Espérance conditionnelle

Dimension: px
Commencer à balayer dès la page:

Download "Espérance conditionnelle"

Transcription

1 Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58

2 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 2 / 58

3 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 3 / 58

4 Définition formelle Définition On se donne un espace de probabilités (Ω, F 0, P) et Une σ-algèbre F F 0. X F 0 telle que E[ X ] <. Espérance conditionnelle de X sachant F: Notée E[X F] Définie par: E[X F] est la v.a Y de L 1 (Ω) telle que (i) Y F. (ii) Pour tout A F, on a ou encore A XdP = A YdP. E[X1 A ] = E[Y 1 A ], Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 4 / 58

5 Remarques Notation: On utilisera la notation Y F pour dire qu une variable aléatoire Y est F-mesurable. Interprétation: de manière plus intuitive F représente une quantité d information Y est la meilleure prédiction de X lorsque l on possède l information contenue dans F. Existence: à voir après les exemples. Unicité: Si elle existe, l espérance conditionnelle est unique. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 5 / 58

6 Démonstration unicité But: Soit Y vérifiant (i) + (ii), de même que Y. Montrons Y = Y p.s Propriété générale: Pour tout A F, on a E[Y 1 A ] = E[Y 1 A ]. Cas particulier: Soit ɛ > 0, et posons Alors A ɛ F, et donc P(A ɛ ) = 0. A ɛ (Y Y ɛ). 0 = E[(Y Y )1 Aɛ ] ɛe[1 Aɛ ] = ɛp(a ɛ ) Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 6 / 58

7 Démonstration unicité (2) Ensemble A + : Soit A + (Y Y > 0) = n 1 A 1/n. On a n A 1/n croissante, et donc P(A + ) = P A 1/n = n lim P(A 1/n ) = 0. n 1 Ensemble A : De même, si on a P(A ) = 0. A = {Y Y < 0} Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 7 / 58

8 Démonstration unicité (3) Conclusion: On obtient, en posant A {Y Y } = A + A, que P(A ) = 0, et donc Y = Y p.s. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 8 / 58

9 Absolue continuité Définition Soit µ, ν deux mesures σ-finies sur (Ω, F). On dit que ν µ (µ est absolument continue par rapport à ν) si µ(a) = 0 = ν(a) = 0 pour tout A F. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 9 / 58

10 Théorème de Radon-Nykodym Théorème Soient µ, ν mesures σ -finies sur (Ω, F), telles que ν µ. Alors il existe f F telle que, pour tout A F, on a La fonction f : ν(a) = A f dµ. Se nomme dérivée de Radon-Nykodym de µ par rapport à ν Se note f dν dµ. On a f 0 µ-presque partout f L 1 (µ). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 10 / 58

11 Existence de l espérance conditionnelle Hypothèse: On a Une σ-algèbre F F 0. X F 0 telle que E[ X ] <. X 0. Définition de deux mesures: on pose 1 µ = P, mesure sur (Ω, F). 2 ν(a) E[X 1 A ] = A X dp. Alors ν est bien une mesure (par Beppo-Levi). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 11 / 58

12 Existence de l espérance conditionnelle (2) Absolue continuité: on a Donc ν P P(A) = 0 1 A = 0 P-p.s. X 1 A = 0 P-p.s. ν(a) = 0 Conclusion: par théorème de Radon-Nykodym, il existe f F telle que, pour tout A F, on a ν(a) = A f dp. On pose f = E[X F]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 12 / 58

13 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 13 / 58

14 Exemples faciles Exemple 1: Si X F, alors E[X F] = X. Définition: On dit que X F si pour tout A F et B B(R), on a ou encore X 1 A. P((X B) A) = P(X B) P(A), Exemple 2: Si X F, alors E[X F] = E[X]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 14 / 58

15 Démonstration: exemple 2 On a (i) E[X] F car E[X] est constante. (ii) Si A F, ] E[X 1 A ] = E[X] E[1 A ] = E [E(X) 1 A. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 15 / 58

16 Espérance conditionnelle discrète Exemple 3: On considère { Ωj ; j 1 } partition de Ω telle que P(Ω j ) > 0 pour tout j 1. Alors F = σ(ω j ; j 1). E[X F] = j i E[X 1 Ωj ] P(Ω j ) 1 Ωj Y. (1) Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 16 / 58

17 Démonstration: exemple 3 Stratégie: on vérifie les points (i) et (ii) de la définition pour la variable aléatoire Y. (i) Pour tout j 1, on a 1 Ωj F. Donc, pour toute suite numérique (α j ) j 1, α i 1 Ωj F. (ii) Il suffit de vérifier (1) pour A = Ω n et n 1 fixé. Or, E[Y 1 Ωn ] = E j 1 { } E[X1Ωn ] P(Ω n ) 1 Ωn = E[X 1 Ωn] P(Ω n ) E[1 Ωn] = E[X 1 Ωn ]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 17 / 58

18 Probabilité conditionnelle enfantine Définition: Pour un ensemble mesurable A F 0, on pose P(A F) E[1 A F] Cas particulier de l exemple discret: Soit B, B c une partition de Ω, et A F 0. Alors 1 F = σ(b) = { Ω,, B, B c} 2 On a P(A F) = P(A B) 1 B + P(A B c ) 1 B c. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 18 / 58

19 Lancer de dé Exemple: On considère Ω = { 1, 2, 3, 4, 5, 6 }, A = {4}, B = "pair". Alors P(A F) = B. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 19 / 58

20 Conditionnement d une v.a. par une autre v.a. Définition: Soient X et Y deux variables aléatoires avec X L 1 (Ω). On pose E[X Y ] = E[X σ(y )]. Critère pour déterminer si A σ(y ): On a A σ(y ) ssi A = { ω; Y (ω) B }, ou encore 1 A = 1 B (Y ) Critère pour déterminer si Z σ(y ): Soient Z et Y deux variables aléatoires réelles. Alors Z σ(y ) ssi on peut écrire Z = U(Y ), avec U B(R). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 20 / 58

21 Conditionnement d une v.a. par une autre v.a. (2) Exemple 4: Lorsque X et Y sont des variables aléatoires discrètes Le calcul de E[X Y ] peut être traité selon la méthode présentée à l exemple 3. Exemple 5: Soit (X, Y ) couple de variables aléatoires réelles de densité mesurable f : R 2 R +. On suppose que R f (x, y)dx > 0, pour tout y R. Soit g : R R une fonction mesurable telle que g(x) L 1 (Ω). Alors E[g(X) Y ] = h(y ), avec h : R R définie par h(y) = R g(x)f (x, y)dx R f (x, y)dx. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 21 / 58

22 Démonstration intuitive On peut écrire formellement: P(X = x, Y = y) P(X = x Y = y) = P(Y = y) En intégrant contre cette densité, on obtient: E[g(X) Y = y] = = = f (x, y) f (x, y)dx, g(x)p(x = x Y = y) dx g(x)f (x, y)dx. f (x, y)dx Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 22 / 58

23 Démonstration rigoureuse Stratégie: on vérifie les points (i) et (ii) de la définition pour la variable aléatoire h(y ). (i) Si h B(R), on a vu que h(y ) σ(y ). (ii) Soit A σ(y ) Alors Donc A = { ω; Y (ω) B } = 1 A = 1 B (Y ) E[h(Y )1 A ] = E[h(Y )1 B (Y )] = h(y)f (x, y)dxdy = = B B B R dy dy R { g(z)f (z, y)dz f (z, y)dz }f (x, y)dx g(z)f (z, y)dz= E[g(X)1 B (Y )]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 23 / 58

24 Exemple tordu Exemple 6: On prend Ω = (0, 1), F 0 = B((0, 1)) et P = λ. On pose X(ω) = cos(πω), et F = {A (0, 1); A ou A c dénombrable}. Alors E[X F] = 0. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 24 / 58

25 Démonstration Stratégie: on vérifie les points (i) et (ii) de la définition. (i) On a bien entendu 0 F. (ii) Soit A F, tel que A est dénombrable. Alors E[X 1 A ] = A cos(πx)dx = 0. De même, si A F est tel que A c est dénombrable, on a E[X 1 A ] = 1 ce qui démontre notre résultat. 0 cos(πx)dx cos(πx)dx = 0, A c Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 25 / 58

26 Morale de l exemple tordu Intuition: On pourrait penser que, si pour tout x [0, 1], on sait si {x} a eu lieu (on a bien {x} F), alors E[X F] = X. Paradoxe: Ceci est faux car X / F. Bonne intuition: Si l on sait ω A i pour un nombre fini de A i F alors on ne connait rien de X. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 26 / 58

27 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 27 / 58

28 Espérance, linéarité Proposition Soit X L 1 (Ω). Alors E { E[X F] } = E[X]. Proposition Soient α R, et X, Y L 1 (Ω). Alors E[αX + Y F] = α E[X F] + E[Y F] p.s. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 28 / 58

29 Démonstration Stratégie: on vérifie les points (i) et (ii) de la définition pour la v.a. Vérification: on a Z α E[X F] + E[Y F]. (i) Z est une combinaision linéaire de E[X F] et E[Y F] Z F. (ii) Pour tout A F, on a E[Z 1 A ] = E { (αe[x F] + E[Y F]) 1 A } = αe { E[X F] 1 A } + E { E[Y F] 1A } = αe[x 1 A ] + E[Y 1 A ] = E[(αX + Y ) 1 A ]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 29 / 58

30 Monotonie Proposition Soient X, Y L 1 (Ω) telles que X Y presque sûrement. On a E[X F] E[Y F] presque sûrement. Démonstration: On suit le schéma de la démonstration de l unicité de l espérance conditionnelle. Par exemple, si on pose A ε = {E[X F] E[Y F] ε > 0}, on vérifie aisément que P(A ε ) = 0. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 30 / 58

31 Convergence monotone Proposition Soit {X n ; n 1} une suite de variables aléatoires telle que X n 0 X n X presque sûrement E[X] <. Alors E[X n F] E[X F]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 31 / 58

32 Démonstration Stratégie: On pose Y n X X n. Il suffit de montrer que Z n E[Y n F] 0. Existence de limite: n Y n est décroissante, et Y n 0 Z n est décroissante et Z n 0. Z n admet une limite p.s, notée Z. But: Montrer que Z = 0. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 32 / 58

33 Démonstration (2) Espérance de Z : on va montrer E[Z ] = 0. En effet X n converge p.s. vers X. 0 X n X L 1 (Ω). Donc, par convergence dominée, E[X n ] E[X]. On en déduit: E[Y n ] 0 Comme E[Y n ] = E[Z n ], on a aussi E[Z n ] 0. Par convergence dominée, on a E[Z n ] E[Z ] Ceci implique bien E[Z ] = 0. Conclusion: Z 0 et E[Z ] = 0 Z = 0 presque sûrement. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 33 / 58

34 Inégalité de Cauchy-Schwarz Proposition Soient X, Y L 2 (Ω). Alors E 2 [X Y F] E[X 2 F] E[Y 2 F] p.s. Démonstration: Pour tout θ R, on a E[(X + θy ) 2 F] 0 p.s. Donc, presque sûrement, on a: pour tout θ Q, E[(X + θy ) 2 F] 0, Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 34 / 58

35 Démonstration Développement: Pour tout θ Q E[Y 2 F]θ 2 + 2E[XY F]θ + E[X 2 F] 0. Rappel: Si un polynôme aθ 2 + bθ + c 0 pour tout θ Q on a forcément b 2 4ac 0 Application: Presque sûrement, on a E 2 [XY F] E[X 2 F]E[Y 2 F] 0. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 35 / 58

36 Inégalité de Jensen Proposition Soit X L 1 (Ω), et ϕ : R R telle que ϕ(x) L 1 (Ω) et ϕ convexe. Alors ϕ(e[x F]) E[ϕ(X) F] p.s. Corollaire L espérance conditionnelle est une contraction dans L p (Ω) pour tout p 1 Démonstration: D après l inégalité de Jensen, et X L p (Ω) E[X F] L p (Ω) E { E[X F] p } E[ X p ] Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 36 / 58

37 Conditionnements en chaîne Théorème Soient Alors Deux σ-algèbres F 1 F 2. X L 1 (Ω). E {E[X F 1 ] F 2 } = E[X F 1 ] (2) E {E[X F 2 ] F 1 } = E[X F 1 ]. (3) Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 37 / 58

38 Démonstration Démonstration de (2): On pose Z E[X F 1 ]. Alors Z F 1 F 2. D après l Exemple 1, on a E[Z F 2 ] = Z, i.e. (2). Démonstration de (3): On pose U = E[X F 2 ]. On va montrer que E[U F 1 ] = Z, via (i) et (ii) de la définition. (i) Z F 1. (ii) Si A F 1, on a A F 1 F 2, et donc E[Z1 A ] = E[X1 A ] = E[U1 A ]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 38 / 58

39 Esp. conditionnelle de produits Théorème Soient X, Y L 2 (Ω), telles que X F. Alors E[X Y F] = X E[Y F]. Démonstration: On utilise une démarche classique en 4 étapes Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 39 / 58

40 Démonstration Etape 1: on suppose X = 1 B, avec B F On vérifie (i) et (ii) de la définition. (i) On a 1 B E[Y F] F. (ii) Pour A F, on a E {(1 B E[Y F]) 1 A } = E {E[Y F] 1 A B } = E[Y 1 A B ] = E[(1 B Y ) 1 A ], et donc 1 B E[Y F] = E[1 B Y F]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 40 / 58

41 Démonstration (2) Etape 2: Si X est de la forme X = i n α i 1 Bi, avec α i R et B i F, alors, par linéarité on trouve encore E[XY F] = X E[Y F]. Etape 3: Si X, Y 0 Il existe une suite {X n ; n 1} de variables aléatoires simples telle que X n X. Alors par application de la convergence monotone E[XY F] = X E[Y F]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 41 / 58

42 Démonstration (3) Etape 4: Cas général X L 2 Décomposition X = X + X et Y = Y + Y, et donc E[XY F] = XE[Y F] par linéarité. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 42 / 58

43 Esp. conditionnelle et indépendance Théorème Soient X, Y deux variables aléatoires réelles indépendantes α : R 2 R telle que α(x, Y ) L 1 (Ω) On pose, pour x R, g(x) = E[α(x, Y )]. Alors E[α(X, Y ) X] = g(x). Démonstration: en 4 étapes sur α. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 43 / 58

44 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 44 / 58

45 Rappel: projection orthogonale Définition: Soit H un espace de Hilbert espace vectoriel muni d un produit scalaire et complet. F un sous espace fermé de H. Alors, pour tout x H Il existe un unique y F, noté y = π F (x) vérifiant l une des conditions équivalentes (i) ou (ii). (i) Pour tout z F, on a x y, z = 0. (ii) Pour tout z F, on a x y H x z H. π F (x) se nomme projection orthogonale de x sur F. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 45 / 58

46 Espérance conditionnelle et projection Théorème Considérons L espace L 2 (F 0 ) { Y F 0 ; E[Y 2 ] < }. Alors X L 2 (F 0 ). F F 0 1 L 2 (F 0 ) est un espace de Hilbert Produit scalaire X, Y = E[XY ]. 2 L 2 (F) est un sous espace fermé de L 2 (F 0 ). 3 π L 2 (F)(X) = E[X F]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 46 / 58

47 Démonstration Démonstration de 2: Si X n X dans L 2 Il existe une sous suite X nk Donc, si X n F, on a aussi X F. X p.s. Démonstration de 3: Vérifions le point (i) de la définition de projection Soit Z L 2 (F). On a E[Z X F] = Z E[X F], et donc E {Z E[X F]} = E {E[X Z F]} = E [X Z], ce qui suffit à vérifier (i) et E[X F] = π L 2 (F)(X). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 47 / 58

48 Application aux vecteurs gaussiens Exemple: Soit Alors (X, Y ) vecteur gaussien centré de R 2 Hypothèse: V (Y ) > 0. E[X Y ] = αy, avec α = E[X Y ] V (Y ). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 48 / 58

49 Démonstration Etape 1: On cherche α tel que Z = X αy = Z Y. Rappel: Si (Z, Y ) est un vecteur gaussien Z Y ssi cov(z, Y ) = 0 Application: cov(z, Y ) = E[Z Y ]. Donc cov(z, Y ) = E[(X αy ) Y ] = E[X Y ] αv (Y ), et cov(z, Y ) = 0 ssi α = E[XY ] V (Y ). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 49 / 58

50 Démonstration (2) Etape 2: On applique à présent le (i) de la définition de π. Soit V L 2 (σ(y )). Alors Y (X αy ) = V (X αy ) et Donc E[(X αy ) V ] = E[X αy ] E[V ] = 0. X αy = π σ(y ) (X) = E[X Y ]. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 50 / 58

51 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle 4 Interprétation en termes de projection 5 Lois conditionnelles régulières Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 51 / 58

52 LCR Définition Soit (Ω, F, P) un espace de probabilités (S, S) un espace mesurable X : (Ω, F) (S, S) une variable aléatoire G une σ-algèbre telle que G F. On dit que µ : Ω S [0, 1] est une loi conditionnelle régulière de X sachant G si (i) Pour tout A, l application ω µ(ω, A) est une variable aléatoire, égale à P(X A G) p.s. (ii) ω-p.s. A µ(ω, A) est une mesure de probabilité sur (S, S). Remarque: On aura toujours (S, S) de la forme (R, B(R)), (N, P(N), etc. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 52 / 58

53 Exemple discret Cas de la loi de Poisson: Soient X P(λ) et Y P(µ) X Y On pose S = X + Y. Alors LCR de X sachant S est Bin(S, p) avec p = Démonstration: on a vu que pour n m P(X = n S = m) = On prend alors S = N, G = σ(s) λ λ+µ ( ) n p n (1 p) m n avec p = λ m λ + µ. et on vérifie que ces probabilités conditionnelles définissent une LCR. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 53 / 58

54 Exemple continu Cas de la loi exponentielle: Soient X E(1) et Y E(1) X Y On pose S = X + Y. Alors LCR de X sachant S est U([0, S]). Démonstration: La densité du couple (X, S) est donnée par f (x, s) = e s 1 {0 x s}. Soit alors ψ B b (R + ). D après l Exemple 5, on a E[ψ(X) S] = u(s), avec u(s) = R 2 + R 2 + ψ(x)f (x, s)dx f (x, s)dx = 1 s s 0 ψ(x)dx. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 54 / 58

55 Démonstration De plus, S 0 presque sûrement, et donc, si A B(R), on a P (X A S) = A [0, S]. S En prenant espace d état = R +, S = B(R + ) et en posant µ(ω, A) = A [0, S(ω)], S(ω) on vérifie que l on a défini une loi conditionnelle régulière. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 55 / 58

56 Existence de la LCR Théorème Soit X une variable aléatoire sur (Ω, F 0, P). A valeurs dans un espace de la forme (R n, B(R n )). G F 0 une σ-algèbre. Alors la loi conditionnelle régulière de X sachant G existe. Démonstration difficile et admise. Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 56 / 58

57 Règles de calcul de LCR (1) Si G = σ(y ), avec Y variable aléatoire à valeurs dans R m, on a en fait µ(ω, A) = µ(y (ω), A), et on peut définir la loi conditionnelle régulière de X sachant Y comme une famille {µ(y,.); y R m } de probabilités sur R n, telle que pour tout A B(R n ), la fonction est mesurable. y µ(y, A) (2) Si Y suit une loi discrète, on a en fait µ(y, A) = P (X A Y = y) = P (X A, Y = y). P (Y = y) Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 57 / 58

58 Règles de calcul de LCR (2) (3) Lorsque l on connait la loi conditionnelle régulière, on peut calculer, pour φ B(R n ), les quantités: E [φ(x) G] = E [φ(x) Y ] = φ(x) µ(ω, dx) R n φ(x) µ(y, dx). R n (4) La loi conditionnelle régulière n est pas unique, mais si N 1, N 2 sont deux lois conditionnelles régulières de X sachant G, on a, ω-presque sûrement: N 1 (ω, A) = N 2 (ω, A) pour tout A B(R n ). Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 58 / 58

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Remise à niveau en processus stochastiques

Remise à niveau en processus stochastiques M2IR Université Claude Bernard Lyon 1 Année universitaire 212-213 Remise à niveau en processus stochastiques F. Bienvenüe-Duheille Le but de ce poly est de vous mettre à niveau sur les processus stochastiques

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Examen du cours de Mesures de risque en finance

Examen du cours de Mesures de risque en finance Examen du cours de Mesures de risque en finance Mercredi 15 Décembre 21 (9h-11h) Seul document autorisé: une feuille A4 manuscrite recto-verso. Important : rédiger sur une même copie les exercices 1 et

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

MA6.06 : Mesure et Probabilités

MA6.06 : Mesure et Probabilités Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Intégration sur des espaces produits

Intégration sur des espaces produits Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................

Plus en détail

Statistique appliquée

Statistique appliquée Statistique appliquée Université Pierre et Marie Curie Maîtrise de Mathématiques Année 2006/2007 A. Tsybakov Préambule Ce polycopié s adresse au étudiants ayant suivi un cours d intégration et un premier

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Produits d espaces mesurés

Produits d espaces mesurés Chapitre 7 Produits d espaces mesurés 7.1 Motivation Au chapitre 2, on a introduit la mesure de Lebesgue sur la tribu des boréliens de R (notée B(R)), ce qui nous a permis d exprimer la notion de longueur

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

CONCOURS 2015 Programme des classes préparatoires

CONCOURS 2015 Programme des classes préparatoires CONCOURS 2015 Programme des classes préparatoires Voie économique et commerciale option scientifique option économique option technologique Voie littéraire Filière B/L Lettres et Sciences Sociales Filière

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Loi d une variable discrète

Loi d une variable discrète MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Projet TER - Master 1 SITN La statistique Bayésienne

Projet TER - Master 1 SITN La statistique Bayésienne Projet TER - Master 1 SITN La statistique Bayésienne Artemis TOUMAZI Encadré par Mme Anne Perrut 0.0 0.5 1.0 1.5.0.5 0.0 0. 0.4 0.6 0.8 1.0 1. 7 juin 013 À ma mère et mon père. Table des matières Introduction

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Probabilités et statistique. Benjamin JOURDAIN

Probabilités et statistique. Benjamin JOURDAIN Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Econométrie Appliquée Séries Temporelles

Econométrie Appliquée Séries Temporelles Chapitre 1. UFR Economie Appliquée. Cours de C. Hurlin 1 U.F.R. Economie Appliquée Maîtrise d Economie Appliquée Cours de Tronc Commun Econométrie Appliquée Séries Temporelles Christophe HURLIN Chapitre

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Construction de l'intégrale de Lebesgue

Construction de l'intégrale de Lebesgue Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE

ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail