Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Dimension: px
Commencer à balayer dès la page:

Download "Le Data Mining au service du Scoring ou notation statistique des emprunteurs!"

Transcription

1 France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n du 5 Juillet 1988 portant adoption d une recommandation relative à la gestion des crédits ou des prêts consentis à des personnes physiques par les établissements de crédit : "Conformément à l article 2 de la loi du 6 janvier 1978, aucune décision accordant ou refusant un crédit ne peut avoir pour seul fondement un traitement automatisé d informations donnant une définition du profil ou de la personnalité de l intéressé." Même si le risque bancaire n est qu une partie du processus de décision, la modélisation existe et de nombreuses méthodes statistiques progressent toujours pour mieux évaluer les risques. La première différence entre le Data Mining et la statistique classique est la taille des données à notre disposition. En général, nous disposons de plusieurs milliers de dossiers se partageant entre des individus à risque de défaut de paiement et les bons payeurs. La technique de Data Mining applique généralement une première recherche de redondance des données basée sur différentes méthodes comme la valeur seuil d un coefficient de corrélation établi ici à 0,8 entre les variables à modéliser Une autre étape tout aussi importante est de constituer un échantillon aléatoire en équilibrant les deux groupes des bons et mauvais payeurs (50% de chaque) pour permettre une bien meilleure, sinon optimale modélisation puisque le groupe minoritaire des mauvais payeurs est souvent sous représenté! Il suffira de garder les proportions estimées pour les calculs des probabilités a posteriori.

2 La modélisation employée dans l outil pas à pas de STATISTICA Data Miner Plus permet d opérer automatiquement une étude comparative des modèles sélectionnés. Et de faire apparaitre les taux d erreurs de chaque modèle sur l échantillon d apprentissage. Après le taux d erreur de classification, nous allons calculer l espérance du coût de mauvaise classification sur l échantillon de validation cette fois. En effet, il arrive que certains types d erreur soient plus coûteux que d autres. Dans ce cas, il faut calculer une estimation du coût (ou des bénéfices) occasionné par les erreurs de notre modèle. Dans la réalité, l organisme de prêt estime, qu en moyenne, accepter une personne qui ne rembourse pas correctement son prêt du montant emprunté occasionnera une perte approximative de (0.4 * Montant Emprunté) et donc (gain = 0.4 * Montant Emprunté ), ce qui se révèle catastrophique. L organisme financier a en effet sous-estimé très largement la proportion de personnes qui ne remboursent pas leur emprunt. En revanche, une personne qui rembourse correctement son prêt fournit un bénéfice de (0.14 * Montant Emprunté), et donc (gain = * Montant Emprunté ). Personnalisons donc les coûts engendrés par les mauvais payeurs et les bons payeurs afin de comparer les modèles entre eux sur les coûts engendrés par les mal classés.

3 Les Réseaux de Neurones constituent le meilleur modèle de ce point de vue. En vérifiant les pourcentages de bien classés entre ce modèle et les Boosting d arbres, nous observons sur l échantillon de Validation que 50 bons payeurs observés auraient été rejetés pour les Réseaux de Neurones contre 35 pour les Boosting et 19 mauvais payeurs auraient pu être considérés comme des bons payeurs dans les Réseaux de neurones contre 36 pour les Boosting : Soit 50* *0.4 = 14.6 pour les Réseaux de Neurones contre 35* *0.4=19.3 Enfin, nous allons utiliser un autre élément comparateur de modèles par l intermédiaire des courbes de Lift et ROC pour exprimer différemment les classements de modèles. La similitude avec la courbe LIFT est tentante, mais la lecture et l interprétation de la courbe ROC est totalement différente. Le lien entre la matrice de confusion et la courbe ROC est illustré ci-dessus où, au seuil de 0,5 (115/217=53%), la sensibilité du modèle des Boosting d Arbres vaut 79/114=69,30% et sa spécificité vaut 67/103=65,05%. La courbe ROC correspond donc à la matrice de confusion définie par une certaine valeur de seuil. L indice de Gini est un nombre variant de 0 à 1, où 0 signifie l'égalité parfaite (il y a autant de bons que de mauvais payeurs) et 1 signifie l'inégalité totale (une personne est solvable, les autres ne le sont pas). Entre 0 et 1, l'inégalité est d'autant plus forte que l'indice de Gini est élevé. Ici l égalité est plus marquée pour les Boosting d arbres (47/53) que pour les réseaux de Neurones (62/38)!

4 La courbe ROC représente la probabilité d'avoir raison en affirmant que la personne est non solvable en fonction de la probabilité d'affirmer à tort que la personne est non solvable. La sensibilité est la proportion des déclarés solvables parmi les solvables (VP/(VP+FN)), et la spécificité (VN/(VN+FP)) la proportion des déclarés non solvables parmi les non solvables. Le point de la courbe le plus proche du coin supérieur gauche du carré contenant la courbe est celui qui permet d'obtenir un bon compromis entre sensibilité et spécificité. L aire sous la courbe indique la probabilité pour que la fonction SCORE place un positif devant un négatif (dans le meilleur des cas l aire sous la courbe = 1). Si SCORE classe au hasard les individus (c.-à-d. le modèle de prédiction ne sert à rien), l aire sous la courbe = 0.5, symbolisée par la diagonale principale dans le graphique. Donc, on peut dire ici qu il y a 69% de chances qu un Bon payeur observé dans la réalité soit déclaré Bon payeur par le modèle des Réseaux de Neurones et seulement 67% pour les Boosting d arbres! On peut dire ici que ces modèles sont un tout petit plus performant qu un modèle aléatoire à 50% La courbe de Lift est une variante de la courbe ROC, elle représente la proportion des événements détectés, c'est-à-dire la sensibilité, en fonction de la proportion des individus sélectionnés, c est-à-dire ayant un score Bon ou Mauvais. Nous allons nous concentrer sur les Bons payeurs. Dans cet exemple, la variable Dossier de Prêt est la variable binaire cible (Bon ou Mauvais), et la courbe de lift montre les bonnes réponses (axe Y) relative à la population entière (axe X). Nous voyons que dans 30 % de la population globale pour les Réseaux de Neurones et Boosting d Arbres, on a plus 50% de chances (lift de 1,5 en moyenne entre les trois premiers déciles) d appartenir au groupe des bons payeur que par pur hasard.

5 Typiquement, le lift peut être compris comme le ratio de deux pourcentages: le pourcentage des classifications positives correctes réalisées par le modèle sur le pourcentage des classifications positives actuelles dans les données de test. Par exemple, si 40% des clients d une enquête marketing ont répondu favorablement (la classification positive) à une campagne promotionnelle dans le passé et le modèle prévoit 75% de réponses positives correctes, le lift serait obtenu en divisant 0,75 par 0,40. Le lift résultant serait 1,875. Le Lift est habituellement utilisé pour mesurer la performance des modèles de réponse. Le but d un modèle de réponse est d identifier les segments de population avec les concentrations les plus élevées de réponses positives à une campagne marketing. Le lift donne la quantité de population à solliciter pour obtenir le pourcentage le plus élevé de réponses potentielles.

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

Projet OAD Crédit-Scoring Deutsche Bank

Projet OAD Crédit-Scoring Deutsche Bank Année scolaire 2009/2010 Projet Modélisation de 3 ème année Projet OAD Crédit-Scoring Deutsche Bank Réalisé par : Guillaume BARANES-BERREBI Manon ROUSSEAU Sous la direction de Farid BENINEL Guillaume BARANES-BERREBI

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

ENSEIGNEMENT ET MONDE PROFESSIONNEL. Illustration d un lien fort au travers d un cours de scoring. Jean-Philippe KIENNER 7 novembre 2013

ENSEIGNEMENT ET MONDE PROFESSIONNEL. Illustration d un lien fort au travers d un cours de scoring. Jean-Philippe KIENNER 7 novembre 2013 ENSEIGNEMENT ET MONDE PROFESSIONNEL Illustration d un lien fort au travers d un cours de scoring Jean-Philippe KIENNER 7 novembre 2013 CONTEXTE Une bonne insertion professionnelle des étudiants passe par

Plus en détail

Le test triangulaire

Le test triangulaire Le test triangulaire Objectif : Détecter l absence ou la présence de différences sensorielles entre 2 produits. «les 2 produits sont-ils perçus comme différents?» Contexte : la différence sensorielle entre

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Construire la courbe LIFT. Ricco RAKOTOMALALA. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1

Construire la courbe LIFT. Ricco RAKOTOMALALA. Ricco Rakotomalala Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 Construire la courbe LIFT Ricco RAKOTOMALALA Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 L exemple du publipostage pour la promotion d un produit Objectif : promouvoir un produit Rôle

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

1 Modélisation d être mauvais payeur

1 Modélisation d être mauvais payeur 1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Apprentissage supervisé

Apprentissage supervisé Apprentissage supervisé 1 Apprendre aux ordinateurs à apprendre Objectif : appliquer la démarche de l apprentissage par l exemple à l ordinateur. Montrer des exemples à l ordinateur en lui disant de quoi

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Méthodes d apprentissage statistique («Machine Learning»)

Méthodes d apprentissage statistique («Machine Learning») Méthodes d apprentissage statistique («Machine Learning») Journées d Etudes IARD Niort, 21 Mars 2014 Fabrice TAILLIEU Sébastien DELUCINGE Rémi BELLINA 2014 Milliman. All rights reserved Sommaire Introduction

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

L ANALYSE DES DONNÉES CLIENTS AU SERVICE DE LA PRÉVISION D ACHAT DE VOYAGES

L ANALYSE DES DONNÉES CLIENTS AU SERVICE DE LA PRÉVISION D ACHAT DE VOYAGES L ANALYSE DES DONNÉES CLIENTS AU SERVICE DE LA PRÉVISION D ACHAT DE VOYAGES SAS 3 DEC 2015 1 sur 9 TRANSAT Un voyagiste international solidement installé au Canada, en France et au Royaume-Uni, qui offre

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant

FACULTE DE MEDECINE D ANGERS. Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant FACULTE DE MEDECINE D ANGERS Polycopié de cours pour les 1 e et 2 e cycles des études médicales Préparation à l examen national classant Année scolaire 2007-2008 SANTE PUBLIQUE ET MEDECINE SOCIALE Responsable

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Le scoring est-il la nouvelle révolution du microcrédit?

Le scoring est-il la nouvelle révolution du microcrédit? Retour au sommaire Le scoring est-il la nouvelle révolution du microcrédit? BIM n 32-01 octobre 2002 Frédéric DE SOUSA-SANTOS Le BIM de cette semaine se propose de vous présenter un ouvrage de Mark Schreiner

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Crédit Bureaux. des PME. Alger, le 12 mars 2009 Margherita GALLARELLO

Crédit Bureaux. des PME. Alger, le 12 mars 2009 Margherita GALLARELLO Le rôle des Crédit Bureaux pour l accès au crédit des PME 2009 Agenda L activité des Crédit Bureaux Sujets critiques pour les PME Crédit Bureaux: quels avantages pour les PME? Exemple d évaluation Conclusion

Plus en détail

Les techniques d exploitation de données (Data Mining)

Les techniques d exploitation de données (Data Mining) Les techniques d exploitation de données (Data Mining) 1 Présenté par : Emer Mestiri, M.sc Finance, Data Scientist Conseiller Gestion de risque de crédit, Mouvement Desjardins Sommaire 2 I. Logiciel SAS

Plus en détail

Le traitement des engagements sur les PME dans Bâle II (CP3)

Le traitement des engagements sur les PME dans Bâle II (CP3) ÉTUDE Le traitement des engagements sur les PME dans Bâle II (CP3) Le contenu du nouvel accord de Bâle sur le ratio international de solvabilité bancaire, dont l entrée en vigueur est prévue pour la fin

Plus en détail

Communication sur l'obligation faite aux banques d'établir une convention de compte au bénéfice de leur clientèle

Communication sur l'obligation faite aux banques d'établir une convention de compte au bénéfice de leur clientèle Commission nationale de l informatique et des libertés Communication présentée en séance plénière le 3 juin 2004 Communication sur l'obligation faite aux banques d'établir une convention de compte au bénéfice

Plus en détail

V ERSION EXPERIMENTALE

V ERSION EXPERIMENTALE V ERSION EXPERIMENTALE Cette version de Sipina v 3.0 n est pas, et ne sera jamais, définitive, elle sert d outil de recherche, elle a plus une vocation d outil d expérimentation que de logiciel dédié au

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

UNE COMPARAISON DE QUATRE TECHNIQUES D INFÉRENCE DES REFUSÉS DANS LE PROCESSUS D OCTROI DE CRÉDIT

UNE COMPARAISON DE QUATRE TECHNIQUES D INFÉRENCE DES REFUSÉS DANS LE PROCESSUS D OCTROI DE CRÉDIT UNE COMPARAISON DE QUATRE TECHNIQUES D INFÉRENCE DES REFUSÉS DANS LE PROCESSUS D OCTROI DE CRÉDIT Asma Guizani 1 & Besma Souissi 2 & Salwa Ben Ammou 3,4 & Gilbert Saporta 4 1 Institut Supérieur de Gestion

Plus en détail

Méthodes de DM pour la GRC dans les banques

Méthodes de DM pour la GRC dans les banques Techniques de DM pour la GRC dans les banques Page 21 III.1 Introduction Avant de chercher des techniques à appliquer dans la gestion des relations avec les clients. Il faut étudier les données des clients

Plus en détail

Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA

Master Exploration Informatique des données Data Mining & Business Intelligence. Evelyne CHARIFOU Priscillia CASSANDRA Master Exploration Informatique des données Data Mining & Business Intelligence Groupe 5 Piotr BENSALEM Ahmed BENSI Evelyne CHARIFOU Priscillia CASSANDRA Enseignant Françoise FOGELMAN Nicolas DULIAN SOMMAIRE

Plus en détail

Une aiguille dans une botte de foin Comment identifier vos donateurs potentiels parmi vos alumni?

Une aiguille dans une botte de foin Comment identifier vos donateurs potentiels parmi vos alumni? Une aiguille dans une botte de foin Comment identifier vos donateurs potentiels parmi vos alumni? Arnaud DE BRUYN Professeur de Marketing ESSEC Business School 1 Agenda Agenda Qui? Pourquoi? Comment? Le

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

TECHNIQUES STATISTIQUES

TECHNIQUES STATISTIQUES TECHNIQUES STATISTIQUES, enseignant à l'institut d'administration des Entreprises, Université Nancy 2 SOMMAIRE 1. Introduction 3 2. Contrôle statistique des lots 3 2.1 Champ d'application 3 2.2 Niveau

Plus en détail

Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2

Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2 Caisse d Epargne Rhône Alpes Licence Econométrie Lyon 2 22 Novembre 2013 - Valérie Rousvoal Direction Etudes Commerciales Sommaire de la rencontre Présentation de la Caisse d épargne Rhône Alpes Présentation

Plus en détail

Le data mining met en œuvre un ensemble de techniques issues des statistiques, de l analyse de données et de l informatique pour explorer les données.

Le data mining met en œuvre un ensemble de techniques issues des statistiques, de l analyse de données et de l informatique pour explorer les données. COURS DE DATA MINING 3 : MODELISATION PRESENTATION GENERALE EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET Phase 4 : Modelisation 1 Classement des techniques

Plus en détail

Utilisations des mathématiques à des fins opérationnelles

Utilisations des mathématiques à des fins opérationnelles Utilisations des mathématiques à des fins opérationnelles Michael Vandenbossche mvn@softcomputing.com Soft Computing 165 avenue de Bretagne 59000 Lille 1. Présentation 2. Indicateurs statistiques de base

Plus en détail

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG

SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES MARDI 17JUIN 2014 Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée,

Plus en détail

CONSULTATION PUBLIQUE SUR LA CREATION D UN REGISTRE NATIONAL DES CREDITS AUX PARTICULIERS

CONSULTATION PUBLIQUE SUR LA CREATION D UN REGISTRE NATIONAL DES CREDITS AUX PARTICULIERS CONSULTATION PUBLIQUE SUR LA CREATION D UN REGISTRE NATIONAL DES CREDITS AUX PARTICULIERS Consultation publique : veuillez adresser vos réponses avant le 27 février 2013 à l adresse électronique hcp@dgtresor.gouv.fr.

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

I La théorie de l arbitrage fiscal de la dette (8 points)

I La théorie de l arbitrage fiscal de la dette (8 points) E : «Théories de la finance d entreprise» Master M1 Université Paris-Dauphine Thierry Granger Année Universitaire 2013/2014 Session 1 Aucun document, calculette autorisée Durée 1h30 Respecter la numérotation

Plus en détail

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE

MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE Annexe MATHÉMATIQUES CYCLE TERMINAL DE LA SÉRIE ÉCONOMIQUE ET SOCIALE ET DE LA SÉRIE LITTERAIRE CLASSE DE PREMIÈRE L enseignement des mathématiques au collège et au lycée a pour but de donner à chaque

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

Protection des données personnelles et refus de crédit

Protection des données personnelles et refus de crédit GUIDE PRATIQUE Protection des données personnelles et refus de crédit ÉDITION 03/2003 Sommaire PRÉSENTATION page 2 VÉRIFIER QUE VOUS N ÊTES PAS FICHÉ A LA BANQUE DE FRANCE page 3 LES EXPLICATIONS POSSIBLES

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Apprentissage statistique:

Apprentissage statistique: Apprentissage statistique: Arbre de décision binaire et Random Forest 1 Plan 1. Introduction 2. 3. Application à l apprentissage supervisé 4. Forêt Aléatoire (Random Forest) 2 1 Plan 1. Introduction 2.

Plus en détail

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre 2011 1 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

La détection de spams : un jeu d enfant?

La détection de spams : un jeu d enfant? La détection de spams : un jeu d enfant? Tristan Mary-Huard, chargé de recherche INRA à INRA-AgroParisTech Comment distinguer automatiquement un spam d un message normal? Les filtres anti-spams analysent

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

LES MODELES DE SCORE

LES MODELES DE SCORE LES MODELES DE SCORE Stéphane TUFFERY CONFERENCE GENDER DIRECTIVE 31 mai 2012 31/05/2012 ActuariaCnam Conférence Gender Directive Stéphane Tufféry 1 Plan Le scoring et ses applications L élaboration d

Plus en détail

Ce qu est le Data Mining

Ce qu est le Data Mining Data Mining 1 Ce qu est le Data Mining Extraction d informations intéressantes non triviales, implicites, préalablement inconnues et potentiellement utiles à partir de données. Autres appellations: ECD

Plus en détail

Simulation Entreprise - Tecstrat

Simulation Entreprise - Tecstrat Simulation Entreprise - Tecstrat Compte-rendu Univers C Entreprise 4 Clémence AITELLI Benoît SIJOBERT Maxime ROBERT Ségolène PEIGNET Tuteur : malek.bouhaouala@ujf-grenoble.fr Introduction Durant deux jours,

Plus en détail

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009 Entrer par les problèmes en probabilités et en statistique Équipe Académique Mathématiques - 2009 Quelle valeur ajoutée peut-on espérer d une entrée par les problèmes en probabilités? Donner du sens aux

Plus en détail

DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES

DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES DÉTECTION PRÉCOCE DES DÉFAILLANCES D ENTREPRISES À PARTIR DES DOCUMENTS COMPTABLES 1 Dans le but d affiner l analyse du risque, la direction des Entreprises mettra prochainement à la disposition des établissements

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

DEVOIR SURVEILLE. Durée : 2h00. Matériel autorisé : calculatrice. En aucun cas il ne souhaite dépasser les 200 milliards d euros pour son armée.

DEVOIR SURVEILLE. Durée : 2h00. Matériel autorisé : calculatrice. En aucun cas il ne souhaite dépasser les 200 milliards d euros pour son armée. 2 nde DEVOIR SURVEILLE Durée : 2h00. Matériel autorisé : calculatrice. Exercice 1 (6 points) Dark Vador souhaite conquérir le Monde. Il a créé une armée de soldats. Entre les costumes, l entraînement,

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires

Le data mining et l assurance Mai 2004. Charles Dugas Président Marianne Lalonde Directrice, développement des affaires Le data mining et l assurance Mai 2004 Charles Dugas Président Marianne Lalonde Directrice, développement des affaires AGENDA Qu est-ce que le data mining? Le projet et les facteurs de réussite Les technologies

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Plan de la séance 3 : Le risque de crédit (1) Les opérations de crédit Définition d un crédit La décision de crédit Les crédits aux petites

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Asymétries d information

Asymétries d information cours Asymétries d information Département Économie HEC Automne 2015 cours Asymétrie d information Il est des contextes où des agents économiques en position de contracter ne disposent pas de la même information

Plus en détail

Le coût du crédit aux entreprises

Le coût du crédit aux entreprises Frédérique EDMOND Direction des Études et Statistiques monétaires Service des Analyses et Statistiques monétaires L enquête trimestrielle sur le coût du crédit aux entreprises est réalisée auprès d un

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

E-mail marketing, scoring comportemental & analyse prédictive

E-mail marketing, scoring comportemental & analyse prédictive E-mail marketing, scoring comportemental & analyse prédictive Formation Dolist - Score MD Les 25 & 26 juin 2013 Dolist.net - Tous droits réservés 26/04/2013 Formation E-mail Marketing, scoring & analyse

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Arbres de décisions et forêts aléatoires.

Arbres de décisions et forêts aléatoires. Arbres de décisions et forêts aléatoires. Pierre Gaillard 7 janvier 2014 1 Plan 1 Arbre de décision 2 Les méthodes d ensembles et les forêts aléatoires 2 Introduction 3 Introduction Jeu de données (ex

Plus en détail

Bouchekif Abdesselam 11 mars 2012

Bouchekif Abdesselam 11 mars 2012 Expériences sur les données du répertoire de données de UCI avec une boîte à outils Bouchekif Abdesselam 11 mars 2012 Résumé Les dix dernières années ont été témoin de grands progrès réalisés dans le domaine

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie

Algorithmes probabilistes. Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Algorithmes probabilistes Références: Fundamentals of Algortihms de Gilles Brassard et Paul Bratley Note de cours de Pierre McKenzie Mise en contexte: Indices: Vous êtes à la recherche d un trésor légendaire

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr

Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire

Plus en détail

L essentiel sur. Le crédit à la consommation

L essentiel sur. Le crédit à la consommation L essentiel sur Le crédit à la consommation Prêt personnel Prêt affecté Crédit renouvelable Qu est ce que c est? Le crédit à la consommation sert à financer l achat de biens de consommation (votre voiture,

Plus en détail