PLAN NOTATIONS UTILISÉES

Dimension: px
Commencer à balayer dès la page:

Download "PLAN NOTATIONS UTILISÉES"

Transcription

1 PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris /29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres complets sur A QT A : Relations quasitransitives sur A (part. asym trans) QTC A : Relations quasitransitives et complètes sur A 3/29 4/29

2 LE CADRE DU THÉORÈME DE GIBBARD-WEYMARK AXIOMES (1/2) Peut-on affaiblir de manière utile l exigence de transitivité du résultat dans le théorème d Arrow? L hypothèse de complétude des préférences sociales nous limite t-elle? Que se passe t-il si l on admet de considérer d autres votes que les ordres totaux? Elargissement du cadre du théorème d Arrow PROCÉDURE D AGRÉGATION : ψ : X n Y ( 1,..., n ) X = QTC A relations quasi-transitives et complètes sur A Y = QT A relations quasi-transitives AXIOME : UNIVERSALITÉ Tout profil π =( 1,..., n ) de relations quasi-transitives et complètes est admissible (X = QTC A ). La procédure doit retourner une relation = ψ(π) qui est une relation quasi-transitive (Y = QT A ) AXIOME : INDÉPENDANCE (a, b) A 2, π =( 1,..., n ) X n, π =( 1,..., n) X n, [ i N, a i b a i b] [a b a b] avec = ψ(π) et = ψ(π ) 5/29 6/29 AXIOMES (2/2) ENSEMBLES DÉCISIFS AXIOME : UNANIMITÉ (a, b) A 2, π =( 1,..., n ) X n, [ i N, a i b a b] DÉFINITION : PRESQUE-DÉCISIVITÉ J N est dit presque décisif pour (a, b) A 2 si π =( 1,..., n ) X n, [( i J, a i b) et ( i / J, b i a)] a b AXIOME : UNANIMITÉ FORTE (a, b) A 2, π =( 1,..., n ) X n, [ i N, a i b a b] Si de plus il existe k N : a k b alors a b DÉFINITION : DÉCISIVITÉ J N est dit décisif pour (a, b) A 2, si π =( 1,..., n ) X n, [( i J, a i b) a b] J N est dit décisif s il l est pour toute paire (a, b) 7/29 8/29

3 OLIGARCHIES LEMMES DÉFINITION : OLIGARCHIE J N est une oligarchie si 1 J est décisif 2 (a, b) A 2 π =( 1,..., n ) X n, [( j J, b j a) non(a b) (veto) LEMME (L1) Pour toute procédure d agrégation ψ vérifiant Universalité, Unanimité etindépendance, si J N est décisif pour une paire (c, d) A 2 alors il est décisif (pour toute paire). Preuve faite au tableau. α-oligarchies : ( j J, b j a) b a β-oligarchies : ( j J, b j a) non(a b) LEMME (L2) Une procédure d agrégation ψ vérifiant Universalité et Indépendance, admet au plus une oligarchie. Preuve faite au tableau. 9/29 10 / 29 LEMMES (SUITE) RÉSULTATS (1) LEMME (L3) Pour toute α-oligarchie J, pour tout profil admissible π tel que 2 membres de J ont des préférences strictes opposées concernant la paire (a, b) alors a b. THÉORÈME (GIBBARD, 1969 ; WEYMARK, 1983) Une procédure d agrégation ψ vérifiant Universalité, Unanimité et Indépendance admet une et une seule oligarchie dans N. LEMME (L4) Pour toute β-oligarchie J, pour tout profil admissible π tel que 2 membres de J ont des préférences strictes opposées concernant la paire (a, b) alors non(a b) et non(b a). Preuve faite au tableau : on travaille sur un ensemble décisif minimal pour l inclusion et on montre que c est une oligarchie Interprétation : cas J = {i} et cas J = N, autre? Cas particulier : Théorème d Arrow 11 / / 29

4 RÉSULTATS (2) RÉSULTATS (3) PROPOSITION (COROLLAIRE 1) Une procédure d agrégation ψ : QTC A QTC A vérifiant Universalité, Unanimité et Indépendance admet une et une seule α-oligarchie dans N. PROPOSITION (COROLLAIRE 3:THÉORÈME D ARROW) Une procédure d agrégation ψ : PC A QTC A vérifiant Universalité, Unanimité, Indépendance, Transitivité est dictatoriale. PROPOSITION (COROLLAIRE 2) Une procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité et Indépendance admet une et une seule β-oligarchie dans N. PREUVE On sait qu elle est α-oligarchique (C1). Soit J l oligarchie. Supposons qu elle contienne au moins 2 élements {1, 2}. Soit π =(a 1 c 1 b, b 2 a 2 c,...) Ona:a b c mais a c ce qui contredit la transitivité. Donc J est un singleton. 13 / / 29 RÉSULTATS (4) RÉSULTATS (5) PROPOSITION (COROLLAIRE 4:THÉORÈME D ARROW) Une procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité, Indépendance, Complétude est dictatoriale. PREUVE On sait qu elle est β-oligarchique (C2). Soit J l oligarchie. Supposons qu elle contienne au moins 2 élements {1, 2}. Soit π =(a 1 b, b 2 a,...) On a : non(a b) et non(b a) ce qui contredit la complétude. Donc J est un singleton. THÉORÈME Il existe une unique procédure d agrégation ψ : PC A P A vérifiant Universalité, Unanimité Forte, Indépendance, Anonymat, c est la règle de Pareto (unanimité). a b [ i N, a i b] PREUVE On sait qu elle est β-oligarchique (C2). Soit J l oligarchie, alors l anonymat impose que J = N 15 / / 29

5 NOTATIONS ET DÉFINITIONS II) Théorème de Gibbard-Sattethwaite NOTATIONS : Soit U A l ens. des fonctions d utilités {u : A R} injectives Soit u i U A la fonction d utilité de l agent i i N, u i (a) > u i (b) a i b Un profil est ici représenté par un vecteur u =(u 1,...,u n ) de (U A ) N On note (v i, u i ) un profil obtenu à partir de u =(u 1,...,u n ) en substituant la fonction d utilité v i à u i DÉFINITION : PROCÉDURE DE VOTE MONOVALUÉE Une procédure de vote monovaluée est une application C associant à tout profil u de (U A ) N, le nom du candidat élu C(u) A (le gagnant unique du vote). 17 / / 29 NON-MANIPULABILITÉ D UNE PROCÉDURE DE VOTE NON-MANIPULABILITÉ ETMONOTONIE DÉFINITION : PROCÉDURE DE VOTE NON-MANIPULABLE Une procédure de vote (monovaluée) est dite non-manipulable si et seulement si on a : REMARQUES : u (U A ) N, v i U A, u i (C(u)) u i (C(v i, u i )) 1 Si C est non-manipulable, pout tout votant i, ne pas voter sincèrement conduirait à élire un candidat qu il apprécie moins (le vote non sincère étant au mieux inutile ). Les votants ont intérêt à voter sincèrement. 2 Si A = 2 alors Non-manipulable Monotone. Qu en est-il si A 3? DÉFINITION : AMÉLIORATION Soient u, v U A et a A. On dit que v améliore a par rapport à u (noté v > a u)si: 1 b, c A \{a}, [u i (b) > u i (c) v i (b) > v i (c)] (u et v coincident sur A \{a}) 2 i N, b A \{a}, [u i (a) > u i (b) v i (a) > v i (b)] 3 v u (améloriation stricte de a pour au moins un agent) u = EXEMPLE : a 1 b 1 c 1 d b 2 d 2 c 2 a d 3 b 3 a 3 c a 1 b 1 c 1 d v = b 2 a 2 d 2 c d 3 b 3 a 3 c 19 / / 29

6 FORTE MONOTONIE RÉSULTATS (1) DÉFINITION : FORTE-MONOTONIE Un procédure de vote C est fortement monotone si, pour tous u, v U A, et toute alternative a A : v > a u [C(u) =C(v) ou C(v) ={a}] LEMME Une procédure de vote est fortement monotone si et seulement si, pour tous profils u, v U A et tout a A: { a = C(u) [a = C(v)] i, b a, [u i (a) > u i (b) v i (a) > v i (b)] REMARQUES : 1 améliorer a dans les données entraîne son élection ou confirme le candidat qui était élu 2 Cette notion de monotonie est plus forte que la monotonie classique : v > a u [C(u) ={a} C(v) ={a}] REMARQUE : Axiome contenant une forme d indépendance. Ex : a C(u) et u i (b) > u i (d) > u i (a) > u i (e) > u i (c) > u i (f ) a est élu pour tout modif de u i telle que : a et b occupent les 2 premières positions c, e, f occupent les 3 dernières positions 21 / / 29 RÉSULTATS (2) RÉSULTATS (3) LEMME (MULLER AND SATTERTHWAITE, 1977) Si A 3 une procédure de choix C est fortement monotone si et seulement si elle est dictatoriale. IDÉE DE LA PREUVE : : Une procédure dictatoriale est fortement monotone : Soit C une procédure fortement monotone. Une preuve dans le même esprit que celle d Arrow (révélation d un singleton décisif) permet de montrer que C dictatoriale. THÉORÈME (GIBBARD, 1973 ; SATTERTHWAITE, 1975) Si A 3 une procédure de choix C est non-manipulable si et seulement si elle est dictatoriale. PREUVE : : Une procédure dictatoriale est non-manipulable (trivial) : Soit C procédure non-manipulable. Montrons qu elle est fortement monotone. Soient u U A, a A, i N et v =(v i, u i ) tels que v a u.on doit montrer que C(v) =C(u) ou C(v) =a. 23 / / 29

7 DEUX CAS : Cas1:C(u) =b a Si C non fortement-monotone alors C(v) =c / {a, b}. On a alors 2 cas : I) u i (b) > u i (c) et v i (b) > v i (c) II) soit u i (b) < u i (c) et v i (b) < v i (c) On a donc : I) v i (C(u)) > v i (C(v)) = v i (C(v i, u i )) manip. en votant u i II) u i (C(u)) < u i (C(v)) = u i (C(v i, u i )) manip. en votant v i contradiction en I) comme en II) car C non-manipulable. Cas2:C(u) =a Si C non fortement-monotone alors C(v) =b a. Ona alors 2 cas : I) u i (b) > u i (a) II) soit u i (b) < u i (a) et donc v i (b) < v i (a) (on améliore a sur i) On a donc : I) u i (C(v i, u i )) > u i (C(u)) manip. en votant v i II) v i (C(v)) < v i (C(u i, u i )) manip. en votant u i contradiction en I) comme en II) car C non-manipulable. (cas1et2) C fortement monotone 25 / / 29 IMPACT EN DÉCISION COLLECTIVE 1 Généralement on refuse les procédures dictatoriales et la procédure utilisée est donc manipulable 2 Un moyen de contourner le problème:le vote probabiliste... LA PROCÉDURE DU DICTATEUR ALÉATOIRE : 1 chaque agent met dans l urne le nom d un candidat 2 on tire aléatoirement (loi uniforme) un bulletin dans l urne pour déterminer le gagnant AVANTAGE DU DICTATEUR ALÉATOIRE Procédure non-manipulable (indépendance vnm) neutre et anonyme! permet de réconcilier non-manipulabilité et un partage équitable du pouvoir décisif, mais... 50% 1 = u 1 (a) > u 1 (b)...>u 1 (z) =0 50% 1 = u 2 (z) > u 2 (b)...>u 2 (a) =0 u 1 (b) =u 2 (b) =0.9 EU 1 = 0.5u 1 (a)+0.5u 1 (z) =0.5 EU 2 = 0.5u 2 (a)+0.5u 2 (z) =0.5 Satisfaction espérée (0.5,...,0.5) dominé par b : (0.9...,0.9) 27 / / 29

8 LE CAS DE PRÉFÉRENCES SINGLE-PEAKED Hypothèse : Ordre naturel sur A : a 1 a 2...,a n u est single-peaked (SP) si : a A tel que : 1 a, b A, a b a u(a) < u(b) 2 a, b A, a a b u(a) > u(b) Abandon de l universalité pour SP N impair, il existe toujours un vainqueur de Condorcet (unique). De plus la relation majoritaire est transitive et satisfait l axiome d indépendance de Weymark. la méthode majoritaire devient admissible et non-dictatoriale (solution au pb d Arrow) élire un vainqueur de Condorcet est non-manipulable N pair, vainqueur faible de Condorcet 29 / 29

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

De la manipulabilité des opérateurs de fusion de croyances

De la manipulabilité des opérateurs de fusion de croyances De la manipulabilité des opérateurs de fusion de croyances Patricia Everaere 1 Sébastien Konieczny 2 Pierre Marquis 1 1 Centre de Recherche en Informatique de Lens Université d Artois - 62300 Lens {everaere,marquis}@cril.univ-artois.fr

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

De la manipulation des elections indirectes

De la manipulation des elections indirectes University of Rennes 1 University of Caen De la manipulation des elections indirectes Sebastian Bervoets (CODE U. Barcelona) Vincent Merlin (CREM CNRS) January 2007 Series : Public Economics and Social

Plus en détail

COURS DE THEORIE DES JEUX. En collaboration avec

COURS DE THEORIE DES JEUX. En collaboration avec 1 COURS DE THEORIE DES JEUX Shmuel ZAMIR CNRS, EUREQua Paris 1 et LEI/CREST En collaboration avec Rida LARAKI CNRS, Laboratoire d Econométrie de l Ecole Polytechnique Les auteurs tiennent à remercier Thomas

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos olivier.bos@u-paris2.fr

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

PRIME D UNE OPTION D ACHAT OU DE VENTE

PRIME D UNE OPTION D ACHAT OU DE VENTE Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Jeux sous forme normale

Jeux sous forme normale CHAPITRE 4 Jeux sous forme normale Dans les problèmes de décision, nous avons relié les choix qui pouvaient être faits par un agent avec les utilités qu il pouvait en dériver. L idée qu un agent rationnel

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Chapitre 5. Équilibre concurrentiel et bien-être

Chapitre 5. Équilibre concurrentiel et bien-être Chapitre 5 Équilibre concurrentiel et bien-être Microéconomie III 5 1 5.1 Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

L action rationnelle

L action rationnelle L action rationnelle M. Cozic DEC, ENS Ulm 12/II/2007 Préparation à l agrégation 2007 introduction l objectif de la séance est double: (i) fournir quelques rudiments de théorie du choix rationnel: (1)

Plus en détail

CReVote: un système de vote électronique résistant à la coercition basé sur les courbes elliptiques

CReVote: un système de vote électronique résistant à la coercition basé sur les courbes elliptiques CReVote: un système de vote électronique résistant à la coercition basé sur les courbes elliptiques Présenté par: AMBASSA PACÔME LANDRY Membre du laboratoire de Mathématiques Expérimentales (LME) Université

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Théorie des graphes pour l analyse de réseaux réels

Théorie des graphes pour l analyse de réseaux réels Théorie des graphes pour l analyse de réseaux réels Bertrand Jouve Laboratoire ERIC - IXXI - Université Lyon 2 Plan 1 Entre théorie des graphes et réseaux réels 2 Partitionnement métrique Exemple d étude

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Choix sous incertitude

Choix sous incertitude 1/38 à l analyse microéconomique - Monitorat ENS (2014-2015) Janvier 2015 2/38 Plan du cours 1 2 3 4 5 3/38 Dans les chapitres précédents, hypothèse implicite de situations certaines et d information parfaite

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Rapport sur l oral de mathématiques 2009

Rapport sur l oral de mathématiques 2009 Rapport sur l oral de mathématiques 2009 Oral spécifique E.N.S. Paris : Thomas Duquesne Oral commun Paris-Lyon-Cachan : Romain Abraham, Sorin Dumitrescu, Philippe Gille. 1 Remarques générales sur la session

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail

La Constitution et l exercice des pouvoirs

La Constitution et l exercice des pouvoirs Thème La Constitution et l exercice des pouvoirs Instituée par le général de Gaulle en 958, et toujours en vigueur aujourd hui grâce à la souplesse des institutions qui ont su s adapter au fil du temps,

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Chapitre 1: Introduction à la théorie de l équilibre à prix fixes

Chapitre 1: Introduction à la théorie de l équilibre à prix fixes Chapitre 1: Introduction à la théorie de l équilibre à prix fixes L3 Eco-Gestion/ Faculté de Droit, Sciences Economiques et de Gestion Plan 1 Rappels sur l utilité espérée La représentation des événements

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Attitude des ménages face au risque - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014 Plan du cours 1. Introduction : demande de couverture et comportements induits pa 2. Représentations

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Incertain, Marché financier, - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Plan du cours 1. Incertain, actifs financiers et marché financier 2. Les conditions d un marché sans arbitrage

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

EQUILIBRES DU MARCHE FINANCIER. Mutualisation des risques Risque agrégé & individuel

EQUILIBRES DU MARCHE FINANCIER. Mutualisation des risques Risque agrégé & individuel EQUILIBRES DU MARCHE FINANCIER Mutualisation des risques Risque agrégé & individuel Plan du cours Préambule : le rôle du marché financier I II III IV Le modèle d Arrow Le modèle de Radner Le CAPM Le modèle

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES T. DRIDI Sur les distributions binaires associées à des distributions ordinales Mathématiques et sciences humaines, tome 69 (1980), p. 15-31.

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Méthode : On raisonnera tjs graphiquement avec 2 biens.

Méthode : On raisonnera tjs graphiquement avec 2 biens. Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel

Plus en détail

Chapitre VI - Méthodes de factorisation

Chapitre VI - Méthodes de factorisation Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Le produit semi-direct

Le produit semi-direct Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Automates. Lycée Louis-le-Grand Année 2003 2004. Automates. option informatique 1/74

Automates. Lycée Louis-le-Grand Année 2003 2004. Automates. option informatique 1/74 Lycée Louis-le-Grand Année 2003 2004 Automates option informatique 1/74 1 Sommaire notion d automate, leur intérêt et leurs usages ; calculs d un automate et langage reconnu ; déterminisme, comment s en

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

1.1 Codage de source et test d hypothèse

1.1 Codage de source et test d hypothèse Théorie de l information et codage 200/20 Cours 8février20 Enseignant: Marc Lelarge Scribe: Marc Lelarge Pour information Page webdu cours http://www.di.ens.fr/~lelarge/info.html Notations Pour des variables

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

SY05 : Outils d aide à la décision

SY05 : Outils d aide à la décision SY05 : Outils d aide à la décision décision stratégique et théorie des jeux Paul HONEINE et Nacima LABADI H201 G212 en collaboration avec Roberto Wolfler Calvo (Université Paris 13) Université de technologie

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail