Calculs de probabilités
|
|
|
- Adeline Rochette
- il y a 10 ans
- Total affichages :
Transcription
1 Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008
2 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile ou face, les dés, les cartes, etc. Une expérience est un processus dont le résultats n est pas connu à l avance. On dit que le résultat est aléatoire. A toute expérience, on associe l ensemble des résultats possibles appelés réalisations. C est l ensemble fondamental noté Ω. Il est fini (ex. {1, 2, 3, 4, 5, 6}) ou infini (ex. IR). On va principalement s intéressé au cas fini dans ce cours. Un évènement est un sous-ensemble de l ensemble fondamental. Le but des probabilités est de calculer la probabilité d évènements. Exemple : l évènement qu un dé sorte un nombre pair. Quelle est la probabilité d un tel évènement : P({2, 4, 6})?
3 Opérations sur les ensembles : 2 A B : l ensemble A est un sous-ensemble de B. Ex. : {2, 4, 6} {1, 2, 3, 4, 5, 6}. A B : l union des ensembles A et B. Ex. : {2, 4, 6} {1, 3, 5, 6} = {1, 2, 3, 4, 5, 6}. A B : l intersection des ensembles A et B. Ex. : {2, 4, 6} {1, 3, 5, 6} = {6}. : l ensemble vide ne contient aucune réalisation. Ex. : l ensemble contenant les réalisations de l expérience somme de deux dés inférieure ou égale à 1.
4 Deux ensembles sont disjoints s ils n ont aucune réalisation en commun. Ex. : {2, 4, 6} {1, 3, 5} = : les ensembles pairs et impairs sont disjoints. 3 A c : le complément de A dans Ω. Ex. : {1, 6} c = {2, 3, 4, 5}. B A : l ensemble des réalisations dans B mais pas dans A. Ou B A c. Ex. : {1, 6} {1} = {6}. Une partition de Ω est un ensemble de sous-ensembles Ω k de Ω tels que tous les éléments de Ω sont dans exactement un de ces sous-ensembles. En d autres termes : k Ω k = Ω. Ω k Ωk = pour tout k k : disjoints deux-à-deux. Ex. : {{1, 2}, {3, 4}, {5}, {6}} est une partition de {1, 2, 3, 4, 5, 6}.
5 Propriétés : A (B C) = (A B) (A C) et A (B C) = (A B) (A C). (A B) c = A c B c et (A B) c = A c B c B C A
6 2. Axiomes de probabilités 5 Définition : Une tribu sur Ω est une famille F de sous-ensembles de Ω qui possède les trois propriétés suivantes : Ω F si F F, alors F c F si F 1, F 2,... est une suite d éléments de F alors n=1 F n F. Les éléments de la tribu F sont appelés les évènements. Les singletons {ω} tels que ω Ω sont appelés évènements élémentaires. L ensemble Ω est appelé l évènement certain. L ensemble vide est appelé l évènement impossible. L exemple de base d une tribu est F = P(Ω) l ensemble de tous les sousensembles de Ω. Que vaut P(Ω)?
7 Axiomes des probabilités : Une fonction de probabilité sur (Ω, F) est une application P : F [0, 1] qui vérifie les deux axiomes : 1. Evènement certain : P(Ω) = 1 2. σ-additivité : Si F 1, F 2,... est une suite d éléments de F deux-à-deux disjoints, alors ( ) P F n = P(F n ). n=1 n=1 6
8 Conséquences des deux axiomes, les propriétés suivantes : F et P( ) = 0. Additivité finie : Soit G 1, G 2,... G m, m < évènements deux-à-deux disjoints. Alors 7 P(G 1... Gm ) = P(G 1 ) + + P(G m ). P(G c ) = 1 P(G). Monotonies : Si G H, alors P(G) P(H). Union : P(G H) = P(G) + P(H) P(G H). Démonstration.
9 Exemple : Soit A et B deux ensembles disjoints tels que P(A) = 0.3 et P(B) = 0.5. Que vaut P(A c B c )? 8 P(A c B c ) = 1 P((A c B c ) c ) = 1 P((A c ) c (B c ) c ) = 1 P(A B) = 1 (P(A) + P(B) P(A B)) = 1 ( ) = 0.2
10 Exemple : Supposons que Ω = {1, 2, 3} and 9 P({1}) = p 1 P({2}) = p 2 P({3}) = p 3. Une tribu possible est P(Ω) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} de cardinalité 2 3. Ainsi on a : P({1, 2}) = P({1}) + P({2}) = p 1 + p 2 P({1, 3}) = P({1}) + P({3}) = p 1 + p 3 P({2, 3}) = P({2}) + P({3}) = p 2 + p 3 P{1, 2, 3} = P({1}) + P({2}) + P({3}) = p 1 + p 2 + p 3.
11 La dernière équation implique que : p 1 + p 2 + p 3 = Réciproquement, si on choisit p 1, p 2, p 3 0 tels que p 1 + p 2 + p 3 = 1, alors P({i}) = p i définit une probabilité.
12 3. Espaces de probabilité finis 11 Soit Ω = {1, 2,..., k}, où k = Ω <. On définit une probabilité en choisissant p 1,..., p k 0 tels que p p k = 1 et en définissant p i = P({i}). Une fois qu une probabilité est ainsi définie, on peut calculer pour tout G P(Ω) P(G) = P({i}) = p i, i G i G qui est la probabilité de réaliser un des i dans G.
13 Cas particulier important : quand les évènements élémentaires sont équiprobables p 1 = p 2 =... = p k =: p, 12 et la condition p p k = 1 implique que p 1 =... = p k = 1 k = 1 Ω. Par conséquent : P(G) = i G p i = p i G 1 = p G = G Ω = Nombre de cas favorables pour G. nombre de cas possibles
14 Exemple : On jette 2 dés. Quelle est la probabilité que la somme est 8? 13 L ensemble fondamental est Ω = {1, 2, 3, 4, 5, 6} 2, de cardinalité Ω = 36. Les cas favorables sont G = {(2, 6), (3, 5), (4, 4), (5, 3), (2, 6)}. Donc P(G) = G Ω = Exemple : On jette trois pièces équitables. Quelle est la probabilité d avoir au moins un pile? L ensemble fondamental est Ω = {P, F } 3, de cardinalité Ω = 8. Le complémentaire de l ensemble d évènements favorables est G c, l ensemble sans pile, c est-à-dire que G c = {F, F, F }. Donc P(G c ) = 1 8. Par conséquent : P(G) = = 1 8.
15 Exemple : On jette 3 dés. Quelle est la probabilité d obtenir au moins un 6? L ensemble fondamental est Ω = {1, 2, 3, 4, 5, 6} 3, de cardinalité Ω = 216. Soit G i l ensemble des réalisations le ième dé donne 6. Clairement : 14 La probabilité cherchée est P(G 1 ) = P(G 2 ) = P(G 3 ) = 1 6. P(G 1 G2 G3 ) = P(G 1 ) + P(G 2 ) + P(G 3 ) P(G 1 G2 ) P(G 1 G3 ) P(G 2 G3 ) +P(G 1 G2 G3 ) = 3( 1 6 ) 3( 1 36 ) =
16 On vérifie par le complémentaire G c, l ensemble des réalisations aucun 6 parmi les 3 dés : 15 Donc P(G) = = P(G c ) = =
17 Exemple : Eve lance une pièce équitable et gagne si Pile. Sinon Adam lance la pièce et gagne si Face. Ils répètent le jeu jusqu à ce que le premier gagne. Quelle est la probabilité que Eve gagne? Quelle est la probabilité qu ils y jouent encore? 16 Exemple : en 1654, de Méré propose à Pascal le problème suivant : Est-il plus probable d obtenir au moins un 6 avec 4 dés que d obtenir au moins un double 6 avec 24 jets de deux dés? Qu en pensez-vous? La première probabilité vaut 1 ( 5 6 ) La deuxième probabilité vaut 1 ( )
18 Exemple : Estimation de π par une expérience de Monte Carlo Par intuition, quelle est la probabilité que des points tombent dans le cercle?
19 Exemple : on compte la somme S des valeurs de 3 dés simultanément. Il y a 6 configurations différentes qui permettent d obtenir 9 et 10 : pour 9 : , , , , et pour 10 : , , , , et Peut-on en conclure que 18 P(S = 9) = P(S = 10)?
20 Exemple : On tire 5 cartes d un jeu de 52 cartes. Quelle est la probabilité d obtenir exactement une paire? 19 L univers Ω est l ensemble de tous les sous-ensembles de 5 cartes sans remise d un jeu de 52 cartes. Donc Ω = C 52,5. On rappelle qu il y a 13 = 52/4 valeurs possibles. Le nombre de possibilité d obtenir une paire implique : choisir une valeur qui sera la base de notre paire, soit C 13,1 possibilités. parmi ces 4 cartes il faut en choisir 2 pour former la paire, soit C 4,2 possibilités. choisir 3 valeurs différentes parmi 13 1 = 12, soit C 12,3. enfin pour chaque valeur, il y a C 4,1 possibilités.
21 Donc la probabilité d avoir exactement une paire est 20 C 13,1 C 4,2 C 12,3 C 4,1 C 4,1 C 4,1 C 52,5 =
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Introduction au Calcul des Probabilités
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Probabilités et Statistique
Probabilités et Statistique Y. Velenik Version du 24 mai 2012 Dernière version téléchargeable à l adresse http://www.unige.ch/math/folks/velenik/cours.html 2011-2012 2 Table des matières Table des matières
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
9 5 2 5 Espaces probabilisés
BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Dunod, Paris, 2014 ISBN 978-2-10-059615-7
Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
EI - EXERCICES DE PROBABILITES CORRIGES
EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card
Théorie de la Mesure et Intégration
Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT
PLAN NOTATIONS UTILISÉES
PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris 6 1 2 2/29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
Intégrale de Lebesgue
Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
Andrey Nikolaevich Kolmogorov
PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien
Probabilité 2 Ω = { P, F } Lancer un sou deux fois. Ω = { PP, PF, FP, FF} Ω = { 2, 3, 4,..., as }
. Définitions préliminaires Probabilité. Définitions préliminaires La théorie des probabilités utilise un langage emprunté à la théorie des ensembles. Il sera nécessaire de définir les éléments de ce langage
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Introduction aux Probabilités
Université Rennes 2 Licence MASS 2 Introduction aux Probabilités Arnaud Guyader Table des matières 1 Espaces probabilisés 1 1.1 Qu est-ce qu une probabilité?.............................. 1 1.1.1 Tribu.......................................
Théorie de la mesure. S. Nicolay
Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................
14. Introduction aux files d attente
14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
Peut-on imiter le hasard?
168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas
COMBINATOIRES ET PROBABILITÉS
COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Intégration sur des espaces produits
Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Mesure et Intégration (Notes de cours de L3)
Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Compter à Babylone. L écriture des nombres
Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.
Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
CHAPITRE IV. L axiome du choix
CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
