PROBABILITES ET STATISTIQUE I&II

Dimension: px
Commencer à balayer dès la page:

Download "PROBABILITES ET STATISTIQUE I&II"

Transcription

1 PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits de Venn) I.1.c. Cardinal d un ensemble fini I.1.d. Opérations booléennes I.1.e. Suites de sous-ensembles I.1.f. Ensemble produit cartésien I.1.g. Propriétés élémentaires du complémentaire et des opérations booléennes I.2. Notions de combinatoire I.2.a. La règle de multiplication I.2.b. Permutations et arrangements I.2.c. Combinaisons (sans répétition) I.2.d. Propriétés des coefficients binomiaux I.2.e. Coefficients multinomiaux I.2.f. Combinaisons (avec répétition) I.3. Notions de combinatoire I.3.a. Bridge I.3.b. Poker

2 CHAPITRE II - NOTIONS DE PROBABILITES II.1. Un exemple : le poker II.2. La définition du modèle probabiliste II.2.a. L ensemble fondamental II.2.b. La notion d événement II.2.c. La notion de probabilité II.3. Propriétés d une distribution de probabilité II.3.a. Propriétés élémentaires II.3.b. Probabilités de réunions d ensembles : Règle d inclusion-exclusion II.3.c. * Suites infinies d événements et lemme de Borel-Cantelli II.4. Evénements indépendants II.4.a. Indépendance de deux événements II.4.b. Indépendance de plusieurs événements II.4.c. Probabilité de réunions d événements indépendants II.5. Probabilités conditionnelles II.5.a. Définition II.5.b. Conditionnement multiple II.5.c. Formule des probabilités totales II.5.d. Formule de Bayes II.5.e. Exemples

3 CHAPITRE III - SUITES D EXPERIENCES ALEATOIRES III.1. Le modèle III.1.a. Le modèle abstrait le processus de Bernoulli III.1.b. Exemples III.2. La loi binomiale III.2.a. Le nombre de succès III.2.b. Stabilité III.3. La loi géométrique et loi binomiale négative III.3.a. Loi du temps du 1 er succès III.3.b. Propriété caractéristique de la loi géométrique : perte de mémoire III.3.c. Loi binomiale négative III.3.d. Stabilité III.4. Extensions du modèle III.4.a. Le modèle multinomial III.4.b. Modèle hypergéométrique III.5. Théorèmes limites III.5.a. Convergence du modèle hypergéométrique vers le modèle binomial III.5.b. Convergence du modèle binomial vers la loi de Poisson III.5.c. Convergence de la loi géométrique vers la loi exponentielle III.5.d. Loi des grands nombres III.5.e. Convergence vers la loi gaussienne ou normale III.6. Marche aléatoire et fortune du joueur III.6.a. Définition III.6.b. La loi de Z N III.6.c. Application au problème de la ruine de joueur III.6.d. Marche aléatoire et théorèmes limites

4 CHAPITRE IV - VARIABLES ALEATOIRES IV.1. Définitions et exemples IV.1.a. Variables aléatoires IV.1.b. Distribution de probabilités : densité de probabilités et fonction de répartition IV.2. Couples des variables aléatoires IV.2.a. Fonction de répartition conjointe IV.2.b. Fonction de répartition marginale IV.2.c. Propriétés de la fonction de répartition conjointe IV.2.d. Loi discrète conjointe IV.2.e. Loi continue conjointe IV.3. Espérance IV.3.a. Définition IV.3.b. Exemples IV.3.c. Propriétés élémentaires de l espérance IV.3.d. Espérance d une fonction d une variable aléatoire IV.3.e. Espérance : Inégalités IV.4. Variance et Covariance IV.4.a. Définitions IV.4.b. Exemples (Variance) IV.4.c. Propriétés élémentaires IV.5. Moments et transformée de Laplace IV.5.a. Moments IV.5.b. Définition de la transformée de Laplace IV.5.c. Relation avec les moments IV.5.d. Exemples IV.5.e. Convergence vers la loi gaussienne ou normale IV.6. Loi d une fonction des variables aléatoires IV.6.a. Changement de variables à une dimension IV.6.b. Changement de variables multidimensionnelles

5 CHAPITRE V - VARIABLES INDEPENDANTES ET THEOREMES LIMITES V.1. Définition de l indépendance des variables aléatoires V.1.a. Définition : Indépendance des deux variables aléatoires V.1.b. Indépendance et covariance V.1.c. Indépendance de plusieurs variables aléatoires V.1.d. Distribution conjointe de variables aléatoires indépendantes V.2. Variables aléatoires indépendantes et ordre V.2.a. Maximum ou minimum de variables aléatoires indépendantes V.2.b. Théorème limite pour les valeurs extrêmes de variables iid V.2.c. Statistique d ordre et vecteur des rangs V.3. Sommes des variables indépendantes V.3.a. Somme de deux variables indépendantes discrètes V.3.b. Somme de N variables indépendantes discrètes V.3.c. Somme de deux variables indépendantes continues V.3.d. Somme de N variables indépendantes continues V.3.e. Rôle de la transformation de Laplace V.3.f. Théorèmes de stabilité V.4. Lois des grands nombres V.4.a. Loi faible des grands nombres V.4.b. Loi forte des grands nombres V.4.c. Propriétés élémentaires V.5. Le Théorème central limite V.6. Pratique du Théorème central limite V.6.a. Approcher des variables continues V.6.b. Approcher des variables discrètes : Correction d histogramme

6 CHAPITRE VI - INTRODUCTION AUX STATISTIQUES VI.1. Le problème de l'estimation VI.2. Qualité d'un estimateur VI.2.a. Biais VI.2.b. Risque quadratique VI.2.c. Efficacité et optimalité d'estimateurs VI.2.d. Estimateurs consistants VI.3. Le maximum de vraisemblance VI.3.a. Le maximum de vraisemblance : variables aléatoires discrètes VI.3.b. Le maximum de vraisemblance : variables aléatoires continues VI.4. Estimation de la moyenne et de la variance pour un échantillon quelconque VI.5. Echantillons gaussiens VI.5.a. Loi des estimateurs naturels VI.5.b. Intervalles de confiance VI.5.c. Cas où la variance est inconnue VI.5.d. Comparaison de deux moyennes VI.6. Le problème des tests VI.7. Test sur la moyenne d'un échantillon gaussien VI.8. Le cas binomial VI.9. Test du Chi-deux

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

CH. II - COMPTABILITE

CH. II - COMPTABILITE Page 1 / 12 V4.20.60 Table des matières CH. I - ACHATS 3 I.A - CONTREMARQUE & COMMANDE AUTOMATIQUE... 3 I.B - CONTREMARQUE & COMMANDE CLIENT... 3 I.C - CONTREMARQUE & DATE DE LIVRAISON... 3 I.D - GOLD

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Théorie des probabilités

Théorie des probabilités Théorie des probabilités LAVOISIER, 2008 LAVOISIER 11, rue Lavoisier 75008 Paris www.hermes-science.com www.lavoisier.fr ISBN 978-2-7462-1720-1 ISSN 1952 2401 Le Code de la propriété intellectuelle n'autorisant,

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Définition d un Template

Définition d un Template Objectif Ce document a pour objectif de vous accompagner dans l utilisation des templates EuroPerformance. Il définit les différents modèles et exemples proposés. Définition d un Template Un template est

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

COMPTABILITE DES ONG

COMPTABILITE DES ONG COMPTABILITE DES ONG Table des matières : 1. Avant-propos 2. Considérations d ordre général au sujet de la comptabilité des ONG 3. Adaptation du schéma de comptes annuels 3.1. SCHEMA DU BILAN 3.2. SCHEMA

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS

AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS CONCOURS EXTERNE ÉPREUVES D ADMISSION session 2010 TRAVAUX PRATIQUES DE CONTRE-OPTION DU SECTEUR A CANDIDATS DES SECTEURS B ET C

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

SESSION 2013 MPP2008! PHYSIQUE 2. Durée : 4 heures!

SESSION 2013 MPP2008! PHYSIQUE 2. Durée : 4 heures! SESSION 2013 MPP2008 EPREUVE SPECIFIQUE - FILIERE MP " PHYSIQUE 2 Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I

MATIERES PM 2. VERT (Axe/mesures/actions) AXE I AXE I CAPITAL HUMAIN MESURE I.1 I.1.A I.1.B I.1.C Mobiliser collectivement les acteurs de l'enseignement, de la formation professionnelle et de l'emploi Développer les bassins de vie et créer des pôles

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Méthodes Numériques et Informatiques (MP050) Examen de TP du 23 juin 2010

Méthodes Numériques et Informatiques (MP050) Examen de TP du 23 juin 2010 Méthodes Numériques et Informatiques () Examen de TP du 23 juin 2010 Calculatrices et documents autorisés Les deux parties sont indépendantes. Les questions indépendantes sont signalées par le symbole

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision

Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous

Plus en détail

Code social - Sécurité sociale 2012

Code social - Sécurité sociale 2012 Code social - Sécurité sociale 2012 Ce Code est à jour au 15 janvier 2012. Editeur responsable: Hans Suijkerbuijk 2012 Wolters Kluwer Belgium SA Waterloo Office Park Drève Richelle 161 L B-1410 Waterloo

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N

ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -

Plus en détail

Théorie de la crédibilité

Théorie de la crédibilité ISFA - Année 2008-2009 Théorie de la crédibilité Chapitre 2 : Prime de Bayes Pierre-E. Thérond Email, Page web, Ressources actuarielles Langage bayesien (1/2) Considérons une hypothèse H et un événement

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Événements et probabilités, probabilité conditionnelle et indépendance

Événements et probabilités, probabilité conditionnelle et indépendance Chapitre 1 Événements et probabilités, probabilité conditionnelle et indépendance On cherche ici à proposer un cadre mathématique dans lequel on puisse parler sans ambiguité de la probabilité qu un événement

Plus en détail

Aléatoire. Sylvie Méléard. Introduction à la théorie et au calcul des probabilités ÉCOLE POLYTECHNIQUE ÉCOLE POLYTECHNIQUE ÉCOLE POLYTECHNIQUE

Aléatoire. Sylvie Méléard. Introduction à la théorie et au calcul des probabilités ÉCOLE POLYTECHNIQUE ÉCOLE POLYTECHNIQUE ÉCOLE POLYTECHNIQUE Aléatoire Introduction à la théorie et au calcul des probabilités Sylvie Méléard DE L'ÉCOLE LES ÉDITIONS POLYTECHNIQUE Ce logo a pour objet d alerter le lecteur sur la menace que représente pour l avenir

Plus en détail

CH. I - RAPPELS DES EVOLUTIONS DE LA VERSION

CH. I - RAPPELS DES EVOLUTIONS DE LA VERSION 1 V4.30.70 Sommaire CH. I - RAPPELS DES EVOLUTIONS DE LA VERSION 60 3 I.A - ARRET DES VERSIONS «TEXTE» ET «GRAPHIQUE» 3 I.B - RECHERCHES ETENDUES 4 CH. II - VERSION 70 : MODULE VENTES 6 II.A - AUGMENTATION

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Projet TER - Master 1 SITN La statistique Bayésienne

Projet TER - Master 1 SITN La statistique Bayésienne Projet TER - Master 1 SITN La statistique Bayésienne Artemis TOUMAZI Encadré par Mme Anne Perrut 0.0 0.5 1.0 1.5.0.5 0.0 0. 0.4 0.6 0.8 1.0 1. 7 juin 013 À ma mère et mon père. Table des matières Introduction

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Conditions Générales d'utilisation

Conditions Générales d'utilisation Conditions Générales d'utilisation Préambule Le présent site Internet www.tournoi7decoeur.com (le " Site Internet") est édité par l association Côté Ouvert, Association loi de 1901, enregistrée à la préfecture

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

MAP 311 - Aléatoire - PC 1. Probabilités

MAP 311 - Aléatoire - PC 1. Probabilités MAP 311 - Aléatoire - PC 1 Emmanuel Gobet Feuille de PC disponible en avance sur le site http://www.cmap.polytechnique.fr/~gobet/. Les exercices marqués ( ) sont corrigés dans le livre Aléatoire de S.

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Modèles et Méthodes de Réservation

Modèles et Méthodes de Réservation Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Conditions générales (CG)

Conditions générales (CG) Conditions générales (CG) pour l achat et l utilisation de l appli mobile pour les titres de transport communautaires Libero et les titres de transport électroniques Libero (application mobile LiberoTickets)

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

INF 162 Probabilités pour l informatique

INF 162 Probabilités pour l informatique Guy Melançon INF 162 Probabilités pour l informatique Licence Informatique 20 octobre 2010 Département informatique UFR Mathématiques Informatique Université Bordeaux I Année académique 2010-2011 Table

Plus en détail

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial

Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial WHC.12/01 juillet 2012 Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial ORGANISATION DES NATIONS UNIES POUR L EDUCATION, LA SCIENCE ET LA CULTURE COMITE INTERGOUVERNEMENTAL

Plus en détail

Développement d'un projet informatique

Développement d'un projet informatique Développement d'un projet informatique par Emmanuel Delahaye (Espace personnel d'emmanuel Delahaye) Date de publication : 27 janvier 2008 Dernière mise à jour : 25 avril 2009 Cet article présente un certain

Plus en détail

TUTORIEL. Abyla Formation à l attention des Directeurs-Techniques Avril 2013

TUTORIEL. Abyla Formation à l attention des Directeurs-Techniques Avril 2013 TUTORIEL Abyla Formation à l attention des Directeurs-Techniques Avril 2013 SA SOCIETE WALLONNE DU LOGEMENT PREMIÈRE PARTIE : GESTION DU PATRIMOINE I. ACCES AU LOGICIEL Accéder au portail (via le site

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

CONCOURS 2015 Programme des classes préparatoires

CONCOURS 2015 Programme des classes préparatoires CONCOURS 2015 Programme des classes préparatoires Voie économique et commerciale option scientifique option économique option technologique Voie littéraire Filière B/L Lettres et Sciences Sociales Filière

Plus en détail

Dunod, Paris, 2014 ISBN 978-2-10-059615-7

Dunod, Paris, 2014 ISBN 978-2-10-059615-7 Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten

Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten I.P.C.F. Institut Professionnel des Comptables et Fiscalistes agréés B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten Plan comptable Octobre 2005 Avenue Legrand 45-1050 BRUXELLES Tél. (02)

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Les fonctions Statistiques sous «EXCEL» 29/09/2011

Les fonctions Statistiques sous «EXCEL» 29/09/2011 1. Utilité des Statistiques Les objectifs - Avoir une idée du comportement d un événement ou de la valeur normale d une donnée. - Décrire et estimer la valeur des paramètres et déterminer des critères

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique

Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique Une expérience de construction d'ontologie d application pour indexer les ressources d une formation en statistique Brigitte Chaput 1, Ahcene Benayache 2, Catherine Barry 3, Marie-Hélène Abel 2 1 Equipe

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail