LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

Dimension: px
Commencer à balayer dès la page:

Download "LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»"

Transcription

1 LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers utilisent l analyse statistique pour prédire si un emprunteur sera un bon ou un mauvais payeur et prendre ensuite la décision appropriée : acceptation sans condition, prise de garantie, refus. La modélisation et la décision se fondent sur l observation du passé : on connaît pour un certain nombre de prêts attribués la qualité payeur qui est donc une variable qualitative Y à deux modalités («bon» ou «mauvais») ainsi que les données recueillies lors du dépôt du dossier de prêt : ce sont les variables X (X,, X p ). Typiquement pour des particuliers on trouvera l age, la profession, le statut matrimonial, le fait d'être ou non propriétaire, donc majoritairement des variables qualitatives, alors que pour des entreprises on aura plutôt des variables numériques comme des ratios issus de la comptabilité. Formellement il s agit de trouver une fonction f(x,, X p ) permettant de prédire Y. Dans ce qui suit nous décrirons les diverses étapes et les problèmes qui se posent depuis la collecte des données jusqu à la mise en œuvre en donnant à chaque fois des indications sur les méthodologies à utiliser. I. La collecte de l information Le premier travail consiste à constituer un fichier qui contient des informations complètes sur des dossiers de prêts. Il se présentera sous la forme d un tableau rectangulaire individusvariables où les n individus sont partagés en deux groupes d effectifs n et n 2 : les bons et les mauvais. Ce travail essentiel est maintenant facilité par le stockage informatique, mais cela n a pas toujours été le cas : les variables du dossier de demande n étaient pas forcément saisies car elles n étaient pas toutes jugées utiles pour la gestion du prêt. Il fallait alors retrouver les dossiers papiers. Les n individus constituent en fait un échantillon de l ensemble des N données disponibles : nous verrons plus loin qu il est indispensable de garder de côté un certain nombre de dossiers afin de valider les résultats obtenus. Il faut donc prélever aléatoirement n individus parmi les N : comme il faut s assurer d avoir un nombre suffisant et non aléatoire (ce qui introduirait une source de variabilité supplémentaire, donc une moindre précision) d observations dans chacun des deux groupes, on procède à un sondage stratifié avec tirage séparé des n et n 2 individus. Deux questions se posent alors : quel effectif global et quelle répartition de n et n 2. Une idée naturelle consisterait à prélever n et n 2 en respectant les proportions de bons et mauvais dossiers, d autant plus que l on sait que le sondage stratifié à répartition proportionnelle est toujours meilleur que l échantillonnage simple sans stratification. Cette méthode est cependant à déconseiller ici car les deux groupes ont des proportions très différentes : le groupe à risque (les mauvais payeurs) qu il faut détecter est très minoritaire (mettons 0%) et serait mal représenté. On a pu démontrer qu une répartition équilibrée n = n 2 est bien meilleure, sinon optimale sous des hypothèses assez générales. Les vraies proportions p et p 2 servent ultérieurement pour les calculs de probabilités a posteriori. Quant au nombre total n, il est typiquement de quelques milliers.

2 Un problème plus complexe est celui du biais de sélection : en fait les dossiers dont on connaît l issue (bons ou mauvais) résultent d un choix effectué en général par des analystes de crédit ; tous les dossiers de prêt n étaient évidemment pas acceptés et ceux qui l ont été ne constituent pas un échantillon représentatif de toutes les demandes. Même si la méthode antérieure de sélection n était pas scientifique, il est clair que les dossiers acceptés n ont pas les mêmes caractéristiques que les dossiers refusés. Or pour construire une règle de décision valable pour tous les nouveaux dossiers, il aurait fallu savoir ce que seraient devenus les dossiers refusés si on les avait acceptés Il faut alors recourir à des techniques assez élaborées (estimation en deux phases, modèle Tobit). Sans entrer dans les détails, disons seulement que l on modélise également le processus de sélection. Le problème du biais de sélection n intervient pas dans d autres domaines où des techniques similaires de scoring sont utilisées comme l assurance automobile (pour la détection des conducteurs à risque) ou la sélection d adresses pour optimiser l envoi de propositions commerciales (dans ce dernier cas on effectue un scoring à partir des résultats d un premier courrier ; les «bons «étant les répondants, les «mauvais» les non-répondants). II Les analyses préliminaires Le fichier brut une fois constitué doit d abord être «nettoyé» pour éliminer erreurs et incohérences. Il comporte alors en général un trop grand nombre de variables. Une exploration des liaisons entre chaque variable X et le critère à prédire Y permet en général d éliminer les variables non pertinentes. On utilise alors des outils classiques : test du khideux de liaison entre variables qualitatives, comparaison des % de bons et de mauvais par catégorie de chaque variable X. Dans le même temps on procède à des recodages des variables : regroupement de valeurs en classes pour les variables continues (on s aide d histogrammes), regroupement de classes pour obtenir la meilleure séparation sur Y. On crée également de nouvelles variables par combinaison de 2 ou plusieurs variables. Par exemple si on s aperçoit que l ancienneté dans l emploi joue différemment selon la profession, sur la probabilité de bon remboursement, on créera une variable croisant les modalités de ces deux variables (cf. exemple plus loin). Il est couramment admis que toutes ces analyses représentent près de 80% du temps de ce genre d études. III La modélisation Les techniques de «scoring» qui sont les plus utilisées dans le secteur bancaire utilisent des méthodes linéaires pour leur simplicité et leur grande robustesse. Il existe bien d autres méthodes non-linéaires ou non-parametriques comme les arbres de décision, les réseaux neuronaux etc. dont l usage se répand (cf. références) mais elles sortent de ce bref exposé. Un score est une note de risque que l on calcule comme combinaison linéaire des variables explicatives p S = a X. Les coefficients a i étant optimisés pour la prédiction de Y. i= i i Pour obtenir le vecteur a des coefficients des a i, il existe diverses techniques d estimation dont les deux principales sont la fonction linéaire discriminante de Fisher et le modèle logit (encore appelé régression logistique). 2

3 III. La fonction linéaire discriminante de Fisher. C est la plus ancienne (elle remonte à 936) : c est la combinaison optimale qui sépare le mieux les moyennes du score dans les deux groupes. Plus précisément si s et s 2 sont les 2 ( s s2) scores moyens sur les deux groupes de n et n 2 individus, on maximise où V() s V(s) est la moyenne pondérée des variances du score dans chacun des 2 groupes. On montre que a est proportionnel à W - (g -g 2 ) où W est la moyenne pondérée des matrices de variance-covariance des variables explicatives dans chaque groupe et les g les vecteurs des moyennes des variables de chaque groupe. C est une méthode de moindres carrés. III.2 La régression logistique ou modèle logit. On exprime la probabilité a posteriori d appartenance à un des groupes selon : exp( ax i i) exp( S) i= PG ( / X) = = p + exp( S) + exp( ax) et on estime alors les a i par la méthode du maximum de vraisemblance. X désigne ici le vecteur dont les composantes sont les X i pour i= à p. Nous avons employé le terme de probabilité a posteriori qui renvoie à l usage de la formule de Bayes. En effet si on connaît les probabilités a priori d appartenance aux deux groupes p et p 2 =- p, qui sont en fait les proportions réelles des deux groupes, la probabilité d appartenir au groupe connaissant les informations fournies par le dossier, c est à dire les X, est donnée par : pf ( x) PG ( / X= x) = où f k est la densité de probabilité des X dans le groupe k. pf( x) + pf( x) 2 2 Pour de nombreux modèles probabilistes (gaussiens, multinomial etc.) cette exp( S) probabilité a posteriori se met sous la forme logistique précédente : PG ( / X) = + exp( S) En particulier si le vecteur aléatoire des X suit une loi normale de même matrice de variancecovariance dans les deux groupes, la règle qui consiste à classer une observation x dans le groupe qui a la plus forte probabilité a posteriori est équivalente à la règle qui consiste à classer une observation dans un groupe selon que son score est inférieur ou supérieur à un certain seuil. Les deux méthodes.(fisher et logit) ne conduisent pas aux mêmes estimations des coefficients, mais celles-ci sont en général assez proches. Le choix entre les deux ne doit pas être une question d école : moindres carrés contre maximum de vraisemblance, mais plutôt se faire sur leur capacité prédictive, c est à dire sur de nouvelles observations. La règle «naïve» de Bayes qui consiste à prédire le groupe le plus probable, donc ici à choisir le groupe qui a une probabilité a posteriori supérieure à 0.5, n est en général pas adaptée à la prédiction d un groupe rare. On cherche plutôt à détecter un maximum d individus à risque, et on choisira le seuil de décision en conséquence (voir plus loin). p i= i i 3

4 III.3 Cas de prédicteurs qualitatifs. Le cas où les variables explicatives X i sont qualitatives nécessite un traitement particulier. En effet comment faire une combinaison linéaire de variables qualitatives? Cela n a évidemment pas de sens. La solution retenue est basée sur ce que l on appelle la forme disjonctive d une variable qualitative X à m modalités (comme une profession). On définit les m variables indicatrices des modalités (, 2,., m ) telles que j vaut si on appartient à la modalité j, 0 sinon. Seule une des indicatrices vaut, celle qui correspond à la modalité prise. Les m indicatrices sont donc équivalentes à la variable qualitative. Le score est alors une combinaison linéaire des indicatrices, ce qui revient à donner une note partielle à chaque modalité de chaque variable. Le score final étant la somme des notes partielles (à telle profession correspond telle note ). Les variables explicatives qui interviennent dans les formules sont donc les indicatrices de toutes les variables. Une difficulté intervient cependant : la matrice W n est pas de plein rang et n est donc pas inversible car la somme des indicatrices des modalités de chaque variable vaut. Cela signifie qu il existe une infinité de solutions équivalentes pour estimer les coefficients :une des solutions couramment utilisée consiste alors à ne prendre que m- indicatrices pour chaque variable qualitative puisque la dernière est redondante. III.4 Un exemple Les valeurs suivantes sont fictives (mais réalistes) et ne servent qu à illustrer la méthode. Considérons le cas d un établissement financier qui veut prédire la solvabilité d entreprises pour savoir s il doit ou non accorder un prêt. On connaît pour chaque entreprise les deux variables suivantes : X part des frais financiers dans le résultat en %, et X 2 délai de crédit fournisseurs (nombre de jours avant de payer les fournisseurs). Sur l échantillon des entreprises solvables la moyenne de X vaut 40, celle de X Sur l échantillon des entreprises non solvables ces moyennes sont respectivement 90 et 00. On admet que les écart-types sont les mêmes d un groupe à l autre et sont respectivement s =40, s 2 =20, et que X et X 2 présentent la même corrélation r=0.8 dans chaque groupe. La covariance entre X et X 2 vaut rs s 2 = La matrice de variance commune (dite également intra-classe) est alors W = et le vecteur de différence des moyennes g g2 = 0 Il est facile d en déduire la fonction de Fisher par la formule a= W - (g -g 2 ). Les coefficients étant définis à une constante multiplicative près, on peut prendre pour a le vecteur de composantes et.2. La fonction de score est alors S= -X +.2 X 2 On en déduit facilement par transformation linéaire que le score moyen des entreprises solvables vaut 68 tandis que le score moyen des entreprises non solvables vaut 30. Les écarttypes des variables étant supposés identiques dans les deux groupes on trouve que 2 2 V( S) = V( X) +.2 V( X2) 2(.2)cov( X; X2) = (25.3) On supposera pour la simplicité de l exposé que la distribution du score suit dans chaque groupe une loi normale. Quand il n en est pas ainsi, les densités de probabilité, les fonctions de répartition, etc. doivent être estimées d une autre manière. 4

5 Un usage classique dans les études de ce type est de recaler le score S pour qu il prenne la quasi totalité de ses valeurs dans l intervalle [0 ; 000]. Cela se fait simplement par transformation affine. Ceci peut être réalisé approximativement dans notre exemple en multipliant le score par 5 et en ajoutant 300. La fonction de score vaut donc S= -5X + 6 X V. Qualité et utilisation d un score On estime tout d abord les distributions conditionnelles du score dans chacun des deux groupes. Un score efficace doit conduire à des distributions bien séparées. Dans l exemple précédent le score suit une loi normale N(640 ;26.5) pour le groupe des entreprises solvables ou une loi N(450 ;26.5) pour les entreprises non-solvables. On vérifiera que le score S donne une meilleure séparation que chaque variable prise séparément en calculant l écart réduit entre moyennes, c est à dire la différence en valeur absolue entre moyennes divisée par l écart-type commun. On considérera également les fonctions de répartition : L utilisation est la suivante : si on refusait de prêter de l argent aux entreprises ayant une note de score inférieure à 556, on éliminerait 80% des entreprises insolvables (les «mauvaises») mais on refuserait à tort 25% des entreprises solvables (les «bonnes»). Le choix du seuil dépend des risques financiers et est fixé par un raisonnement économique prenant en compte les coûts d erreur de mauvaise classification : en effet accorder un prêt à une entreprise qui se révélera insolvable a un coût différent de celui de perdre un bon client. 5

6 D une manière similaire à la présentation classique d un test statistique, la situation peut se décrire à l aide des deux densités : En faisant varier le seuil, on voit qu en augmentant le pourcentage α de faux mauvais, on augmente aussi le pourcentage -β de vrais mauvais. La courbe suivante (appelée courbe Roc pour «receiver operating curve») est souvent utilisée pour mesurer le pouvoir séparateur d un score. Elle donne -β(s) en fonction de α(s) lorsque l on fait varier le seuil s du score. Plus elle est proche de la partie supérieure du carré, meilleure est la séparation. Lorsque les deux densités sont identiques, la courbe ROC se confond avec la diagonale du carré. La surface entre la courbe et l axe des abscisses, comprise entre 0 et, est également parfois utilisée. On peut montrer qu elle est théoriquement égale à la probabilité que P(X >X 2 ) si X et X 2 sont deux variables tirées indépendamment, l une dans la distribution des «bons», l autre dans la distribution des «mauvais». 6

7 Les courbes précédentes ne font pas intervenir les proportions réelles de «bons» et de «mauvais». Les praticiens utilisent alors la courbe de «lift» ou d efficacité de la sélection : en abscisse le % de tous les individus bons et mauvais ayant un score inférieur à s, en ordonnée le % de mauvais ayant un score inférieur à s. La courbe idéale est le segment brisé qui correspond au cas où la distribution des «mauvais» est entièrement inférieure à la distribution des «bons». VI Validité prédictive Mesurer l efficacité d un score, comme d ailleurs de toute règle de sélection, sur l échantillon dit «d apprentissage», c est à dire celui qui a servi à estimer les coefficients de la fonction de score, conduit à des résultats trop optimistes : en effet les coefficients ayant été optimisés sur cet échantillon, les taux d erreur sont des estimations biaisées du vrai taux d erreur, que l on aura sur de nouvelles données issues de la même population. On peut en effet obtenir de très bons taux de reconnaissance sur l'échantillon d'apprentissage si le nombre de variables explicatives est très élevé : à la limite avec autant de variables que d observations on pourrait classer sans erreur toute observation, mais ce résultat est purement artificiel. La validation du score se fait donc à l aide d observations supplémentaires, mises de côté, pour lesquelles on connaît Y, et qui servent à simuler le comportement futur du score. 7

8 Conclusion Les méthodes de score, largement utilisées se perfectionnent sans cesse. Elles sont également appliquées dans d autres domaines : en assurance automobile pour détecter les conducteurs à risque, en prospection publicitaire pour sélectionner des adresses sur un fichier en vue d un courrier commercial, pour analyser le risque de perte d un client etc. Leur usage basé sur une approche statistique permet de mieux quantifier les risques. Bien sur, comme toute méthode statistique, le scoring commet des erreurs et un individu qui a la malchance d avoir un profil proche de celui de mauvais payeurs sera considéré comme tel ; mais ce type de méthodes commet moins d erreur et est plus objectif que les jugements d expert. Par ailleurs le score de risque bancaire pour un prêt n est qu un élément dans le processus de décision et comme le rappelle la CNIL dans sa Délibération n du 5 juillet 988 portant adoption d'une recommandation relative à la gestion des crédits ou des prêts consentis à des personnes physiques par les établissements de crédit : «conformément à l'article 2 de la loi du 6 janvier 978, aucune décision accordant ou refusant un crédit ne peut avoir pour seul fondement un traitement automatisé d'informations donnant une définition du profil ou de la personnalité de l'intéressé». Pour en savoir plus : M Bardos, «Analyse discriminante, application au risque et scoring financier», Dunod, 200 Ouvrage de niveau 2 ème cycle universitaire, écrit par la responsable de l Observatoire des Entreprises de la Banque de France. Unique en son genre, en français. T.Hastie, R.Tibshirani, J.Friedman, «The Elements of Statistical Learning Theory», Springer-Verlag, 200 Le livre de référence pour les années à venir, balayant toutes les techniques de modélisation prédictive. Niveau mathématique : 3 ème cycle. 8

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

La méthode des scores, particulièrement de la Banque de France

La méthode des scores, particulièrement de la Banque de France La méthode des scores, particulièrement de la Banque de France Devant la multiplication des défaillances d entreprises au cours des années 80 et début des années 90, la Banque de France a produit des travaux

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Optimisation des ressources des produits automobile première

Optimisation des ressources des produits automobile première EURIA EURo Optimisation produits automobile première Pauline PERROT promotion 2011 EURIA EURo 1 ère partie : contexte MMA (FFSA) MAAF (GEMA) SGAM : COVEA (AFA) GMF (GEMA) MMA : Plus 3 millions clients

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

WEKA, un logiciel libre d apprentissage et de data mining

WEKA, un logiciel libre d apprentissage et de data mining Approche Data Mining par WEKA WEKA, un logiciel libre d apprentissage et de data mining Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr Yves Lechevallier Dauphine 1 1 WEKA 3.4

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Internet est-il l avenir des enquêtes Génération?

Internet est-il l avenir des enquêtes Génération? Établissement public sous double tutelle des ministères de l'éducation nationale, de l'enseignement supérieur et de la Recherche du Travail, de l Emploi, de la Formation professionnelle et du Dialogue

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Comment évaluer une banque?

Comment évaluer une banque? Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

ANALYSE DU RISQUE DE CRÉDIT

ANALYSE DU RISQUE DE CRÉDIT ANALYSE DU RISQUE DE CRÉDIT Banque & Marchés Cécile Kharoubi Professeur de Finance ESCP Europe Philippe Thomas Professeur de Finance ESCP Europe TABLE DES MATIÈRES Introduction... 15 Chapitre 1 Le risque

Plus en détail

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse M1 IMAT, Année 2009-2010 MODELES LINEAIRES C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse Table des matières 1 Préambule 1 1.1 Démarche statistique...................................

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

LES MODELES DE SCORE

LES MODELES DE SCORE LES MODELES DE SCORE Stéphane TUFFERY CONFERENCE GENDER DIRECTIVE 31 mai 2012 31/05/2012 ActuariaCnam Conférence Gender Directive Stéphane Tufféry 1 Plan Le scoring et ses applications L élaboration d

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements

Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Utilisation des réseaux bayésiens et de l approche de Fenton pour l estimation de probabilité d occurrence d événements Rapport LAAS-CNRS Numéro N o 13077 Quynh Anh DO HOANG, Jérémie GUIOCHET, Mohamed

Plus en détail

Classe de Terminale S

Classe de Terminale S Classe de Terminale S Programme BO HS n 4 du 30 août 001 II.3 Probabilités et statistique Après avoir introduit en classe de seconde la nature du questionnement statistique à partir de travaux sur la fluctuation

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

PROBABILITES ET STATISTIQUE I&II

PROBABILITES ET STATISTIQUE I&II PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

L analyse de la gestion de la clientèle

L analyse de la gestion de la clientèle chapitre 1 - La connaissance du client * Techniques utilisées : observation, recherche documentaire, études de cas, études qualitatives (entretiens de groupes ou individuels, tests projectifs, analyses

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST

pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST GUIDE PRATIQUE pour les compagnies d assurances non-vie relatif à l estimation des paramètres du modèle standard SST Edition du 16 décembre 2011 But Le présent guide pratique s entend comme une aide pour

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail