Image d un intervalle par une fonction continue
|
|
- Laurence Bonnet
- il y a 2 ans
- Total affichages :
Transcription
1 DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction à un intervalle ouvert contenant x 0 est continue en ce point. Ici nous allons étudier l image d un intervalle par une fonction continue et montrer que la continuité possède aussi des propriétés globales. 1. Les intervalles de R Posons R = R {, + } et prolongeons l ordre de R à R par : x R, x +. Muni de cet ordre, R est totalement ordonné et toute partie non vide de R possède une borne supérieure et une borne inférieure. Une partie non vide de R qui possède un majorant (resp. un minorant) dans R admet une borne supérieure (resp. inférieure) dans R. Définition Une partie I de R est un intervalle s il existe a, b R, a b, tels que I soit l un des quatre ensembles suivants : {x R a x b}, noté [a, b] ; {x R a x < b}, noté [a, b[ ; {x R a < x b}, noté ]a, b] ; {x R a < x < b}, noté ]a, b[. L ensemble I est un intervalle de R si I R et si I est un intervalle de R. Exemples. Les ensembles, ]1, 2[, [2, + [, R =], + [ sont des intervalles de R. Proposition Soit I R. Il y a équivalence entre : a) I est un intervalle ; b) I satisfait la condition : x, y I et x y impliquent [x, y] I. Preuve. Il est clair que a) implique b) et que b) implique a) si I est vide. Supposons donc I non vide et considérons a = inf I et b = sup I. On a a b et I [a, b]. Distinguons les quatre cas suivants: a I, b I. D après la condition b), [a, b] I d où I = [a, b] et I est un intervalle. a I, b I. Si x I alors x a et x < b donc x [a, b[. Réciproquement, si x [a, b[ on a x < b donc x n est pas un majorant de I et il existe y I tel que x y. D après b), [a, y] I et donc x I. Finalement, I = [a, b[. a I, b I. On montre que I =]a, b]. a I, b I. On montre que I =]a, b[. 295
2 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE Remarque 1) L implication b) a) est fausse dans l ensemble ordonné Q. Par exemple I = {x Q x 2 2} vérifie b) et I n est pas un intervalle de Q au sens de la définition 1. 2) Dans un espace vectoriel réel, une partie A est dite convexe si x A et y A impliquent λx + (1 λ)y A pour tout réel λ tels que 0 < λ < 1. La proposition 1 signifie donc que les intervalles sont exactement les parties convexes de R. 3) Pour tout intervalle I de R on a : ] inf I, sup I[ I [inf I, sup I] 2. Image d un intervalle par une fonction continue Donnons d abord un résultat utile lorsque l on considère la borne supérieure ou inférieure l d un ensemble et une fonction continue au point l. Proposition Soit X une partie non vide de R qui possède une borne supérieure (resp. inférieure) dans R. Il existe une suite de points de X qui converge vers sup X (resp. inf X). Preuve. Supposons d abord sup X R et soit n N. Comme sup X 1/n n est pas un majorant de X, il exite x n X tel que sup X 1/n < x n. On a aussi x n sup X d où sup X x n < 1/n et donc lim x n = sup X. Maintenant si sup X = + alors aucun entier n n est un majorant de X. Soit, pour tout entier naturel n, x n X tel que x n > n. Il est clair que lim x n = +. n + La preuve dans le cas de la borne inférieure est analogue. Proposition (Le théorème des valeurs intermédiaires) Soit f une application continue sur un intervalle I, a et b deux éléments de I tels que a < b. Tout élément compris entre f(a) et f(b) est l image par f d un élément de [a, b]. Preuve. En remplaçant éventuellement f par f on peut supposer que f(a) f(b). Il suffit de montrer que, pour tout y ]f(a), f(b)[, il existe c [a, b] tel que f(c) = y. Considérons X = {x [a, b] f(x) y}. Cet ensemble est non vide, car a X, et, étant majoré par b, il possède une borne supérieure dans R notée c. Soit (x n ) une suite d éléments de X qui converge vers c. La fonction f étant continue sur [a, b], la suite (f(x n )) converge vers f(c) et x n X implique f(x n ) y d où, par passage à la limite, f(c) y. Pour tout élément x de [c, b], f(x) > y et, comme c b (f(c) y < f(b)), la continuité de f en c entraine f(c) = f(x) y. Finalement y = f(c). lim x c,x>c Remarque et exemple. 1). On peut avoir f(a) = f(b) et alors la proposition précédente ne nous apprend pas grand chose (Penser à f(x) = sin x, a = 0, b = 2π.). Pour éviter cela on peut énoncer le théorème des valeurs intermédiaires sous la forme : si f est continue sur un intervalle I alors ] inf f(i), sup f(i)[ f(i). Autrement dit, f prend toutes les valeurs strictement comprises entre inf I et sup I. En effet, si inf I < y < sup I alors y n est ni un majorant, ni un minorant de f(i). Il existe a, b I tels que f(a) < y < f(b) et donc il existe c I avec y = f(c). Avec le théorème des valeurs intermédiaires sous cette forme on voit que tout polynôme P de degré impair posséde un zéro. En effet, toute fonction polynôme est continue sur R et tend vers l infini lorsque la variable tend vers l infini. Si le polynôme P est de degré impair alors les limites en + et sont de signes différents et donc P (R) = R d où l existence d un x 0 tel
3 2. IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE 297 que P (x 0 ) = 0. Un corollaire de cette propriété est que tout nombre réel possède une racine n-ième lorsque l entier n est impair. 2). Soit f une application continue d un intervalle [a, b] dans lui-même. L application g : [a, b] R définie par g(x) = f(x) x est continue sur [a, b] et vérifie g(a) = f(a) a 0 et g(b) = f(b) b 0. Il existe donc α [a, b] tel que g(α) = 0 et donc f(α) = α. Notons que l on obtient le même résultat avec l hypothèse plus faible [a, b] f([a, b]). En effet, en considèrant la même fonction g on peut dire que si cette fonction continue ne prend jamais la valeur 0 alors elle est strictement positive ou stictement négative. Si elle est strictement positive sur [a, b], f(x) > x a et f ne prend jamais la valeur a contrairement à l hypothèse. Il existe donc α tel que g(α) = 0. 3). Le thoréme des valeurs intermédiaires est à la base de la preuve de l galité de la moyenne, voir le document 37, proposition Corollaire Soit f une fonction continue sur un intervalle [a, b] de R. Si f(a)f(b) < 0 alors il existe c ]a, b[ tel que f(c) = 0. Le corollaire précédent est trés souvent utilisé en analyse numérique pour localiser les racines d une équation f(x) = 0 où f est une fonction continue. Un exemple d application On peut à l aide de ce corollaire donner une peuve du résultat suivant qui est démontré de façon un peu différente dans le document 28 (Fonctions réciproques). Proposition Une fonction f injective, continue sur un intervalle I, est strictement monotone sur I. Supposons que f ne soit pas strictement monotone. Il existe des éléments de I, x 1, x 2, x 3 et x 4 tels que x 1 < x 2, x 3 < x 4, f(x 1 ) f(x 2 ) et f(x 3 ) f(x 4 ). Soit g : [0, 1] R définie par : g(t) = f(tx 1 + (1 t)x 3 ) f(tx 2 + (1 t)x 4 ). La fonction g est continue sur [0, 1], g(0) = f(x 3 ) f(x 4 ) 0 et g(1) = f(x 1 ) f(x 2 ) 0. Il existe donc λ [0, 1] tel que g(λ) = 0. Soit x 5 = λx 1 + (1 λ)x 3 et x 6 = λx 2 + (1 λ)x 4. Comme I est un intervalle x 5 I et x 6 I. On a λx 1 λx 2 et (1 λ)x 3 (1 λ)x 4 d où, l une de ces inégalités étant stricte, x 5 < x 6. Or 0 = g(λ) = f(x 5 ) f(x 6 ) et donc f n est pas injective. Proposition Soit f une fonction de R dans R continue sur un intervalle I. L image de I par f est un intervalle. Preuve. Elle utilise essentiellement la caractérisation des intervalles de R donnée dans la proposition Le résultat est évident si f(i) est réduit à un point. Sinon, soient y 1 et y 2 deux élément de f(i) avec y 1 < y 2. Il existe x 1 et x 2 dans I tels que f(x 1 ) = y 1 et f(x 2 ) = y 2. D après le théorème des valeurs intermédiaires tout élément de [f(x 1 ), f(x 2 )] est l image d un élément de [x 1, x 2 ] ou de [x 2, x 1 ] et donc [y 1, y 2 ] = [f(x 1 ), f(x 2 )] f(i) qui est un intervalle. Remarques 1) On a déjà remarqué que les intervalles sont les parties convexes de R. Ce sont aussi les parties connexes (Dans un espace topologique, A est connexe s il n existe pas deux ouverts non vides et disjoints B et C tels que A = (A B) (A C).) La proposition 27.5 est un cas particulier du résulat suivant de topologie :
4 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE L image d une partie connexe par une application continue est connexe. En revanche l affirmation, l image d une partie convexe par une application continue est convexe, est fausse en général pour des applications qui ne sont pas de R dans R. Par exemple, l image du convexe [0, 2π] de R par l application continue t e it est un cercle et ce n est pas un convexe de R 2 (C est le disque qui est convexe!). 2) La proposition 27.5 permet de démontrer des inégalités. En effet si f est continue sur un intervalle I et si 0 f(i) alorsf(x) > 0 sur I ou f(x) < 0 sur I. Par exemple, soit à étudier l inéquation cos(sin x) > sin(cos x). L application f donnée par f(x) = cos(sin x) sin(cos x) est continue sur R et on montre facilement que l équation cos(sin x) = sin(cos x) n a pas de solution (Penser à utiliser l identité sin a± cosa = sin(a±π/4).). Comme f(0) = 1 sin 1 > 0 on a, pour tout x R, cos(sin x) > sin(cos x). Un second exemple est l exercice suivant qui est une autre preuve de la proposition 27.4 Exercice. Soit f une fonction continue définie sur un intervalle I et a, b, x, y quatre points de I tels que a < b et x < y. On considère la fonction ϕ de [0, 1] dans R définie par ϕ(t) = (f(b) f(a))[f(tb + (1 t)y) f(ta + (1 t)x)]. Montrer que si f est injective alors ϕ ne prend jamais la valeur 0. En déduire qu avec la même hypothèse, f est strictement monotone sur I. 3) Le théorème des valeurs intermédiaires est loin de caractériser les fonctions continues. Il existe des fonctions de R dans R qui vérifient ce théorème et qui sont continues en aucun point et toute fonction qui est la dérivée d une fonction le vérifie même si elle présente des discontinuités (voir le paragraphe complément). Cependant, il possède une réciproque dans le cas des fonctions monotones. Cette réciproque est le principal argument pour montrer que la fonction réciproque d une fonction strictement monotone et continue sur un intervalle est continue. Proposition Soit f une application monotone définie sur D f. Si l image d une partie X de D f est un intervalle alors la restriction de f à X est continue. En particulier, si l image d une fonction monotone est un intervalle alors cette fonction est continue. Preuve. Il suffit de faire la preuve lorsque X = D f et en remplaçant éventuellement f par f on peut supposer f croissante. Soient a D f et ɛ > 0. Pour montrer la continuité de f en a il suffit de définir deux éléments de R, α et β, tels que α < a < β et f(]α, β[ D f ) [f(a) ɛ, f(a) + ɛ]. Definition de α. Si f(a) ɛ f(i) alors il existe α I, α < a, tel que f(α) = f(a) ɛ et si f(a) ɛ f(i) alors on pose α =. Soit x ]α, a] D f. Si α = alors la croissance de f entraine f(x) f(a) et, comme f(a) ɛ n appartient pas à l intervalle f(i), f(a) ɛ est un minorant de f(i) (en général, si un élément n appartient pas à un intervalle alors c est un majorant ou un minorant de cet intervalle) et donc f(a) ɛ < f(x). Maintenant si f(a) ɛ f(i) alors f(α) = f(a) ɛ et la croissance de f implique f(a) ɛ = f(α) f(x) f(a). Finalement, f(]α, a] D f ) [f(a) ɛ, f(a)]. Definition de β. Si f(a) + ɛ f(i) alors il existe β I, β > a, tel que f(β) = f(a) + ɛ et si f(a) + ɛ f(i) alors on pose β = +. On démontre que f([a, β[ D f ) [f(a), f(a) + ɛ] ce qui achève la démonstration. Remarques. 1). Le résultat précédent est intuitivement presque évident si l on dit qu une fonction monotone a en chaque point une limite à droite et une limite à gauche et donc si
5 3. IMAGE D UN SEGMENT 299 son image est un intervalle ces limites coïncident et la fonction est continue. Si l on essaye de formaliser un peu plus ce raisonnement, il y a plusieurs cas particuliers à envisager et la preuve rigoureuse n est pas plus courte que la précédente. (Voir le document 28 pour plus de détails.) 2). Soit f une fonction monotone définie sur un intervalle. La fonction f est continue si et seulement si son image est un intervalle. Soit I un intervalle et f une fonction continue sur I. En général, I et f(i) ne sont pas des intervalles de même nature. Par exemple, si f(x) = x 2 alors on a f(] 1, 1]) = [0, 1]. Les intervalles I et f(i) ne sont pas non plus tous les deux bornés ou tous les deux non bornés : l image de ] π/2, π/2[ par la fonction tangente est R. L objet du paragraphe suivant est de montrer que si I est fermé et borné alors f(i) possède aussi ces propriétés. 3. Image d un segment On appelle segment un intervalle non vide, fermé et borné. Proposition Soit f une application continue sur un segment [a, b]. L image par f de ce segment est un segment. Preuve. On sait déjà que f([a, b]) est un intervalle. Soient c et d, c d, les bornes de cet intervalle. Si c = d alors, comme f([a, b]) est non vide, c R et f([a, b]) est le segment [c, c]. Supposons maintenant c < d. On a d = sup]c, d[, donc il existe un suite (y n ) de points de ]c, d[ qui converge vers d si d R ou qui tend vers + si d = +. Pour tout n N, il existe x n [a, b] tel que y n = f(x n ). La suite (x n ) étant bornée, le théorème de Bolzano-Weierstrass (voir le paragraphe complément) entraine qu elle possède une suite extraite (x φ(n) ) qui converge vers un point α de [a, b]. La continuité de f entraine que lim f(x φ(n)) = f(α). Mais (f(x φ(n) )) n étant une suite extraite de la suite (f(x n )), (f(x n )) ne tend pas vers + et donc d R. Les suites (f(x n )) et (f(x φ(n) ) ont la même limite d = f(α) ce qui entraine d f([a, b]). De même c f([a, b]) et f([a, b]) = [c, d]. Le corollaire suivant est une autre façon d énoncer la proposition Corollaire Une fonction continue sur un segment est borné sur ce segment et atteint ses bornes. Preuve. Si f est continue sur le segment I = [a, b] et f([a, b]) = [c, d] on a c = inf(i), d = sup I et il existe deux éléments x 1 et x 2 de I tels que f(x 1 ) = c et f(x 2 ) = d. D autre part, pour x [a, b], f(x) max( c, d ). Remarques 1) La proposition 6 résulte immédiatement du résultat de topologie : l image d une partie compact d un espace topologique séparé par une application continue est compact. En effet, les compacts de R sont les parties fermées et bornées et donc les segments sont les parties à la fois compactes et connexes. On peut aussi énoncer la proposition 27.7 sous la forme plus générale : L image d une partie fermée et bornée A de R par une application continue f est fermée et bornée.
6 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE La preuve est très semblable a celle de la proposition On montre que de toute suite de f(a) on peut extraire une suite convergente et le théorème de Bolzano-Weierstrass permet de conclure que f(a) est fermé et borné. 2) Lorsque I est un segment, f(i) est encore un segment. Lorsque I n est plus un segment, une condition suffisante pour que l image d un intervalle I par une fonction continue f soit un intervalle de même nature (ouvert, fermé, semi-ouvert) que I est que f soit strictement monotone. 3) La proposition 27.7 joue un role essentiel dans la preuve de nombreux résultats fondamentaux en analyse : le théoréme de Rolle, la formule de la moyenne en calcul intégral,... 4) Le théorème de Heine est aussi un résultat classique reliant continuité et segment : toute application continue sur un segment est uniformément continue sur ce segment. 4. Compléments 4.1. Le théorème de Bolzano-Weierstrass. Le théorème de Bolzano-Weierstrass est une caractérisation des espaces métriques compacts : un espace métrique est compact si et seulement si de toute suite on peut extraire une suite convergente. Dans R les segments sont compacts et donc une conséquence de ce théorème est : De toute suite bornée, on peut extraire un suite convergente. (Car toute suite bornée peut être considérée comme une suite de points d un segment.) C est cette conséquence du théorème de Bolzano-Weierstrass que nous allons démontrer en supposant que l on a prouvé auparavant que toute suite monotone et bornée de R est convergente. Si ce résultat est établi, il suffit de prouver ensuite que de toute suite on peut extraire une suite monotone. Proposition Soit (x n ) une suite de points d un ensemble totalement ordonné E. On peut extraire de (x n ), soit une suite décroissante, soit une suite strictement croissante. Preuve. Soit (x n ) une suite de points de E et I = {i N j > i, x i x j }. Distinguons deux cas. (1) I est infini. On peut définir par récurrence une application strictement croissante φ de N dans I en posant φ(0) = min I et φ(n + 1) = min(i {φ(0), φ(1),..., φ(n)}). Par définition de I, la suite extraite (x φ(n) ) est décroissante. (2) I est fini. Soit i 0 = 0 si I = et i 0 > max I sinon. Posons φ(0) = i 0 et supposons que l on a défini φ(1),..., φ(n) de façon que φ(0) < φ(1) <... < φ(n) et x φ(0) < x φ(1) <... < x φ(n). Par définition de i 0, φ(n) I et donc il existe j I tel que x φ(n) < x j avec j > φ(n). Si l on pose φ(n + 1) = j on a x φ(0) < x φ(1) <... < x φ(n) < x φ(n+1) et on a défini par récurrence une suite strictement croissante (x φ(n) ) extraite de (x n ). Remarque. Dans les introductions axiomatiques de R on trouve parfois l axiome suivant : Pour toute suite décroissante I n de segments, i N I n. On démontre alors que R verifie le théorème de Bolzano-Weierstrass par la méthode dichotomique. Soit I 0 = [a, b] un segment contenant tous les termes de la suite bornée (x n ) et c = (a + b)/2. Soit I 1 l un des deux intervalles [a, c] ou [c, b] contenant une infinité de termes de la suite. En itérant le processus, on obtient une suite décroissante de segments (I n ) et l intersection de tous ces segments est non vide. Comme la longueur de I n est (b a)/2 n, i N I n = {l} et on montre
7 4. COMPLÉMENTS 301 que l est la limite d une suite extraite de (x n ) (remarquer que tout I n contient une infinité de termes de(x n )) Les fonctions dérivées vérifient le théorème des valeurs intermédiaires. Proposition Soit f une application dérivable sur un intervalle I de R. L application dérivée f vérifie le théorème des valeurs intermédiares. Preuve. Soient a et b deux éléments de I avec a < b et γ compris entre f (a) et f (b). On peut toujours supposer f (a) f (b) (en remplaçant éventuellement f par f). Si γ = f (a) ou γ = f (b) alors γ f (I) et sinon, considérons l application g, dérivable sur I, définie par g(x) = f(x) γx. Posons inf{g(x) x [a, b]} = g(c). Comme f (a) < γ < f (b), on a g a) = f (a) γ < 0 et g (b) = f (b) γ > 0. Il existe donc η, 0 < η < (b a), tel que si g(x) g(a) x ]a, a + η[ alors < 0. Sur l intervalle ]a, a + η[, x a > 0 et donc g(x) g(a) < 0. x a Le minimum de g sur [a, b] n est donc pas atteint au point a. On montre de façon analogue que ce minimum n est pas non plus atteint au point b d où c ]a, b[ et comme g est dérivable en c, g (c) = 0 d où f (c) = γ. Les fonctions qui sont des dérivées à droite ou à gauche ne vérifient pas en général le théorème de valeurs intermédiares. Un exemple simple est la fonction x x Une fonction discontinue en tout point peut vérifier le théorème des valeurs intermédiaires (d après H. Lebesgue). Soit x un réel de [0, 1] donné par son développement a n décimal propre x =. On définit une application f de [0, 1] dans lui-même de la façon 10n n=0 suivante : si la suite des décimales de x de rang impair n est pas périodique à partir d un certain rang, on pose f(x) = 0 ; si la suite des décimales de x de rang impair est périodique à partir du rang 2p 1 on a 2p+2n pose f(x) = 10 n. n=0 Pour tout a, b [0, 1], a < b, on peut montrer que f([a, b]) = [0, 1] et même que toute valeur de [0, 1] est l image d une infinité d éléments de [a, b]. Donnons, sur un exemple numérique, une idée de la preuve un peu technique mais pas très difficile. Soit a = 0, , b = 0, a n et y = 10 n [0, 1]. Soit x 1 = 0, 21346a 0 6a 1 6a 2 6a , x 2 = 0, a 0 2a 1 2a , x 3 = n=0 0, a 0 5a 1 5a 2 5a ,... La suite des décimales de rang impair du réel x n [a, b] est périodique à partir du rang 2n + 3 et, pour tout n > 0, f(x n ) = y. Il est clair que la fonction f vérifie le théorème des valeurs intermédiaires ([f(a), f(b)] [0, 1]) et, lorsque b tend vers a, la longueur de l image de l intervalle [a, b] ne tend pas vers 0. La fonction f est donc discontinue en a et plus généralement en tout point de [0, 1]. Il en résulte que la fonction f vérifiant le théorème des valeurs intermédiaires n est pas une fonction dérivées car l ensemble des points de continuité d une fonction dérivée est dense dans R, voir le document 26. On peut noter une propriété remarquable de la fonction f : dans tout voisinage d un point de [0, 1], la fonction f prend une infinité de fois toutes les valeurs de l intervalle [0, 1].
8 IMAGE D UN INTERVALLE PAR UNE FONCTION CONTINUE
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Le corps R des nombres réels
Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Cours d analyse 1ère année. Rhodes Rémi
Cours d analyse 1ère année Rhodes Rémi 10 décembre 2008 2 Table des matières 1 Propriétés des nombres réels 5 1.1 Sous-ensembles remarquables de R........................ 5 1.2 Relations d ordre..................................
Cours de terminale S Suites numériques
Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier
TD2 Fonctions mesurables Corrigé
Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles
Calculs préliminaires.
MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01
Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables
TOPOLOGIE DE LA DROITE REELLE
TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à
Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
L2 MIEE 2012-2013 VAR Université de Rennes 1
. Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Première partie. Deuxième partie
PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Généralités sur les fonctions numériques
7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux
Cours MP. Espaces vectoriels normés
Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques
Devoir surveillé n 1 : correction
E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Outils d analyse fonctionnelle Cours 5 Théorie spectrale
Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application
Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)
Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est
Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.
Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html
Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1
1 Topologies, distances, normes
Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un
Topologie des espaces vectoriels normés
Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire
Espaces vectoriels normés
Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N
Définition d une suite récurrente à l aide de la fonction ln
Définition d une suite récurrente à l aide de la fonction ln Thèmes. fonction ln, théorème des valeurs intermédiares, suite définie par récurrence : majoration, minoration, monotonie, convergence, eistence.
Suites : Calcul et comportement asymptotique.
4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence
Théorème de Rolle et égalité des accroissements finis. Applications
0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème
VIII Relations d ordre
VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie
Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1
Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Cours de Mathématiques
Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.
TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12
TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie
Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition
Intégrale de Lebesgue
Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux
CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie
CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =
LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.
LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non
Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths
Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est
Zéros de a.x.ln(x) + b.x + c
Zéros de a.x.ln(x) + b.x + c 1 Étude succincte de la fonction x f(x) = a.x.ln(x) + b.x + c A priori, a, b, c, x sont des réels quelconques et f prend ses valeurs dans R. 1.1 Restriction préliminaire Si
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Problèmes de Mathématiques Noyaux et images itérés
Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment
Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30
Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES
CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction
Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.
Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée
Sciences Po Paris 2012 Mathématiques Solutions
Sciences Po Paris 202 athématiques Solutions Partie : Le modèle de althus odèle discret a Pour tout entier naturel n, on a P n+ P n = P n donc P n+ = +P n Par suite la suite P n est géométrique de raison
Notes de cours. Cours introductif sur la théorie des domaines. Modèles des langages de programmation Master Parisien de Recherche en Informatique
Notes de cours Cours introductif sur la théorie des domaines Paul-André Melliès Modèles des langages de programmation Master Parisien de Recherche en Informatique 1 Ensembles ordonnés Definition 1.1 (ensemble
Suites et Convergence
Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Un tout petit peu d homotopie
Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit
Fonction polynôme du second degré : Forme canonique
Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13
Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations
Université Joseph Fourier, Grenoble. Suites numériques. Bernard Ycart
Université Joseph Fourier, Grenoble Maths en Ligne Suites numériques Bernard Ycart Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur. La notion de convergence
Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009
Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront
Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année
Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres
Corrigé de l examen partiel du 19 novembre 2011
Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les
UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques
1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Introduction à l Optimisation Numérique
DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Cours de Mathématiques Seconde. Généralités sur les fonctions
Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Fonctions - Continuité Cours maths Terminale S
Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique
UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES
UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle
Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction
L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction (0.1) Ce cours s articule autour du calcul différentiel et, en particulier, son application au
[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1
[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive
4.1 La propriété de Borel-Lebesgue
Chapitre 4 Compacité 4.1 La propriété de Borel-Lebesgue La compacité des espaces métriques ou plus généralement des espaces topologiques doit être comprise comme une propriété de finitude. La définition
[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer
[http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des
[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x
[ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2
Limites de fonctions
Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)
Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes
Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition
AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES
AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un
BJ - RELATIONS BINAIRES
BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple
IV. Espaces L p. + tx 1. (1 t)x 0
cours 13, le lundi 7 mars 2011 IV. spaces L p IV.1. Convexité Quand deux points x 0, x 1 R sont donnés, on peut parcourir le segment [x 0, x 1 ] qui les joint en posant pour tout t [0, 1] x t = (1 t)x
TS - Cours sur le logarithme népérien
Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim
Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Analyse - Résumés et exercices
Analyse - Résumés et exercices Georges Skandalis Université Paris Diderot (Paris 7) - IREM Préparation à l Agrégation Interne 6 mars 205 Table des matières Suites de nombres réels. Développement décimal
Base : une axiomatique
Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on