Chapitre 5. Équilibre concurrentiel et bien-être

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 5. Équilibre concurrentiel et bien-être"

Transcription

1 Chapitre 5 Équilibre concurrentiel et bien-être

2 Microéconomie III Qu est-ce qu un équilibre souhaitable socialement? E cacité versus équité Que nous permet de dire la science économique sur l e cacité et sur l équité de l équilibre concurrentiel? Di culté de trouver un critère objectif d équité ² Question: qu est ce qu un équilibre équitable socialement? ² Si nous dotons tous les agents de la même quantité (!=N), est-ce une allocation souhaitable? ² Si nous considérons un critère utilitariste à la Rawls, et cherchons une allocation donnant à tous les agents un même niveau d utilité

3 Microéconomie III 5 2 (telle que u A (w A ) = u A (w B ) = ::: ), alors 9 problèmes liés aux comparaison interpersonnelles des niveaux utilité. ² Si nous considérons un critère utilitariste et cherchons une allocation maximisant NX u i (w i ); alors 9 problèmes. i=1 ² Conclusion: il est impossible de trouver un critère d équité sociale qui soit indiscutable. ² Et pourtant: ² Proposition 4.1: Soit une de bien-être social W : R N! R; croissante dans ses arguments, de sorte que W (u 1 ;u 2 ;::: ;u N ) nous

4 Microéconomie III 5 3 donne l utilité sociale résultant d une distribution quelconque (u 1 ;u 2 ;::: ;u des utilités privées. Si l allocation X = (x 1 ;x 2 ;::: ;x N ) maximise le bien-être social alors X est Pareto-optimale. ² Démonstration: Si X n était pas Pareto-optimale, il y aurait une allocation X e telle que u i (ex i ) > u i (x i ) pour certains agents. Dans ce cas W (u 1 (ex 1 );u 2 (ex 2 );::: ;u N (ex N )) > W (u 1 (x 1 );u 2 (x 2 );::: ;u N (x N )) qui contredit le fait que X maximise W: ² Quelle est la portée économique de ce résultat?

5 Microéconomie III La mesure de l e cacité: l optimalité parétienne ² Avantages: le critère de Pareto est unanime ne repose pas sur des comparaisons interpersonnelles d utilité ² Inconvénient: il est incomplet, ne permet pas de comparer un grand nombre d allocations très di érentes. ² Exemple: TGV ² Résultat fondamental: (pour simpli er, N = 2) Proposition 4.2: Soit X une allocation Pareto-optimale quelconque, celle-ci peut être obtenue comme solution au problème de

6 Microéconomie III 5 5 maximisation: max X a Au A (x 1A ;x 2A ) +a B u B (x 1B ;x 2B ) sous les contraintes x 1A + x 1B =! 1 et x 2A + x 2B =! 2 : Les pondérations a i 2 R + : ² Démonstration: max a A u A (x 1A ;x 2A ) + a B u B (! 1 x 1A ;! 2 x 2A ): x1a;x2a CPO pour une solution intérieure (et a i 6= 0): a 1A a 1A = 0 a 2A a 2A = 0:

7 Microéconomie III 5 6 Il en résulte l équation de la courbe des A A 2A B 2B : L absence de gaspillage est véri ée par construction. ² Interprétation économique de ce résultat? 5.2 Les deux théorèmes de l économie du bien-être L équilibre concurrentiel est il économiquement e cace? Si une allocation particulière est jugée socialement désirable, peut-elle se réaliser dans une économie de marché?

8 Microéconomie III Le premier théorème de l économie du bienêtre ² Théorème 4.1: Si les fonctions d utilité u i (x i ) sont strictement croissantes en chacun des biens et pour chaque agent, alors tout équilibre concurrentiel (x ;p ) est Pareto optimal. ² Démonstration: (Pour M = 2) Par dé nition de l équilibre concurrentiel, les agents maximisent leur utilité sous contrainte et A 1A (x A A 2A (x A ) = p 1 p B 1B (x B B 2B (x B ) = p 1 : Par ailleurs, à l équilibre concurrentiel, tous les marchés sont soldés: p 2

9 Microéconomie III 5 8 et donc P M j=1 x ji =! j: Ainsi Z j (p ) = 0; l allocation concurrentielle est réalisable et sans gaspillage les TMS des agents sont égaux entre A 1A (x A A 2A (x A ) 1B (x B B 2B (x B ): Par conséquent, l équilibre concurrentiel est situé sur la courbe des contrats et il est donc Pareto-optimal. ² Représentation graphique

10 Microéconomie III 5 9 ² Implications du 1 er théorème du bien-être: Non-nécessité de l intervention de l État pour garantir l e cacité ² Limites du 1 er théorème du bien-être: E cacité ne rime pas forcément avec équité sociale Ce théorème reste uniquement valide sous les hypothèses de conccurence parfaite (absence d externalités, de biens publiques, de marchés manquants, l information est parfaite) Le second théorème de l économie du bienêtre ² Problématique: peut-on obtenir une allocation e cace particulière dans une économie ou chaque agent prend ses décisions individuellement

11 Microéconomie III 5 10 ² Théorème 4.2: Si les préférences des agents sont convexes, alors, pour toute allocation Pareto-optimale intérieure X o ; il exite un vecteur des prix p o et un vecteur de dotations initiales! o tels que (x o ;p o ) soit un équilibre walrassien pour l économie ainsi constituée. ² Représentation graphique ² Implications du 2 nd théorème du bien-être: Non-nécessité de la plani cation pour obtenir une allocation socialement désirable, une politique (étatique) de transferts su t. Les objectifs d e cacité et de justice sociale non sont pas nécessairement antagonistes Ce théorème préconise une politique de transferts bien particulière pour réaliser l équilibre socialement désirable: les

12 Microéconomie III 5 11 transferts sont forfaitaires, et ne distordent pas le système de prix ² Limites du 2 nd théorème du bien-être: Uniquement valide sous les hypothèses de concurrence parfaite Un grand nombre d informations est nécessaire (dont la collecte est coûteuse) Di culté de baser une politique de redistribution sur des transferts forfaitaires Deux Paradoxes Si les agents ont une in uence sur les prix d équilibre, il devient encore plus di cile de dé nir un critère objectif d équité

13 Microéconomie III 5 12 ² Le paradoxe du transfert ² Le paradoxe de la destruction

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Assurance maladie publique et «Opting out» - Réflexions théoriques

Assurance maladie publique et «Opting out» - Réflexions théoriques Assurance maladie publique et «Opting out» - Réflexions théoriques Carine Franc CREGAS INSERM - U 537 Une définition de «l opting out» «to opt out» : choisir de ne pas participer ; [hopital, school] choisir

Plus en détail

1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité... 4. 1.1.2 La théorie ordinale de l utilité... 6

1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité... 4. 1.1.2 La théorie ordinale de l utilité... 6 Microéconomie 1 Table des matières 1 Le calcul économique du consommateur 4 1.1 Préférences et fonction d utilité................................ 4 1.1.1 La théorie cardinale de l utilité............................

Plus en détail

Equilibre général dans l incertain une introduction. Ph. Bernard

Equilibre général dans l incertain une introduction. Ph. Bernard Equilibre général dans l incertain une introduction Ph. Bernard Table des matières Equilibre général avec actifs nanciers. Les actifs nanciers............................. Biens, marchés et contraintes

Plus en détail

Introduction à l analyse microéconomique Devoir Maison n o 1

Introduction à l analyse microéconomique Devoir Maison n o 1 Introduction à l analyse microéconomique Devoir Maison n o 1 10 novembre 2014 Marianne Tenand Monitorat ENS (2014-2015) marianne.tenand@ens.fr A rendre au plus tard dans mon casier du bâtiment B le mercredi

Plus en détail

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM

TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM TRAVAUX DIRIGÉS DE MICROÉCONOMIE Licence 1 Semestre 2 - Parcours EM Aurelia Tison, Anne-Sarah Chiambretto AMU, année 2013 1 La théorie du producteur (séances 1 à 4) La fonction de production : les facteurs

Plus en détail

Variations du modèle de base

Variations du modèle de base 1 Variations du modèle de base Dans ce chapitre nous allons utiliser le modèle de base du chapitre précédent pour illustrer certaines questions économiques simples. Ainsi, le modèle précédent nous permettra

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement

Doctorat en économique. Examen de synthèse en Théorie micro-économique 8 août 2011. Durée : 4 heures exactement Département d économie agroalimentaire et des sciences de la consommation Département d économique Université Laval NOM: Doctorat en économique Examen de synthèse en Théorie micro-économique 8 août 211

Plus en détail

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

ENSAE, 1A Maths. Roland Rathelot roland.rathelot@ensae.fr. Septembre 2010

ENSAE, 1A Maths. Roland Rathelot roland.rathelot@ensae.fr. Septembre 2010 Initiation à l économie ENSAE, 1A Maths Roland Rathelot roland.rathelot@ensae.fr Septembre 2010 Les ménages (2/2) La consommation agrégée des ménages : analyse macroéconomique Les ménages (2/2) La consommation

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Microéconomie Financière. 1- Choix intertemporels Exercices corrigés

Microéconomie Financière. 1- Choix intertemporels Exercices corrigés Microéconomie Financière - Choix intertemporels Exercices corrigés. Un individu salarié doit faire des choix intertemporels de consommation sur deux périodes, sa «vie active» (période ) et sa «retraite»

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0)

Joueur B Pierre Feuille Ciseaux Pierre (0,0) (-1,1) (1,-1) Feuille (1,-1) (0,0) (-1,1) Ciseaux (-1,1) (1,-1) (0.0) CORRECTION D EXAMEN CONTROLE CONTINU n 1 Question de cours Question 1 : Les équilibres de Cournot et de Stackelberg sont des équilibres de situation de duopole sur un marché non coopératif d un bien homogène.

Plus en détail

Micro-économie 1. Marisa Ratto. Première Année MIDO

Micro-économie 1. Marisa Ratto. Première Année MIDO Micro-économie 1 Marisa Ratto Première Année MIDO 1 Organisation du cours : Cours Magistral : des questions? Prendre contact : Maria_Luisa.Ratto@dauphine.fr Bureau : B 611bis le mercredi de 10h00 à 12h00.

Plus en détail

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements

S5 Info-MIAGE 2013-2014 Mathématiques Financières Les bases de l évaluation des investissements Université de Picardie Jules Verne Année 2013-2014 UFR des Sciences Licence mention Informatique parcours MIAGE - Semestre 5 Mathématiques Financières LES BASES DE L EVALUATION DES INVESTISSEMENTS Les

Plus en détail

Chapitre 3 La demande d assurance et les problèmes d information

Chapitre 3 La demande d assurance et les problèmes d information Chapitre 3 La demande d assurance et les problèmes d information Objectifs du chapitre - Déterminer le partage de risque Pareto-optimal entre un assuré et un assureur. - Considérer l impact des coûts de

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel

CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER Epargne et emprunt Calcul actuariel Plan du cours Préambule : la contrainte budgétaire intertemporelle et le calcul actuariel I II III Demandes d épargne

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

Économie Introduction du cours

Économie Introduction du cours Économie Introduction du cours Université Panthéon-Assas Collège de Droit 1 ere année Etienne LEHMANN Professeur d Economie à l Université Panthéon-Assas etienne.lehmann@ensae.fr http://cred.u-paris2.fr/node/69

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

L Etat et le marché. Prolégomènes à une théorie de la fiscalité. Entre «first best» et «second best».

L Etat et le marché. Prolégomènes à une théorie de la fiscalité. Entre «first best» et «second best». L Etat et le marché. Prolégomènes à une théorie de la fiscalité. Entre «first best» et «second best». Introduction : Généralités. Toute théorie de la fiscalité (Etat) doit s appuyer Sur une compréhension

Plus en détail

2 Équilibre général versus équilibre partiel 25 2.1 Les données du problème... 26 2.2 L analyse «partielle»... 26 2.3 L analyse «générale»...

2 Équilibre général versus équilibre partiel 25 2.1 Les données du problème... 26 2.2 L analyse «partielle»... 26 2.3 L analyse «générale»... Table des matières 1 Introduction à la théorie de l équilibre général 3 1.1 Les économies d échange pur......................................... 4 1.1.1 La base matérielle de l économie...................................

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

Annales de sujets d examen. Volume 5 : Licence 3 Semestre 1

Annales de sujets d examen. Volume 5 : Licence 3 Semestre 1 UFR 02 SCIENCES ECONOMIQUES Annales de sujets d examen Volume 5 : Licence 3 Semestre 1 Volumes élaborés par la commission pédagogique de l UFR d économie Avertissements : - Suite au changement de contrat

Plus en détail

Cours de microéconomie Pré-rentrée de licence. Christelle Dumas

Cours de microéconomie Pré-rentrée de licence. Christelle Dumas Cours de microéconomie Pré-rentrée de licence Christelle Dumas Table des matières 1 Le consommateur 3 1.1 Préférences............................ 3 1.1.1 Espace des objets..................... 3 1.1.2

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Séance 4: Consommation, utilité, cardinalité et bonheur

Séance 4: Consommation, utilité, cardinalité et bonheur Séance 4: Consommation, utilité, cardinalité et bonheur Sandra Nevoux Sciences Po Jeudi 24 Septembre 2015 1 / 49 L'essentiel à retenir 1 Revenu et consommation 2 3 4 5 2 / 49 Courbe d'expansion d'engel

Plus en détail

Actualisation. M1 - Arnold Chassagnon, Université de Tours, PSE - 2012

Actualisation. M1 - Arnold Chassagnon, Université de Tours, PSE - 2012 Actualisation - M1 - Arnold Chassagnon, Université de Tours, PSE - 2012 Plan du cours 1. Transferts de richesse et allocation intertemporelle de la consomma Déterminants des taux d intérêt d équilibre

Plus en détail

COURS 1 : INTRODUCTION A L ECONOMIE. LE CONSOMMATEUR

COURS 1 : INTRODUCTION A L ECONOMIE. LE CONSOMMATEUR Université Pierre et Marie Curie Licence Informatique 2014-2015 Cours LI 352 - Industrie Informatique et son Environnement Économique Responsable : Jean-Daniel Kant (Jean-Daniel.Kant@lip6.fr) COURS 1 :

Plus en détail

Chapitre II LES MONOPOLES NATURELS

Chapitre II LES MONOPOLES NATURELS Chapitre II LES MONOPOLES NATURELS 1) Rappels sur le monopole i) Hypothèses et notations Définition : Une entreprise est en position de monopole si elle est seule à fournir le marché d un bien pour lequel

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Obligation : transfert dans le temps

Obligation : transfert dans le temps Obligation : transfert dans le temps Dans ce premier chapitre nous introduirons les principales notions concernant les obligations. Les principes élémentaires de la notion d arbitrage y sont décrits. Une

Plus en détail

Quel tarif pour la formation universitaire? 1

Quel tarif pour la formation universitaire? 1 Quel tarif pour la formation universitaire? 1 Philippe Verreault-Julien, Université Laval Introduction La tarification de la formation universitaire, particulièrement celle de premier cycle, est un enjeu

Plus en détail

Economie de l information

Economie de l information 1 Introduction Economie de l information Les méthodes de la microéconomie peuvent être appliquées à tout problème particulier de la vie économique De nombreuses études sont consacrées à des marchés ou

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Tri en Python. # on cherche k tel que a k = min(a j ) ji

Tri en Python. # on cherche k tel que a k = min(a j ) ji Tri en Python On considère ici des tableaux ou listes d entiers ou de ottants. En Python, on peut trier une liste à l aide de la méthode sort : si a est une liste d entiers ou de ottants, a.sort() modi

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Dans la représentation habituelle du problème de décision du consommateur, la démarche est la suivante :

Dans la représentation habituelle du problème de décision du consommateur, la démarche est la suivante : SURLUS DES CONSOMMATEURS ET SURLUS DES RODUCTUERS EFFICACITE DU MARCHE EN CONCURRENCE ARFAITE I- DEMANDE ET SURLUS DES CONSOMMATEURS. Dans la représentation habituelle du problème de décision du consommateur,

Plus en détail

AES L1 - Economie Générale

AES L1 - Economie Générale - Contrainte budgétaire AES L1 - Economie Générale 2 Choix efficace des ménages Contrainte budgétaire Analyse positive - analyse normative 1 La contrainte budgétaire du ménage 2 Les courbes d indifférence

Plus en détail

Ecole Polytechnique Macroéconomie avancée-eco 553 Chapitre 2 : Epargne, accumulation du capital et croissance

Ecole Polytechnique Macroéconomie avancée-eco 553 Chapitre 2 : Epargne, accumulation du capital et croissance Ecole Polytechnique Macroéconomie avancée-eco 553 Chapitre 2 : Epargne, accumulation du capital et croissance Pierre Cahuc Septembre 28 Table des matières 1 Le modèle de croissance néoclassique 2 1.1 Le

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de Portefeuille Christophe Boucher Chapitre 1. Théorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Niveau de production croissant

Niveau de production croissant En effet, la fonction de production définit : l ensemble de production l ensemble des paniers de facteurs qui permettent de produire un niveau donné de bien. Cette fonction permet de définir des courbes

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes:

Exercice I. On considère un monopole sur un marché caractérisé par les données suivantes: TD n 7 OLIGOPOLE, STRATEGIES CONCURRENTIELLES ET THEORIE DES JEUX. Lecture obligatoire: Pindyck et Rubinfeld Chapitre pp. 493-56 et Chapitre 3 pp. 535-57 Exercice I. On considère un monopole sur un marché

Plus en détail

Avertissement. 2 L importance de la modélisation

Avertissement. 2 L importance de la modélisation 1 Avertissement Pour un étudiant ayant une attirance particulière pour les sciences, qui en apprécie la rigueur analytique systématique et objective, les discussions, les a rmations concernant l économie

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Le financement de l éducation : légitimité économique et contestation de l intervention publique Figure 19.

Le financement de l éducation : légitimité économique et contestation de l intervention publique Figure 19. Le financement de l éducation : légitimité économique et contestation de l intervention publique Figure 19. Part relative des dépenses publiques et privées des établissements d enseignement tous niveaux

Plus en détail

1 Questions de cours. Cours de Olivier Cardi Université de Tours Macroéconomie L2 ECO Année universitaire 2015-2016. TD 2 : L offre de travail

1 Questions de cours. Cours de Olivier Cardi Université de Tours Macroéconomie L2 ECO Année universitaire 2015-2016. TD 2 : L offre de travail Cours de Olivier Cardi Université de Tours Macroéconomie L2 ECO Année universitaire 2015-2016 TD 2 : L offre de travail 1 Questions de cours 1. On considère un ménage représentatif disposant dans l année

Plus en détail

EXCLUSION PAR MANIPULATION DES MARCHES DE PERMIS D EMISSION

EXCLUSION PAR MANIPULATION DES MARCHES DE PERMIS D EMISSION EXCLUSION PAR MANIPULATION DES MARCHES DE PERMIS D EMISSION Sonia Schwartz Résumé Cet article traite de l exclusion par manipulation des marchés de permis d émission. Dans un premier temps, nous déterminons

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Chapitre 9. La théorie du choix du consommateur

Chapitre 9. La théorie du choix du consommateur Chapitre 9 La théorie du choix du consommateur Le consommateur Comment sont prises les décisions de consommation? La théorie économique propose un modèle Le consommateur a un comportement maximisateur

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Jean-Louis CAYATTE jlcayatte@free.fr http://jlcayatte.free.fr/

Jean-Louis CAYATTE jlcayatte@free.fr http://jlcayatte.free.fr/ Chapitre 14 Marché du travail avec salaire négocié Supposer que le salaire est négocié entre l employeur et le salarié, c est remplacer l équation w( t) = w par une équation de détermination de ce salaire

Plus en détail

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché

MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché MICROECONOMIE - 2 ème année de Sciences-Economiques Chapitre IV - Les défaillances du marché SUPPLEMENT - Rappels essentiels La concurrence pure et parfaite (les agents sont price-takers). Elle se rencontre

Plus en détail

L avantage comparatif

L avantage comparatif L avantage comparatif Grégory Corcos et Isabelle Méjean ECO 434: Economie Internationale Ecole Polytechnique, 2ème Année The theory of comparative advantage is the only result in social science that is

Plus en détail

UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL

UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL UNE EXTENSION DU MODELE DE CONSOMMATION DES MENAGES L'OFFRE DE TRAVAIL I P L A N... A Arbitrage entre consommation et travail B Effets de l'augmentation du salaire C Déterminants de l'offre du travail

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y

5) Extension : Équilibre de Cournot Nash en information incomplète. . 2 T y 2 2 ) B. > (a 2 ) H. k y 5) Extension : Équilibre de Cournot Nash en information incomplète Supposons désormais que la firme 2 connaît avec perfection la fonction de coût de la firme, mais que celle - ci en revanche est imparfaitement

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Cours de calculs nanciers. Chapitre 7 : Evaluation des actions

Cours de calculs nanciers. Chapitre 7 : Evaluation des actions Cours de calculs nanciers Chapitre 7 : Evaluation des actions L2 Economie et Gestion Vincent Bouvatier vbouvatier@u-paris10.fr Université de Paris 10 - Nanterre Année universitaire 2008-2009 Modèle d actualisation

Plus en détail

Exercice 1 : Balance des Paiements (4 points)

Exercice 1 : Balance des Paiements (4 points) Université Paris Ouest-Nanterre La Défense Master Economie U.F.R. SEGMI Premier Semestre 2009-2010 Macroéconomie Ouverte Chargé de T.D. : Romain Restout Cours de Olivier Musy Contrôle Continu (14/12/2009)

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

La théorie des jeux et l hypothèse de rationalité

La théorie des jeux et l hypothèse de rationalité La théorie des jeux et l hypothèse de Michael Eisermann www-fourier.ujf-grenoble.fr/ eiserm 8 novembre 2007 ir Séminaire Mathématiques et Applications Dans la série «comment écrire une thèse en maths puis

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

PLAN NOTATIONS UTILISÉES

PLAN NOTATIONS UTILISÉES PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris 6 1 2 2/29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Assurance privée, Assurance sociale, retraite et santé

Assurance privée, Assurance sociale, retraite et santé 1/46 Assurance, retraite et santé - F. Langot Assurance privée, Assurance sociale, retraite et santé F. Langot Univ. Le Mans (GAINS & IRA) Banque de France & PSE & Cepremap & IZA 2013-2014 2/46 Assurance,

Plus en détail

La stratégie, la réflexion stratégique et la gestion stratégique

La stratégie, la réflexion stratégique et la gestion stratégique CHAPITRE 1 La stratégie, la réflexion stratégique et la gestion stratégique 1. Qu est-ce que la stratégie? Le concept de stratégie d entreprise a de multiples interprétations, plusieurs défi nitions, et

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

0. La science économique n aborde pas directement. 1.0 Science Economique? 1.1 Possible Définitions

0. La science économique n aborde pas directement. 1.0 Science Economique? 1.1 Possible Définitions 0. La science économique n aborde pas directement Comment spéculer en bourse Comment démarrer sa propre entreprise Comment trouver un job bien payé Comment investir ou dépenser intelligemment La science

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Microéconomie. Alexandre Nshue M. Mokime

Microéconomie. Alexandre Nshue M. Mokime Microéconomie Alexandre Nshue M. Mokime Kinshasa, Juin 2012 Contenu du cours Introduction 1. Analyse du comportement du consommateur 1.1. Analyse des possibilités d action du consommateur 1.2. Préférences

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Prof. Stéphane Saussier Université Paris 11

Prof. Stéphane Saussier Université Paris 11 Corrigé de Microéconomie Prof. Stéphane Saussier Université Paris 11 DEUG 1ère Année 1. Les préférences et l utilité Exercice 1 a. Ensemble de paniers de biens Dans l énoncé, on sait que A B D D L K J

Plus en détail

3. Quelles sont les sociétés qui peuvent réaliser des rachats d actions propres?... 3

3. Quelles sont les sociétés qui peuvent réaliser des rachats d actions propres?... 3 Table des matières Partie 1 - Rachat de parts propres 1. Introduction... 1 2. Qu est-ce qu un rachat d actions propres?... 2 2.1. Définition... 2 2.2. Seulement les actions ou parts?... 2 2.3. Seulement

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Microéconomie I Série Exercices : 01. Présenté par : Professeur de l Enseignement Supérieur Habilité

Microéconomie I Série Exercices : 01. Présenté par : Professeur de l Enseignement Supérieur Habilité Université Sidi Mohammed Ben Abdellah. Fes Faculté Poly Disciplinaire de Taza Département Droit et Economie Filière des Sciences Economiques et de Gestion 1 Travaux dirigés en Microéconomie I Présenté

Plus en détail

Théorèmes de Point Fixe et Applications 1

Théorèmes de Point Fixe et Applications 1 Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015

Incertain, Marché financier, M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Incertain, Marché financier, - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2015 Plan du cours 1. Incertain, actifs financiers et marché financier 2. Les conditions d un marché sans arbitrage

Plus en détail

COURS DE MICROECONOMIE

COURS DE MICROECONOMIE UNIVERSITE DE CARTHAGE FACULTE DE SCIENCES ECONOMIQUES DE NABEUL COURS DE MICROECONOMIE Première année EconomiE 1 Gestion Chargé de cours Jalel BERREBEH Année Universitaire 20121/2013 SOMMAIRE PARTIE I.

Plus en détail