ne suppose pas a priori que x(t) 0,1. Comme déjà dit, ce sont en fait les mêmes que ci-dessus. 7) Soit x(t) une solution non constante de (4), définie sur un intervalle D. (i) Montrer qu il existe t 0 D tel que x(t 0 ) 0,1. Indication : on pourra utiliser le théorème des valeurs intermédiaires. On pose x 0 = x(t 0 ). Il s agit de montrer que, comme précédement, D D X et que x(t) = X(t) sur D, où X est définie par (5). On peut supposer qu il existe t 1 D tel que x(t 1 ) {0,1} (sinon on a la conclusion par la question 6)). (ii) Montrer qu il existe un intervalle ]α,β[ D, contenant t 0, tel que x(t) 0,1 sur ]α,β[, mais tel que (1) α est fini et x(α) {0,1}, ou (2) β est fini et x(β) {0,1} (il n est pas exclu que α et β soient finis) (iii) Montrer que ]α,β[ D X et déduire de l expression de X(t) une contradiction. 8) Déduire des questions précédentes que pour toute donnée initiale y 0 R, il existe une unique solution maximale y(t) de (2), d intervalle de définition D et que - si y 0 {0,K}, alors D = R et y(t) = y 0 pour tout t. 1 le plus grand intervalle surquel X(t) est définie et dérivable 3

4 - si y 0 / {0,K}, avec K y(t) = 1 + ( K y 0 1)e a(t t 0) D = ],t 0 + ln(1 K y 0 )[, si y 0 < 0 D = R, si y 0 ]0,K[ D = ]t 0 + ln(1 K y 0 ),+ [, si y 0 > K. Tracer le graphe des solutions, selon x 0. Il ressort de l étude précédente que deux solutions maximales qui se croisent (i.e. y 1 (t) et y 2 (t) telles qu il existe t 1 avec y(t 1 ) = y(t 2 )) coincident (i.e y 1 (t) = y 2 (t) pour tout t). En particulier une solution stationnaire et une solution non stationnaire ne se croisent jamais. On note aussi que, si y 0 0, alors y(t) tend vers K lorsque t vers +. 2 Un peu de cours : comment généraliser cette démarche à d autres équations différentielles? A quoi sert un théorème d unicité? Définition 2.1 Soit f(t,x) une fonction de R R dans R; considérons l équation différentielle 2 : y = f(t,y) (6) Comme dans les exercices précédents, on cherche à prouver l existence et l unicité de la solution d une équation différentielle lorsqu on fixe sa condition initiale. Théorème 2.2 (Cauchy-Lipschitz) Soit f(t, x) une fonction de R R dans R; considérons l équation différentielle : y = f(t,y) (7) Si f est continues, et si les dérivées partielles f x existent3 sur R R et sont continues, alors, à chaque choix de l instant initial t 0 R et de la valeur initiale y 0 R, correspond une unique solution t y(t) de l équation différentielle (7) qui vérifie la condition initiale y(t 0 ) = y 0 ; l intervalle maximal sur lequel cette solution est définie (et dérivable) est de la forme I y0 = ]α, β [, où α et β dépendent 4 de t 0 et de y 0. t et f 2 Ceci signifie qu une fonction y est solution de l équation différentielle (6) ou (7) si et seulement si, pour toute valeur t pour laquelle y(t) est définie, y est dérivable et vérifie y (t) = f(t, y(t)). 3 On rappelle que f (t0, x0) est la dérivée partielle de f par rapport à t en (t0, x0), c est-à-dire la dérivée usuelle en t0 t de la fonction d une variable t f(t, x 0), où x 0 est fixé. De même, f (t0, x0) est la dérivée usuelle en x0 de x f(t0, x) x où t 0 est fixée 4 Ici α peut éventuellement prendre la valeur (quand la solution est définie sur l intervalle ], β [) et β peut éventuellement prendre la valeur + (quand la solution est définie sur l intervalle ] α, + [). Lorsque la solution est définie sur R entier, on a α = et β = +. 4

5 Il n existe pas de méthode pour trouver une solution explicite de (2.2) en toute généralité. C est pourquoi nous allons nous intéresser à la situation plus simple où l équation différentielle est de la forme y = f(y) (8) c est-à-dire lorsque la fonction f(t, x) ne dépend en fait pas de t, et qu on peut écrire f(t, x) = f(x). Une telle équation différentielle est dite autonome. En effet, on peut avoir dans ce cas une très bonne idée du comportement des solutions, même sans formule explicite pour y(t). Une étape clé est d identifier les solutions stationnaires et les positions d équilibre. Définition 2.3 Une solution stationnaire est une solution constante de (8). La valeur de cette constante est la position d équilibre correspondante. Ainsi, les différentes positions d équilibre de l équation différentielle (8) sont les zéros de la fonction f, c est-à-dire les valeurs b i telles que f(b i ) = 0. On utilise le théorème 2.2 pour démontrer les corollaires suivants : Corollaire 2.4 (Des solutions différentes ne se croisent pas) Si f est dérivable en tout point de R et de dérivée continue, deux solutions différentes de l équation différentielle : y = f(y) (9) ne se croisent jamais 5 ; d autre part une solution ne rencontre jamais une position d équilibre (sauf s il s agit d une solution stationnaire) ; enfin deux solutions qui prennent la même valeur diffèrent par une translation du facteur temps 6. Notons que dans le dernier cas, les graphes de t x(t) et t y(t) différent par une translation sur l axe (Ot). Ils sont disjoints, ou coincident si T = 0. Corollaire 2.5 (Stricte monotonie et convergence des solutions non stationnaires) Soit f dérivable en tout point de R et de dérivée continue, et y(t) une solution de l équation différentielle y = f(y), (10) définie sur un intervalle maximal ]α, β[. On suppose que y n est pas une solution stationnaire. Alors y est strictement monotone, y(]α,β[) =]a,b[, avec a pouvant être égal à, et b égal à +, et on a de plus : (i) Si y strictement croissante, ce qui équivaut à f > 0 sur ]α, β[ : si a est fini, alors c est une position d équilibre, α = et a = lim t y(t), si b est fini, alors c est une position d équilibre, β = + et b = lim t y(t). (ii) Si y strictement décroissante, ce qui équivaut à f < 0 sur ]α, β[ : si a est fini, alors c est une position d équilibre, β = + et a = lim t + y(t). si b est fini, alors c est une position d équilibre, α = et b = lim t y(t). Remarque : Le corollaire 2.5 dit essentiellement que y(t) converge aux bords de l intervalle, mais ne peut converger vers une limite finie en temps fini. Exercice 1. Démontrer le corollaire : 5 Précisément, si x et y sont deux solutions de l équation différentielle (10) telles qu il existe un point t 1 tel que x(t 1) y(t 1), alors x(t) y(t) pour tout t 6 Précisément, si x(t) et y(t) sont deux solutions de (10) telles qu il existe t 1 et t 2 pour lesquels x(t 1) = y(t 2), alors x(t) = y(t + T) pour T = t 2 t 1 5

6 a) Montrer que si y(t) n est pas stationnaire, alors y (t) 0 pour tout t. b) En déduire que y(t) est strictement monotone et que y(]α,β[) =]a,b[. On traite le cas où y est strictement croissante et on considère a, les autres cas étant semblables. c) Supposons a fini et α >. Montrer qu on peut prolonger la solution y(t) en α et en déduire une contradiction. d) Supposons a fini et α =. Montrer que f(a) = 0. Indication : Considérer une suite t i et appliquer le théorème des accroissements finis sur chaque intervalle [t i,t i+1 ]. Les deux corollaires précédents peuvent être illustrés par le dessin suivant : x(t),y(t),z(t), t L axe de droite représente la ligne de phase. Pouvez-vous identifier positions d équilibre, solutions stationnaires, et à quels énoncés des corollaires correspondent chaque courbe? Exercice 2 : Si les théorème et corollaires précédents sont vrais, comment se fait-il que l équation différentielle y = 3 ( y 2) 1/3 admette (d après l exemple 1.1) deux solutions différentes ȳ et ỹ de même donnée initiale : ȳ(0) = ỹ(0) = 0? Pour conclure, on résume dans le corollaire suivant les propriétés vues précédement : Corollaire 2.6 Considérons l équation différentielle : y = f(y), (11) où f est une fonction dérivable en tout point de R et de dérivée continue; si les zéros de f sont en nombre fini et ordonnés par ordre croissant (i. e si les zéros sont notés b 1, b 2,..., b k où b 1 < b 2 <... < b k ), alors 6

7 (i) si y est une solution dont la donnée initiale y(t 0 ) = y 0 vérifie b i < y 0 < b i+1 (où 1 i k 1), alors son intervalle maximal de définition est ], + [, on a b i < y(t) < b i+1 pour tout t, et de plus soit f(x) > 0 pour tout x ]b i, b i+1 [, et alors t y(t) est croissante et vérifie : lim y(t) = b i, lim y(t) = b i+1, t t + soit f(x) < 0 pour tout x ]b i, b i+1 [, et alors t y(t) est décroissante et vérifie : lim y(t) = b i+1, lim y(t) = b i, t t + (ii) si y est une solution dont la donnée initiale y(t 0 ) = y 0 vérifie y 0 > b k, alors on a y(t) > b k pour tout t situé dans l intervalle de définition, et de plus soit f(x) > 0 pour tout x ]b k, + [, et alors t y(t) est croissante, l intervalle maximal de définition de cette solution est de la forme ], β [ (où β est soit fini et supérieur à t 0, soit égal à + ), et on a : lim y(t) = b k, lim y(t) = +, t t β soit f(x) < 0 pour tout x ]b k, + [, et alors t y(t) est décroissante, l intervalle maximal de définition de cette solution est de la forme ]α, + [ (où α est soit fini et inférieur à t 0, soit égal à ), et on a : lim y(t) = +, lim y(t) = b k, t α t + (iii) si y est une solution dont la donnée initiale y(t 0 ) = y 0 vérifie y 0 < b 1, alors on a y(t) < b 1 pour tout t situé dans l intervalle de définition, et de plus soit f(x) > 0 pour tout x ], b 1 [, et alors t y(t) est croissante, l intervalle maximal de définition de cette solution est de la forme ]α, + [ (où α est soit fini et inférieur à t 0, soit égal à ), et on a : lim y(t) =, lim y(t) = b 1, t α t + soit f(x) < 0 pour tout x ], b 1 [, et alors t y(t) est décroissante, l intervalle maximal de définition de cette solution est de la forme ], β [ (où β est soit fini et supérieur à t 0, soit égal à + ), et on a : 3 Autres méthodes qualitatives lim y(t) = b 1, lim y(t) =. t t β Nous allons voir comment tracer l allure des solutions d une équation différentielle (E) u = f(t,u) sans chercher à la résoudre. Nous supposerons dans la suite que l équation (E) a une unique solution si on se donne une donnée initiale (t 0,u 0 ) (comme dans le théorème de Cauchy-Lipschitz). 7

8 3.1 Champs des directions En un point (t 0,u 0 ) du plan, il passe une unique solution de (E). La tangente en ce point (t 0,u 0 ) au graphe de cette unique solution a pour pente u (t 0 ) = f(t 0,u 0 ) d aprés (E). Petit rappel : Si F est une fonction dérivable en x 0, la tangente au graphe de F en (x 0,F(x 0 )) a pour équation y = F (x 0 )(x x 0 ) F(x 0 ). On peut donc associer à tout (t 0,u 0 ) la pente m 0 de l unique solution de (E) qui passe par ce point. De façon équivalente, on peut associer à tout point (t 0,u 0 ) le vecteur u 0 de norme 1, de pente m 0 passant par ce point (vecteur unitaire de la tangente au graphe de l unique solution de (E) passant par (t 0,u 0 )). L application (t 0,u 0 ) u 0 est le champs de directions (ou champs des tangentes) de l équation (E). Remarque : Ceci est un exemple de champs de vecteurs, qui est une application qui à tout point M du plan associe un vecteur v(m) du plan. Un exmple typique est un champs de forces, par exemple le champs de gravitation. 3.2 Méthode de la grille On suppose que l on travaille sur une partie du plan, par exemple le rectangle R = [a,b] [c,d] du théorème de Cauchy-Lipschitz. On le découpe ena carrés ou rectangles de taille uniforme. En tout point de cette grille, on trace le champs des directions. Le but est alors de tracer l allure des solutions sachant que par hypothèse : (a) En tout point de la grille, il passe une solution qui doit être tangente au vecteur du champs de direction (Existence). (b) Deux solutions ne peuvent se croiser, ou encore par un point donné de la grille il ne passe qu une seule solution (Unicité). Exemple : On considère l équation u = tu (c est à dire f(x,y) = xy). On commence par des observations. (i) Sur l axe de t et des u, f(t,u) = 0 et donc le champs des directions est horizontale. (ii) Le champs des directions est symétrique par rapport aux axes et donc par rapport à l origine : f( t,u) = f(t, u) = f(t,u). (iii) Pour t 0, les pentes (négatives) sont de plus en plus raides quand u (positif) augmente. (iv) Pour u positif fixé, les pentes négatives sont de plus en plus raides à mesure que t (positif) augmente. 8

9 On en déduit la figure suivante : 3.3 Méthode des isoclines Les isoclines I c sont des courbes sur lesquelles le champs des directions a une pente donnée : I c = {(t,u);f(t,u) = c}, où c est une constante fixée. Exemple : On reprend le cas de u = tu. Alors, l isocline I 0 est la réunion des droites t = 0 et u = 0 et si c 0, I c est une hyperbole. En chaque point d une isocline I c, la solution passant par ce point croise cette isocline avec la pente c : Attention, les isoclines ne sont pas des graphes de solutions de (E)! De manière pratique, on trace les isoclines I c pour les valeurs c = 0,+/ 1,+/ 2,+/. On essaye ensuite de tracer des solutions sachant qu une solution coupe par exemple l isocline I 1 avec une pente c = 1 et doit avoir une pente comprise entre 1 et 2 entre les isoclines I 1 et I 2. Reprenons l exemple u = tu : 9

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

Définition d une suite récurrente à l aide de la fonction ln

Définition d une suite récurrente à l aide de la fonction ln Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.

Plus en détail

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

MATHS VUIBERT. Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés VUIBERT MÉTHODES EXERCICES PROBLÈMES MATHS ECE 2 e année Tout le programme Rappels de cours Conseils de méthode Exercices guidés Exercices d approfondissement Problèmes de synthèse Tous les corrigés détaillés

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Fascicule d exercices

Fascicule d exercices UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Fascicule d exercices Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2012, regroupe des documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polycopié conforme au programme 01, regroupe des documents distribués aux élèves en cours d année. CERTAINS CHAPITRES DU PROGRAMME NE SONT PAS TRAITÉS Année 013-014

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE 1 I.U.. de Saint-Omer Dunkerque Département Génie hermique et énergie COURS DE HERMODYNAMIQUE 4 e semestre Olivier ERRO 2009-2010 able des matières 1 Mathématiques pour la thermodynamique 4 1.1 Dérivées

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Notes de cours de Mathématiques en première ES/L

Notes de cours de Mathématiques en première ES/L Notes de cours de Mathématiques en première ES/L O. Lader 1 Table des matières 1 Pourcentages, taux d évolution (4S) 3 1.1 Évolution........................................... 3 2 Fonctions du second degré

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail