PLAN NOTATIONS UTILISÉES

Dimension: px
Commencer à balayer dès la page:

Download "PLAN NOTATIONS UTILISÉES"

Transcription

1 PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris /29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres complets sur A QT A : Relations quasitransitives sur A (part. asym trans) QTC A : Relations quasitransitives et complètes sur A 3/29 4/29

2 LE CADRE DU THÉORÈME DE GIBBARD-WEYMARK AXIOMES (1/2) Peut-on affaiblir de manière utile l exigence de transitivité du résultat dans le théorème d Arrow? L hypothèse de complétude des préférences sociales nous limite t-elle? Que se passe t-il si l on admet de considérer d autres votes que les ordres totaux? Elargissement du cadre du théorème d Arrow PROCÉDURE D AGRÉGATION : ψ : X n Y ( 1,..., n ) X = QTC A relations quasi-transitives et complètes sur A Y = QT A relations quasi-transitives AXIOME : UNIVERSALITÉ Tout profil π =( 1,..., n ) de relations quasi-transitives et complètes est admissible (X = QTC A ). La procédure doit retourner une relation = ψ(π) qui est une relation quasi-transitive (Y = QT A ) AXIOME : INDÉPENDANCE (a, b) A 2, π =( 1,..., n ) X n, π =( 1,..., n) X n, [ i N, a i b a i b] [a b a b] avec = ψ(π) et = ψ(π ) 5/29 6/29 AXIOMES (2/2) ENSEMBLES DÉCISIFS AXIOME : UNANIMITÉ (a, b) A 2, π =( 1,..., n ) X n, [ i N, a i b a b] DÉFINITION : PRESQUE-DÉCISIVITÉ J N est dit presque décisif pour (a, b) A 2 si π =( 1,..., n ) X n, [( i J, a i b) et ( i / J, b i a)] a b AXIOME : UNANIMITÉ FORTE (a, b) A 2, π =( 1,..., n ) X n, [ i N, a i b a b] Si de plus il existe k N : a k b alors a b DÉFINITION : DÉCISIVITÉ J N est dit décisif pour (a, b) A 2, si π =( 1,..., n ) X n, [( i J, a i b) a b] J N est dit décisif s il l est pour toute paire (a, b) 7/29 8/29

3 OLIGARCHIES LEMMES DÉFINITION : OLIGARCHIE J N est une oligarchie si 1 J est décisif 2 (a, b) A 2 π =( 1,..., n ) X n, [( j J, b j a) non(a b) (veto) LEMME (L1) Pour toute procédure d agrégation ψ vérifiant Universalité, Unanimité etindépendance, si J N est décisif pour une paire (c, d) A 2 alors il est décisif (pour toute paire). Preuve faite au tableau. α-oligarchies : ( j J, b j a) b a β-oligarchies : ( j J, b j a) non(a b) LEMME (L2) Une procédure d agrégation ψ vérifiant Universalité et Indépendance, admet au plus une oligarchie. Preuve faite au tableau. 9/29 10 / 29 LEMMES (SUITE) RÉSULTATS (1) LEMME (L3) Pour toute α-oligarchie J, pour tout profil admissible π tel que 2 membres de J ont des préférences strictes opposées concernant la paire (a, b) alors a b. THÉORÈME (GIBBARD, 1969 ; WEYMARK, 1983) Une procédure d agrégation ψ vérifiant Universalité, Unanimité et Indépendance admet une et une seule oligarchie dans N. LEMME (L4) Pour toute β-oligarchie J, pour tout profil admissible π tel que 2 membres de J ont des préférences strictes opposées concernant la paire (a, b) alors non(a b) et non(b a). Preuve faite au tableau : on travaille sur un ensemble décisif minimal pour l inclusion et on montre que c est une oligarchie Interprétation : cas J = {i} et cas J = N, autre? Cas particulier : Théorème d Arrow 11 / / 29

4 RÉSULTATS (2) RÉSULTATS (3) PROPOSITION (COROLLAIRE 1) Une procédure d agrégation ψ : QTC A QTC A vérifiant Universalité, Unanimité et Indépendance admet une et une seule α-oligarchie dans N. PROPOSITION (COROLLAIRE 3:THÉORÈME D ARROW) Une procédure d agrégation ψ : PC A QTC A vérifiant Universalité, Unanimité, Indépendance, Transitivité est dictatoriale. PROPOSITION (COROLLAIRE 2) Une procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité et Indépendance admet une et une seule β-oligarchie dans N. PREUVE On sait qu elle est α-oligarchique (C1). Soit J l oligarchie. Supposons qu elle contienne au moins 2 élements {1, 2}. Soit π =(a 1 c 1 b, b 2 a 2 c,...) Ona:a b c mais a c ce qui contredit la transitivité. Donc J est un singleton. 13 / / 29 RÉSULTATS (4) RÉSULTATS (5) PROPOSITION (COROLLAIRE 4:THÉORÈME D ARROW) Une procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité, Indépendance, Complétude est dictatoriale. PREUVE On sait qu elle est β-oligarchique (C2). Soit J l oligarchie. Supposons qu elle contienne au moins 2 élements {1, 2}. Soit π =(a 1 b, b 2 a,...) On a : non(a b) et non(b a) ce qui contredit la complétude. Donc J est un singleton. THÉORÈME Il existe une unique procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité Forte, Indépendance, Anonymat, c est la règle de Pareto (unanimité). a b [ i N, a i b] PREUVE On sait qu elle est β-oligarchique (C2). Soit J l oligarchie, alors l anonymat impose que J = N 15 / / 29

5 NOTATIONS ET DÉFINITIONS II) Théorème de Gibbard-Sattethwaite NOTATIONS : Soit U A l ens. des fonctions d utilités {u : A R} injectives Soit u i U A la fonction d utilité de l agent i i N, u i (a) > u i (b) a i b Un profil est ici représenté par un vecteur u =(u 1,...,u n ) de (U A ) N On note (v i, u i ) un profil obtenu à partir de u =(u 1,...,u n ) en substituant la fonction d utilité v i à u i DÉFINITION : PROCÉDURE DE VOTE MONOVALUÉE Une procédure de vote monovaluée est une application C associant à tout profil u de (U A ) N, le nom du candidat élu C(u) A (le gagnant unique du vote). 17 / / 29 NON-MANIPULABILITÉ D UNE PROCÉDURE DE VOTE NON-MANIPULABILITÉ ETMONOTONIE DÉFINITION : PROCÉDURE DE VOTE NON-MANIPULABLE Une procédure de vote (monovaluée) est dite non-manipulable si et seulement si on a : REMARQUES : u (U A ) N, v i U A, u i (C(u)) u i (C(v i, u i )) 1 Si C est non-manipulable, pout tout votant i, ne pas voter sincèrement conduirait à élire un candidat qu il apprécie moins (le vote non sincère étant au mieux inutile ). Les votants ont intérêt à voter sincèrement. 2 Si A = 2 alors Non-manipulable Monotone. Qu en est-il si A 3? DÉFINITION : AMÉLIORATION Soient u, v U A et a A. On dit que v améliore a par rapport à u (noté v > a u)si: 1 b, c A \{a}, [u i (b) > u i (c) v i (b) > v i (c)] (u et v coincident sur A \{a}) 2 i N, b A \{a}, [u i (a) > u i (b) v i (a) > v i (b)] 3 v u (améloriation stricte de a pour au moins un agent) u = EXEMPLE : a 1 b 1 c 1 d b 2 d 2 c 2 a d 3 b 3 a 3 c a 1 b 1 c 1 d v = b 2 a 2 d 2 c d 3 b 3 a 3 c 19 / / 29

6 FORTE MONOTONIE RÉSULTATS (1) DÉFINITION : FORTE-MONOTONIE Un procédure de vote C est fortement monotone si, pour tous u, v U A, et toute alternative a A : v > a u [C(u) =C(v) ou C(v) ={a}] LEMME Une procédure de vote est fortement monotone si et seulement si, pour tous profils u, v U A et tout a A: { a = C(u) [a = C(v)] i, b a, [u i (a) > u i (b) v i (a) > v i (b)] REMARQUES : 1 améliorer a dans les données entraîne son élection ou confirme le candidat qui était élu 2 Cette notion de monotonie est plus forte que la monotonie classique : v > a u [C(u) ={a} C(v) ={a}] REMARQUE : Axiome contenant une forme d indépendance. Ex : a C(u) et u i (b) > u i (d) > u i (a) > u i (e) > u i (c) > u i (f ) a est élu pour tout modif de u i telle que : a et b occupent les 2 premières positions c, e, f occupent les 3 dernières positions 21 / / 29 RÉSULTATS (2) RÉSULTATS (3) LEMME (MULLER AND SATTERTHWAITE, 1977) Si A 3 une procédure de choix C est fortement monotone si et seulement si elle est dictatoriale. IDÉE DE LA PREUVE : : Une procédure dictatoriale est fortement monotone : Soit C une procédure fortement monotone. Une preuve dans le même esprit que celle d Arrow (révélation d un singleton décisif) permet de montrer que C dictatoriale. THÉORÈME (GIBBARD, 1973 ; SATTERTHWAITE, 1975) Si A 3 une procédure de choix C est non-manipulable si et seulement si elle est dictatoriale. PREUVE : : Une procédure dictatoriale est non-manipulable (trivial) : Soit C procédure non-manipulable. Montrons qu elle est fortement monotone. Soient u U A, a A, i N et v =(v i, u i ) tels que v a u.on doit montrer que C(v) =C(u) ou C(v) =a. 23 / / 29

7 DEUX CAS : Cas1:C(u) =b a Si C non fortement-monotone alors C(v) =c / {a, b}. On a alors 2 cas : I) u i (b) > u i (c) et v i (b) > v i (c) II) soit u i (b) < u i (c) et v i (b) < v i (c) On a donc : I) v i (C(u)) > v i (C(v)) = v i (C(v i, u i )) manip. en votant u i II) u i (C(u)) < u i (C(v)) = u i (C(v i, u i )) manip. en votant v i contradiction en I) comme en II) car C non-manipulable. Cas2:C(u) =a Si C non fortement-monotone alors C(v) =b a. Ona alors 2 cas : I) u i (b) > u i (a) II) soit u i (b) < u i (a) et donc v i (b) < v i (a) (on améliore a sur i) On a donc : I) u i (C(v i, u i )) > u i (C(u)) manip. en votant v i II) v i (C(v)) < v i (C(u i, u i )) manip. en votant u i contradiction en I) comme en II) car C non-manipulable. (cas1et2) C fortement monotone 25 / / 29 IMPACT EN DÉCISION COLLECTIVE 1 Généralement on refuse les procédures dictatoriales et la procédure utilisée est donc manipulable 2 Un moyen de contourner le problème:le vote probabiliste... LA PROCÉDURE DU DICTATEUR ALÉATOIRE : 1 chaque agent met dans l urne le nom d un candidat 2 on tire aléatoirement (loi uniforme) un bulletin dans l urne pour déterminer le gagnant AVANTAGE DU DICTATEUR ALÉATOIRE Procédure non-manipulable (indépendance vnm) neutre et anonyme! permet de réconcilier non-manipulabilité et un partage équitable du pouvoir décisif, mais... 50% 1 = u 1 (a) > u 1 (b)...>u 1 (z) =0 50% 1 = u 2 (z) > u 2 (b)...>u 2 (a) =0 u 1 (b) =u 2 (b) =0.9 EU 1 = 0.5u 1 (a)+0.5u 1 (z) =0.5 EU 2 = 0.5u 2 (a)+0.5u 2 (z) =0.5 Satisfaction espérée (0.5,...,0.5) dominé par b : (0.9...,0.9) 27 / / 29

8 LE CAS DE PRÉFÉRENCES SINGLE-PEAKED Hypothèse : Ordre naturel sur A : a 1 a 2...,a n u est single-peaked (SP) si : a A tel que : 1 a, b A, a b a u(a) < u(b) 2 a, b A, a a b u(a) > u(b) Abandon de l universalité pour SP N impair, il existe toujours un vainqueur de Condorcet (unique). De plus la relation majoritaire est transitive et satisfait l axiome d indépendance de Weymark. la méthode majoritaire devient admissible et non-dictatoriale (solution au pb d Arrow) élire un vainqueur de Condorcet est non-manipulable N pair, vainqueur faible de Condorcet 29 / 29

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Chapitre 5. Équilibre concurrentiel et bien-être

Chapitre 5. Équilibre concurrentiel et bien-être Chapitre 5 Équilibre concurrentiel et bien-être Microéconomie III 5 1 5.1 Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Chapitre 1: Introduction à la théorie de l équilibre à prix fixes

Chapitre 1: Introduction à la théorie de l équilibre à prix fixes Chapitre 1: Introduction à la théorie de l équilibre à prix fixes L3 Eco-Gestion/ Faculté de Droit, Sciences Economiques et de Gestion Plan 1 Rappels sur l utilité espérée La représentation des événements

Plus en détail

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Attitude des ménages face au risque - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Plan du cours 1. Introduction : demande de couverture et comportements induits pa 2. Représentations

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Méthode : On raisonnera tjs graphiquement avec 2 biens.

Méthode : On raisonnera tjs graphiquement avec 2 biens. Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

1.1 Codage de source et test d hypothèse

1.1 Codage de source et test d hypothèse Théorie de l information et codage 200/20 Cours 8février20 Enseignant: Marc Lelarge Scribe: Marc Lelarge Pour information Page webdu cours http://www.di.ens.fr/~lelarge/info.html Notations Pour des variables

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Compte rendu de la séance du 29 mars 2014

Compte rendu de la séance du 29 mars 2014 Compte rendu de la séance du 29 mars 2014 Secrétaire(s) de la séance: Laëtitia MICHON Ordre du jour: - Election du Maire - Détermination du nombre d'adjoint - Election du ou des adjoints Délibérations

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Département intercommunalité et territoires 18 mars 2013 MCG-HG. Principales dispositions concernant les communes et les intercommunalités

Département intercommunalité et territoires 18 mars 2013 MCG-HG. Principales dispositions concernant les communes et les intercommunalités Département intercommunalité et territoires 18 mars 2013 MCG-HG Principales dispositions concernant les communes et les intercommunalités Projet de loi relatif à l élection des conseillers départementaux,

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

GUIDE DE SENSIBILISATION DES ELECTEURS

GUIDE DE SENSIBILISATION DES ELECTEURS 1 République de Guinée Commission Electorale Nationale Indépendante GUIDE DE SENSIBILISATION DES ELECTEURS Election Présidentielle, octobre 2015 Conakry, Août 2015 1 2 Introduction Les organisations de

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Le théorème des deux fonds et la gestion indicielle

Le théorème des deux fonds et la gestion indicielle Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Simulation centrée individus

Simulation centrée individus Simulation centrée individus Théorie des jeux Bruno BEAUFILS Université de Lille Année 4/5 Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

FIMA, 7 juillet 2005

FIMA, 7 juillet 2005 F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Microéconomie. Objectifs du cours. Méthode de Travail. Incertain et Information. Cours d outillage et de méthode

Microéconomie. Objectifs du cours. Méthode de Travail. Incertain et Information. Cours d outillage et de méthode Microéconomie Incertain et Information Objectifs du cours Cours d outillage et de méthode Vous familiariser avec l utilisation des modèles et méthodes de la microéconomie contemporaine. Vous habituer à

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

I - Synthèse des travaux des 2 groupes

I - Synthèse des travaux des 2 groupes 1 Rencontre des délégués du territoire de Menton Vallée de la Roya -Nice La ligue de l enseignement - 11 décembre 2012 I - Synthèse des travaux des 2 groupes 1. Eléments de contenu pour la fiche de présentation

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. Yassine.Lakhnech@imag.fr. Modèles de Calcul Start p.

Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. Yassine.Lakhnech@imag.fr. Modèles de Calcul Start p. Modèles de Calcul Yassine Lakhnech Yassine.Lakhnech@imag.fr 2007/08 Université Joseph Fourier Lab.: VERIMAG Modèles de Calcul Start p.1/81 Équipe pédagogique Cours : Saddek Bensalem et Yassine Lakhnech

Plus en détail

Sondage Politique provinciale Campagne électorale 2014. Grand sondage régional. Étude quantitative. 25 mars 2014

Sondage Politique provinciale Campagne électorale 2014. Grand sondage régional. Étude quantitative. 25 mars 2014 Sondage Politique provinciale Campagne électorale 2014 Grand sondage régional Étude quantitative 25 mars 2014 Méthodologie MÉTHODOLOGIE SONDAGE INTERNET Un sondage Internet réalisé auprès du grand public

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Élections municipales de 2014. Communes de moins de 1000 habitants

Élections municipales de 2014. Communes de moins de 1000 habitants Élections municipales de 2014 Communes de moins de 1000 habitants Introduction présentation générale de la réforme Importantes modifications du code électoral introduites par la loi du 17 mai 2013 et son

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail