PROBABILITES ET STATISTIQUE I&II
|
|
- Jean-Sébastien Couture
- il y a 5 ans
- Total affichages :
Transcription
1 PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits de Venn) I.1.c. Cardinal d un ensemble fini I.1.d. Opérations booléennes I.1.e. Suites de sous-ensembles I.1.f. Ensemble produit cartésien I.1.g. Propriétés élémentaires du complémentaire et des opérations booléennes I.2. Notions de combinatoire I.2.a. La règle de multiplication I.2.b. Permutations et arrangements I.2.c. Combinaisons (sans répétition) I.2.d. Propriétés des coefficients binomiaux I.2.e. Coefficients multinomiaux I.2.f. Combinaisons (avec répétition) I.3. Notions de combinatoire I.3.a. Bridge I.3.b. Poker
2 CHAPITRE II - NOTIONS DE PROBABILITES II.1. Un exemple : le poker II.2. La définition du modèle probabiliste II.2.a. L ensemble fondamental II.2.b. La notion d événement II.2.c. La notion de probabilité II.3. Propriétés d une distribution de probabilité II.3.a. Propriétés élémentaires II.3.b. Probabilités de réunions d ensembles : Règle d inclusion-exclusion II.3.c. * Suites infinies d événements et lemme de Borel-Cantelli II.4. Evénements indépendants II.4.a. Indépendance de deux événements II.4.b. Indépendance de plusieurs événements II.4.c. Probabilité de réunions d événements indépendants II.5. Probabilités conditionnelles II.5.a. Définition II.5.b. Conditionnement multiple II.5.c. Formule des probabilités totales II.5.d. Formule de Bayes II.5.e. Exemples
3 CHAPITRE III - SUITES D EXPERIENCES ALEATOIRES III.1. Le modèle III.1.a. Le modèle abstrait le processus de Bernoulli III.1.b. Exemples III.2. La loi binomiale III.2.a. Le nombre de succès III.2.b. Stabilité III.3. La loi géométrique et loi binomiale négative III.3.a. Loi du temps du 1 er succès III.3.b. Propriété caractéristique de la loi géométrique : perte de mémoire III.3.c. Loi binomiale négative III.3.d. Stabilité III.4. Extensions du modèle III.4.a. Le modèle multinomial III.4.b. Modèle hypergéométrique III.5. Théorèmes limites III.5.a. Convergence du modèle hypergéométrique vers le modèle binomial III.5.b. Convergence du modèle binomial vers la loi de Poisson III.5.c. Convergence de la loi géométrique vers la loi exponentielle III.5.d. Loi des grands nombres III.5.e. Convergence vers la loi gaussienne ou normale III.6. Marche aléatoire et fortune du joueur III.6.a. Définition III.6.b. La loi de Z N III.6.c. Application au problème de la ruine de joueur III.6.d. Marche aléatoire et théorèmes limites
4 CHAPITRE IV - VARIABLES ALEATOIRES IV.1. Définitions et exemples IV.1.a. Variables aléatoires IV.1.b. Distribution de probabilités : densité de probabilités et fonction de répartition IV.2. Couples des variables aléatoires IV.2.a. Fonction de répartition conjointe IV.2.b. Fonction de répartition marginale IV.2.c. Propriétés de la fonction de répartition conjointe IV.2.d. Loi discrète conjointe IV.2.e. Loi continue conjointe IV.3. Espérance IV.3.a. Définition IV.3.b. Exemples IV.3.c. Propriétés élémentaires de l espérance IV.3.d. Espérance d une fonction d une variable aléatoire IV.3.e. Espérance : Inégalités IV.4. Variance et Covariance IV.4.a. Définitions IV.4.b. Exemples (Variance) IV.4.c. Propriétés élémentaires IV.5. Moments et transformée de Laplace IV.5.a. Moments IV.5.b. Définition de la transformée de Laplace IV.5.c. Relation avec les moments IV.5.d. Exemples IV.5.e. Convergence vers la loi gaussienne ou normale IV.6. Loi d une fonction des variables aléatoires IV.6.a. Changement de variables à une dimension IV.6.b. Changement de variables multidimensionnelles
5 CHAPITRE V - VARIABLES INDEPENDANTES ET THEOREMES LIMITES V.1. Définition de l indépendance des variables aléatoires V.1.a. Définition : Indépendance des deux variables aléatoires V.1.b. Indépendance et covariance V.1.c. Indépendance de plusieurs variables aléatoires V.1.d. Distribution conjointe de variables aléatoires indépendantes V.2. Variables aléatoires indépendantes et ordre V.2.a. Maximum ou minimum de variables aléatoires indépendantes V.2.b. Théorème limite pour les valeurs extrêmes de variables iid V.2.c. Statistique d ordre et vecteur des rangs V.3. Sommes des variables indépendantes V.3.a. Somme de deux variables indépendantes discrètes V.3.b. Somme de N variables indépendantes discrètes V.3.c. Somme de deux variables indépendantes continues V.3.d. Somme de N variables indépendantes continues V.3.e. Rôle de la transformation de Laplace V.3.f. Théorèmes de stabilité V.4. Lois des grands nombres V.4.a. Loi faible des grands nombres V.4.b. Loi forte des grands nombres V.4.c. Propriétés élémentaires V.5. Le Théorème central limite V.6. Pratique du Théorème central limite V.6.a. Approcher des variables continues V.6.b. Approcher des variables discrètes : Correction d histogramme
6 CHAPITRE VI - INTRODUCTION AUX STATISTIQUES VI.1. Le problème de l'estimation VI.2. Qualité d'un estimateur VI.2.a. Biais VI.2.b. Risque quadratique VI.2.c. Efficacité et optimalité d'estimateurs VI.2.d. Estimateurs consistants VI.3. Le maximum de vraisemblance VI.3.a. Le maximum de vraisemblance : variables aléatoires discrètes VI.3.b. Le maximum de vraisemblance : variables aléatoires continues VI.4. Estimation de la moyenne et de la variance pour un échantillon quelconque VI.5. Echantillons gaussiens VI.5.a. Loi des estimateurs naturels VI.5.b. Intervalles de confiance VI.5.c. Cas où la variance est inconnue VI.5.d. Comparaison de deux moyennes VI.6. Le problème des tests VI.7. Test sur la moyenne d'un échantillon gaussien VI.8. Le cas binomial VI.9. Test du Chi-deux
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Théorie des probabilités
Théorie des probabilités LAVOISIER, 2008 LAVOISIER 11, rue Lavoisier 75008 Paris www.hermes-science.com www.lavoisier.fr ISBN 978-2-7462-1720-1 ISSN 1952 2401 Le Code de la propriété intellectuelle n'autorisant,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Transformations nucléaires
I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Définition d un Template
Objectif Ce document a pour objectif de vous accompagner dans l utilisation des templates EuroPerformance. Il définit les différents modèles et exemples proposés. Définition d un Template Un template est
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS
AGRÉGATION DE SCIENCES DE LA VIE - SCIENCES DE LA TERRE ET DE L UNIVERS CONCOURS EXTERNE ÉPREUVES D ADMISSION session 2010 TRAVAUX PRATIQUES DE CONTRE-OPTION DU SECTEUR A CANDIDATS DES SECTEURS B ET C
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
MATIERES PM 2. VERT (Axe/mesures/actions) AXE I
AXE I CAPITAL HUMAIN MESURE I.1 I.1.A I.1.B I.1.C Mobiliser collectivement les acteurs de l'enseignement, de la formation professionnelle et de l'emploi Développer les bassins de vie et créer des pôles
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome
PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
BTS BAT 1 Notions élémentaires de chimie 1
BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on
Code social - Sécurité sociale 2012
Code social - Sécurité sociale 2012 Ce Code est à jour au 15 janvier 2012. Editeur responsable: Hans Suijkerbuijk 2012 Wolters Kluwer Belgium SA Waterloo Office Park Drève Richelle 161 L B-1410 Waterloo
Tests du χ 2. on accepte H 0 bonne décision erreur de seconde espèce on rejette H 0 erreur de première espèce bonne décision
Page n 1. Tests du χ 2 une des fonctions des statistiques est de proposer, à partir d observations d un phénomène aléatoire (ou modélisé comme tel) une estimation de la loi de ce phénomène. C est que nous
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N
ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Conditions Générales d'utilisation
Conditions Générales d'utilisation Préambule Le présent site Internet www.tournoi7decoeur.com (le " Site Internet") est édité par l association Côté Ouvert, Association loi de 1901, enregistrée à la préfecture
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système
SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support
Introduction au Calcul des Probabilités
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.
Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée
Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1
Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs
Conditions générales (CG)
Conditions générales (CG) pour l achat et l utilisation de l appli mobile pour les titres de transport communautaires Libero et les titres de transport électroniques Libero (application mobile LiberoTickets)
MÉTHODE DE MONTE CARLO.
MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental
INF 162 Probabilités pour l informatique
Guy Melançon INF 162 Probabilités pour l informatique Licence Informatique 20 octobre 2010 Département informatique UFR Mathématiques Informatique Université Bordeaux I Année académique 2010-2011 Table
Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial
WHC.12/01 juillet 2012 Orientations devant guider la mise en œuvre de la Convention du patrimoine mondial ORGANISATION DES NATIONS UNIES POUR L EDUCATION, LA SCIENCE ET LA CULTURE COMITE INTERGOUVERNEMENTAL
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz
Développement d'un projet informatique
Développement d'un projet informatique par Emmanuel Delahaye (Espace personnel d'emmanuel Delahaye) Date de publication : 27 janvier 2008 Dernière mise à jour : 25 avril 2009 Cet article présente un certain
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Plan comptable. Octobre 2005. B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten
I.P.C.F. Institut Professionnel des Comptables et Fiscalistes agréés B.I.B.F. Beroepsinstituut van erkende Boekhouders en Fiscalisten Plan comptable Octobre 2005 Avenue Legrand 45-1050 BRUXELLES Tél. (02)
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
Dunod, Paris, 2014 ISBN 978-2-10-059615-7
Illustration de couverture : Federo-istock.com Dunod, Paris, 2014 ISBN 978-2-10-059615-7 1.1 Symétrie du hasard et probabilité uniforme 3 1.2 Loi de probabilité sur un ensemble fini 6 1.3 Probabilité sur
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr
Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux
REGLEMENT INTERIEUR. COLLEGE Emile ZOLA
REGLEMENT INTERIEUR ***** COLLEGE Emile ZOLA (Modifié par les conseil d administration du 5 octobre 2006, du 14 juin 2007, du 19 juin 2008) 1 REGLEMENT INTERIEUR COLLEGE EMILE ZOLA RENNES Préambule I ORGANISATION
COURS 470 Série 10. Comptabilité Générale
COURS 470 Série 10 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
Guide de l'archivage électronique sécurisé
Original : Français Guide de l'archivage électronique sécurisé Recommandations pour la mise en œuvre d'un système d'archivage interne ou externe utilisant des techniques de scellement aux fins de garantir
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
MA6.06 : Mesure et Probabilités
Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................
Supervision sécurité. Création d une demande de descente. 13/03/2014 Supervision sécurité Création d'une demande
Supervision sécurité Création d une demande de descente 1 Sommaire I. Connexion II. Création d une demande a. Informations générales b. Localisation c. Formulaire d. Suivi III. Validation 2 I. Connexion
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Guidance de Statistique : Epreuve de préparation à l examen
Guidance de Statistique : Epreuve de préparation à l examen Durée totale : 90 min (1h30) 5 questions de pratique (12 pts) 20 décembre 2011 Matériel Feuilles de papier De quoi écrire Calculatrice Latte
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
CHAPITRE 5. Stratégies Mixtes
CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,
Pierre Thérond pierre@therond.fr. Année universitaire 2013-2014
http://www.therond.fr pierre@therond.fr Institut de Science Financière et d Assurances - Université Lyon 1 Année universitaire 2013-2014 Plan du cours 1 Chapitre 1 - Introduction 2 3 4 Bibliographie principale
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
Probabilités et Statistique
Ricco Rakotomalala Probabilités et Statistique Notes de cours Université Lumière Lyon 2 Avant-propos Ce document est un support de cours pour les enseignements des probabilités et de la statistique. Il
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
14. Introduction aux files d attente
14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
Modélisation des risques
2 Modélisation des risques 2. Introduction L objectif de ce chapitre est de présenter les modèles de base utilisés pour décrire le comportement aléatoire d un risque en actuariat pour une période xe. Les
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
LIVRET BAILLEURS. Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB
LIVRET BAILLEURS Stratégie pour l'amélioration de la gestion urbaine de proximité à partir du dispositif d'abattement de la TFPB Novembre 2011 Sommaire I.Préambule...4 I.A.«L'abattement» : un terme à préciser...4
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Documentation technique du logiciel Moduleo Version du 03/12/2014
Version du 03/12/2014 SOMMAIRE I) Architecture globale... 3 I.A) Logiciel modulaire... 3 I.B) Logiciel réseau... 3 I.C) Information en temps-réel... 3 I.D) Client lourd / serveur lourd... 4 II) Réseau...
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,