PROBABILITES ET STATISTIQUE I&II

Dimension: px
Commencer à balayer dès la page:

Download "PROBABILITES ET STATISTIQUE I&II"

Transcription

1 PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits de Venn) I.1.c. Cardinal d un ensemble fini I.1.d. Opérations booléennes I.1.e. Suites de sous-ensembles I.1.f. Ensemble produit cartésien I.1.g. Propriétés élémentaires du complémentaire et des opérations booléennes I.2. Notions de combinatoire I.2.a. La règle de multiplication I.2.b. Permutations et arrangements I.2.c. Combinaisons (sans répétition) I.2.d. Propriétés des coefficients binomiaux I.2.e. Coefficients multinomiaux I.2.f. Combinaisons (avec répétition) I.3. Notions de combinatoire I.3.a. Bridge I.3.b. Poker

2 CHAPITRE II - NOTIONS DE PROBABILITES II.1. Un exemple : le poker II.2. La définition du modèle probabiliste II.2.a. L ensemble fondamental II.2.b. La notion d événement II.2.c. La notion de probabilité II.3. Propriétés d une distribution de probabilité II.3.a. Propriétés élémentaires II.3.b. Probabilités de réunions d ensembles : Règle d inclusion-exclusion II.3.c. * Suites infinies d événements et lemme de Borel-Cantelli II.4. Evénements indépendants II.4.a. Indépendance de deux événements II.4.b. Indépendance de plusieurs événements II.4.c. Probabilité de réunions d événements indépendants II.5. Probabilités conditionnelles II.5.a. Définition II.5.b. Conditionnement multiple II.5.c. Formule des probabilités totales II.5.d. Formule de Bayes II.5.e. Exemples

3 CHAPITRE III - SUITES D EXPERIENCES ALEATOIRES III.1. Le modèle III.1.a. Le modèle abstrait le processus de Bernoulli III.1.b. Exemples III.2. La loi binomiale III.2.a. Le nombre de succès III.2.b. Stabilité III.3. La loi géométrique et loi binomiale négative III.3.a. Loi du temps du 1 er succès III.3.b. Propriété caractéristique de la loi géométrique : perte de mémoire III.3.c. Loi binomiale négative III.3.d. Stabilité III.4. Extensions du modèle III.4.a. Le modèle multinomial III.4.b. Modèle hypergéométrique III.5. Théorèmes limites III.5.a. Convergence du modèle hypergéométrique vers le modèle binomial III.5.b. Convergence du modèle binomial vers la loi de Poisson III.5.c. Convergence de la loi géométrique vers la loi exponentielle III.5.d. Loi des grands nombres III.5.e. Convergence vers la loi gaussienne ou normale III.6. Marche aléatoire et fortune du joueur III.6.a. Définition III.6.b. La loi de Z N III.6.c. Application au problème de la ruine de joueur III.6.d. Marche aléatoire et théorèmes limites

4 CHAPITRE IV - VARIABLES ALEATOIRES IV.1. Définitions et exemples IV.1.a. Variables aléatoires IV.1.b. Distribution de probabilités : densité de probabilités et fonction de répartition IV.2. Couples des variables aléatoires IV.2.a. Fonction de répartition conjointe IV.2.b. Fonction de répartition marginale IV.2.c. Propriétés de la fonction de répartition conjointe IV.2.d. Loi discrète conjointe IV.2.e. Loi continue conjointe IV.3. Espérance IV.3.a. Définition IV.3.b. Exemples IV.3.c. Propriétés élémentaires de l espérance IV.3.d. Espérance d une fonction d une variable aléatoire IV.3.e. Espérance : Inégalités IV.4. Variance et Covariance IV.4.a. Définitions IV.4.b. Exemples (Variance) IV.4.c. Propriétés élémentaires IV.5. Moments et transformée de Laplace IV.5.a. Moments IV.5.b. Définition de la transformée de Laplace IV.5.c. Relation avec les moments IV.5.d. Exemples IV.5.e. Convergence vers la loi gaussienne ou normale IV.6. Loi d une fonction des variables aléatoires IV.6.a. Changement de variables à une dimension IV.6.b. Changement de variables multidimensionnelles

5 CHAPITRE V - VARIABLES INDEPENDANTES ET THEOREMES LIMITES V.1. Définition de l indépendance des variables aléatoires V.1.a. Définition : Indépendance des deux variables aléatoires V.1.b. Indépendance et covariance V.1.c. Indépendance de plusieurs variables aléatoires V.1.d. Distribution conjointe de variables aléatoires indépendantes V.2. Variables aléatoires indépendantes et ordre V.2.a. Maximum ou minimum de variables aléatoires indépendantes V.2.b. Théorème limite pour les valeurs extrêmes de variables iid V.2.c. Statistique d ordre et vecteur des rangs V.3. Sommes des variables indépendantes V.3.a. Somme de deux variables indépendantes discrètes V.3.b. Somme de N variables indépendantes discrètes V.3.c. Somme de deux variables indépendantes continues V.3.d. Somme de N variables indépendantes continues V.3.e. Rôle de la transformation de Laplace V.3.f. Théorèmes de stabilité V.4. Lois des grands nombres V.4.a. Loi faible des grands nombres V.4.b. Loi forte des grands nombres V.4.c. Propriétés élémentaires V.5. Le Théorème central limite V.6. Pratique du Théorème central limite V.6.a. Approcher des variables continues V.6.b. Approcher des variables discrètes : Correction d histogramme

6 CHAPITRE VI - INTRODUCTION AUX STATISTIQUES VI.1. Le problème de l'estimation VI.2. Qualité d'un estimateur VI.2.a. Biais VI.2.b. Risque quadratique VI.2.c. Efficacité et optimalité d'estimateurs VI.2.d. Estimateurs consistants VI.3. Le maximum de vraisemblance VI.3.a. Le maximum de vraisemblance : variables aléatoires discrètes VI.3.b. Le maximum de vraisemblance : variables aléatoires continues VI.4. Estimation de la moyenne et de la variance pour un échantillon quelconque VI.5. Echantillons gaussiens VI.5.a. Loi des estimateurs naturels VI.5.b. Intervalles de confiance VI.5.c. Cas où la variance est inconnue VI.5.d. Comparaison de deux moyennes VI.6. Le problème des tests VI.7. Test sur la moyenne d'un échantillon gaussien VI.8. Le cas binomial VI.9. Test du Chi-deux

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

MATHÉMATIQUES I. lorsqu elle est périodique à partir d un certain rang, c est-à-dire s il existe

MATHÉMATIQUES I. lorsqu elle est périodique à partir d un certain rang, c est-à-dire s il existe MATHÉMATIQUES I On dit qu une suite réelle a = ( a n ) n IN est ultimement périodique lorsqu elle est périodique à partir d un certain rang, c est-à-dire s il existe n 0 IN et p IN tels que : ( R) n IN,

Plus en détail

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale Devoir maison n 5 MP Lycée Clemenceau A rendre le 7 janvier 214 Centrale - Dans le problème, λ désigne toujours une application continue de IR + dans IR +, croissante et non majorée. - Dans le problème,

Plus en détail

I - Introduction à La psychologie Expérimentale

I - Introduction à La psychologie Expérimentale LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

Formulaire de Probabilités et Statistiques

Formulaire de Probabilités et Statistiques Formulaire de Probabilités et Statistiques AD+JS 1 Rappels de combinatoire Arrangements avec répétitions Nombre d applications d un ensemble à k éléments dans un ensemble à n éléments : n k Arrangements

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

MATHÉMATIQUES I. Les calculatrices sont autorisées. Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme

MATHÉMATIQUES I. Les calculatrices sont autorisées. Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme MATHÉMATIQUES I Les calculatrices sont autorisées Le problème porte sur l étude des séries factorielles, séries de fonctions de la forme a n --------------------------------------------------------------

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25

CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 TABLE DES MATIÈRES Sommaire... 5 Avant- propos... 9 Remerciements... 19 À propos de l auteur... 23 CHAPITRE 1 La nature de l économétrie et la structure des données économiques... 25 1.1 Qu est- ce que

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Formulaire de Mathématique

Formulaire de Mathématique COLLECTION LES LEXIQUES DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Mathématique par Xavier Chauvet LEXIQUE N 17 COLLECTION DIRIGÉE PAR

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Cours de mathématiques Partie IV Probabilités MPSI 4

Cours de mathématiques Partie IV Probabilités MPSI 4 Lycée Louis-Le-Grand, Paris Année 2013/2014 Cours de mathématiques Partie IV Probabilités MPSI 4 Alain TROESCH Version du: 30 mai 2014 Table des matières 1 Dénombrement 3 I Combinatoire des ensembles

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Chapitre 4 NOTIONS DE PROBABILITÉS

Chapitre 4 NOTIONS DE PROBABILITÉS Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 4 NOTIONS DE PROBABILITÉS Les chapitres précédents donnent des méthodes graphiques et numériques pour caractériser

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série STI2D et STL. Mercredi 15 mai 2013. Epreuves Geipi Polytech NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série STI2D et STL Mercredi 15 mai 2013 Epreuves Geipi Polytech 1 2 Nous vous conseillons de répartir

Plus en détail

CHAPITRE I INTRODUCTION. I.1 Définitions... 41

CHAPITRE I INTRODUCTION. I.1 Définitions... 41 TABLE DES MATIÈRES CHAPITRE I INTRODUCTION I LE CHAMP DE LA GESTION DE LA PRODUCTION ET DES FLUX 41 I.1 Définitions... 41 I.1.1 Production et chaîne logistique... 41 I.1.2 Gestion de la production et des

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Objectif du problème. Partie I - Matrices carrées d ordre 2 à coefficients entiers

Objectif du problème. Partie I - Matrices carrées d ordre 2 à coefficients entiers Centrale-Supélec 004 MATHÉMATIQUES II Objectif du problème Cette introduction est destinée à expliquer le type des résultats obtenus dans le problème Ce dernier ne commence qu à partir du I Dans la démonstration

Plus en détail

CH. I - VERSION 80 : MODULE VENTES

CH. I - VERSION 80 : MODULE VENTES 1 V4.30.80 Sommaire CH. I - VERSION 80 : MODULE VENTES 3 I.A - AVOIR A PARTIR D UNE FACTURE 3 I.B - CHOIX D ADRESSES SPECIFIQUES POUR LA FACTURATION 4 I.C - CHOIX D AFFICHAGE DU NOMBRE DE LIGNES DOCUMENT

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

Chapitre 8 : Probabilités-Indépendance

Chapitre 8 : Probabilités-Indépendance Cours de mathématiques Terminale S Chapitre 8 : Probabilités-Indépendance Année scolaire 008-009 mise à jour 6 janvier 009 Fig. Andreï Kolmogorov Un précurseur de la formalisation de la théorie des probabilités

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Un distributeur

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 On

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Cours de probabilités, ECS deuxième année. Alain TROESCH

Cours de probabilités, ECS deuxième année. Alain TROESCH Cours de probabilités, ECS deuxième année Alain TROESCH 10 janvier 2012 Table des matières 1 Rappels de probabilités générales et discrètes 5 1.1 Principes généraux du calcul des probabilités.....................

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

MATHÉMATIQUES II. Objectif du problème

MATHÉMATIQUES II. Objectif du problème MATHÉMATIQUES II Objectif du problème Cette introduction est destinée à expliquer le type des résultats obtenus dans le problème Ce dernier ne commence qu à partir du I Dans la démonstration en 1994 du

Plus en détail

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale,

Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, PROGRESSION SPIRALÉE Page 1/10 Le documentd accompagnement des programmes de Mathématiques en classe de première et de terminale, série scientifique et série économique et sociale, précise que : " Les

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 15 mai Epreuves communes ENIT et Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 15 mai Epreuves communes ENIT et Geipi Polytech Ne rien inscrire dans ce cadre NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 15 mai 2013 Epreuves communes ENIT et Geipi Polytech Nous

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Chapitre 6 : Génération aléatoire

Chapitre 6 : Génération aléatoire Chapitre 6 : Génération aléatoire Alexandre Blondin Massé Laboratoire d informatique formelle Université du Québec à Chicoutimi 12 février 2013 Cours 8STT105 Département d informatique et mathématique

Plus en détail

PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A

PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A PROGRAMME DETAILLE AU CONCOURS INTERNATIONAL D ENTREE AU CYCLE MST-A A/- EPREUVE DE CULTURE GENERALE ET FRANÇAIS 1- Les problèmes du monde contemporain 2- Les grands courants de la pensée moderne 3- Exercice

Plus en détail

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève

EXERCICES SANS PRÉPARATION HEC 2005. Question 11 D après HEC 2005-11 F 2 EXERCICES SANS PRÉPARATION 2008. Question 7 HEC 2006-7 F 1 élève 30-1- 2013 J.F.C. p. 1 F 1 F 2 F 3 Assez simple ou proche du cours. Demande du travail. Délicat. EXERCICES SANS PRÉPARATION HEC 2005 Question 11 D après HEC 2005-11 F 2 X est une variable aléatoire de

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Partie I - Valeurs propres de AB et BA

Partie I - Valeurs propres de AB et BA SESSION 9 Concours commun Centrale MATHÉMATIQUES. FILIERE PSI Partie I - Valeurs propres de AB et BA I.A - Cas de la valeur propre. I.A.) Sp(AB) Ker(AB) {} AB / G L n (R) det(ab) =. I.A.) Sp(AB) det(ab)

Plus en détail

CH. II - COMPTABILITE

CH. II - COMPTABILITE Page 1 / 12 V4.20.60 Table des matières CH. I - ACHATS 3 I.A - CONTREMARQUE & COMMANDE AUTOMATIQUE... 3 I.B - CONTREMARQUE & COMMANDE CLIENT... 3 I.C - CONTREMARQUE & DATE DE LIVRAISON... 3 I.D - GOLD

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Licence Pro Amélioration Végétale

Licence Pro Amélioration Végétale Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

Correction du TP4. column 1 to 17. column 18 to 34. column 35 to 51. column 52 to 68. column 69 to 85. column 86 to 100. U i ]. i=1.

Correction du TP4. column 1 to 17. column 18 to 34. column 35 to 51. column 52 to 68. column 69 to 85. column 86 to 100. U i ]. i=1. Exercice 1. 1. U=grand(1,10000,'uin',-2,5) disp(u(1:100), "U=") On obtient par exemple : U= column 1 to 17-1. 2. 3. 0. 5. 3. - 1. 0. 4. - 2. 5. 3. - 1. 2. 0. - 1. 3. column 18 to 34-2. - 1. 3. 1. 5. 5.

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Excel Emmanuel Grenier emmanuel.grenier@isab.fr I. Introduction Incontournable lorsqu il s agit de gérer des phénomènes aléatoires complexes, la simulation probabiliste

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 On

Plus en détail

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques.

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques. MATHÉMATIQUES II Dans tout le problème, M désigne le IR -espace vectoriel des matrices carrées à coefficients réels dont l élément nul est noté 0, et S le sous-espace vectoriel de M formé des matrices

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Physique. chassis aimant. Figure 1

Physique. chassis aimant. Figure 1 Physique TSI 4 heures Calculatrices autorisées 2013 Les résultats numériques seront donnés avec un nombre de chiffres significatifs compatible avec celui utilisé pour les données. On s intéresse ici à

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Maths par Xavier Chauvet MÉMENTO N 10 Les Mémentos de l INSEEC Depuis

Plus en détail

Option informatique. Deux exemples de problèmes

Option informatique. Deux exemples de problèmes Option informatique MP 4 heures Calculatrices autorisées 2015 Les candidats devront répondre aux questions de programmation en utilisant le langage Caml. Ils devront donner le type, ou la signature, de

Plus en détail

Cours de Probabilités

Cours de Probabilités Licence 2-S3 SI-MASS Année 2013 Cours de Probabilités Pierre DUSART 2 Chapitre 1 Éléments d analyse combinatoire 1.1 Quelques définitions Disposition sans répétition : c est une disposition où un élément

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Couple de variables aléatoires - Notion d indépendance.

Couple de variables aléatoires - Notion d indépendance. Couple de variables aléatoires - Notion d indépendance. Préparation au Capes - Université Rennes 1 On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Analyse combinatoire

Analyse combinatoire Mathématiques Générales B Université de Genève Sylvain Sardy 6 mars 2008 Le but de l analyse combinatoire (techniques de dénombrement est d apprendre à compter le nombre d éléments d un ensemble fini de

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE

Statistiques et probabilités : Loi Normale. Les I.P.R. et Formateurs de l Académie de LILLE Statistiques et probabilités : Loi Normale Les I.P.R. et Formateurs de l Académie de LILLE Bulletin officiel spécial 8 du 13 octobre 2011 Cadre général : loi à densité Définition Une fonction f définie

Plus en détail

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1

COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 COURS DE PROBABILITE 2ième année d économie et de gestion Semestre 1 Laurence GRAMMONT Laurence.Grammont@univ-st-etienne.fr Les solutions des exercices posés dans ce polycopié ne sont pas rédigées. October

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

ISE: Introduction à la statistique et à l économétrie. E. Le Pennec École Polytechnique

ISE: Introduction à la statistique et à l économétrie. E. Le Pennec École Polytechnique ISE: Introduction à la statistique et à l économétrie E. Le Pennec École Polytechnique 2014 Menu du jour Organisation Objectifs du cours Les statistiques sont partout! Modélisation statistique Plan du

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail