Apprentissage Automatique

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage Automatique"

Transcription

1 Apprentissage Automatique Introduction-I Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs d'étude de l'intelligence artificielle. L'apprentissage automatique fait référence au développement, à l'analyse et à l'implémentation de méthodes qui permettent à une machine (au sens large) d'évoluer grâce à un processus d'apprentissage, et ainsi de remplir des tâches qu'il est difficile ou impossible de remplir par des moyens algorithmiques plus classiques. J.F. Bonastre 2 1

2 Qu est ce que «l apprentissage automatique»?? Extraire de l information à partir de données (corpus based approaches) J.F. Bonastre 3 Définition (http://www.grappa.univ-lille3.fr/polys/apprentissage/index.html) Apprentissage à partir d exemples Classification supervisée Lien Apprentissage Classification J.F. Bonastre 4 2

3 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Apprentissage automatique un carrefour J.F. Bonastre 5 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Vision Statistique But = apprendre des fonctions à partir de données Fonctions complexes vs non paramétriques Dimensionnalité de l espace Taille des corpus Inspiration Vision Intelligence artificielle But : imiter ou reproduire des comportements intelligents naturels source de problèmes classiques (reconnaissance d écriture, parole, etc.) différences approche inductive apprentissage a partir des exemples approche probabiliste J.F. Bonastre 6 3

4 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Théorie des probabilités outils d analyse de modèles théoriques Théorie de l optimisation outils algorithmiques Sciences cognitives, neurosciences Sources d inspiration Théorie de l information, traitement du signal Problèmes et méthodologies partagés J.F. Bonastre 7 Types d algorithmes (Wikipedia) L'apprentissage supervisé : un expert (ou oracle) est employé pour étiqueter correctement des exemples. L'apprenant doit alors trouver ou approximer la fonction qui permet d'affecter la bonne étiquette à ces exemples. L'apprentissage non-supervisé L'apprentissage par renforcement J.F. Bonastre 8 4

5 Quelques algos (Wikipedia) les machines à vecteur de support le boosting les réseaux de neurones pour un apprentissage supervisé ou nonsupervisé la méthode des k plus proches voisins pour un apprentissage supervisé les arbres de décision les méthodes statistiques comme le modèle de mixture gaussienne la régression logistique l'analyse discriminante linéaire la logique floue les algorithmes génétiques et la programmation génétique J.F. Bonastre 9 A quoi ça sert?? Analyse financière : prévision d'évolution de marchés Marketing : établir un profil client, mailing Banque : attribution de prêts Médecine : aide au diagnostic, Télecom : détection de fraudes. Biométrie Robotique Reconnaissance de forme OCR Transcription de la parole Compréhension/Dialogue Recherche d information (moteur internet, moteur multimédia) J.F. Bonastre 10 5

6 Un exemple Un exemple d outil (1) Navigation dans des bases de données audio Orientation «moteur de recherche» Présentation synthétique de l information Technologies développées au LIA Travail (très) coopératif Nombreuses thèses dont celle de Benoît Favre (mars 2007) en collaboration avec Thales Communications J.F. Bonastre 12 6

7 Un exemple d outil (2) Des données (~ 100h) Un besoin d information («Chirac») Une réponse sous forme d un résumé audio par concaténation Problèmes Perte du contexte Difficulté pour naviguer Nécessité de connaître précisément l objectif Solution? Frise J.F. Bonastre 13 Un exemple d outil (3) Annexes J.F. Bonastre 14 7

8 Un exemple d outil (4) Commentaires ~100 heures de parole (base publique, ESTER) Peu de couverture temporelle (les données sont espacées sur une longue période) Etendu à 1700 heures. Pas de soucis hormis l interface (temps d accès aux données audio) 100 % automatique Analyse sémantique réalisée sur les données «le monde», ~ 500 millions de mots En ligne (http://pc-favre.iup.univ-avignon.fr:7777/) J.F. Bonastre 15 Un exemple d outil (5) Limites Démonstrateur! L'identité du locuteur n'est pas encore ajoutée au niveau des traitements sémantiques Id pour des marqueurs liés à la parole («émotions»/style, taux d'interaction,...) Ajout de «curseurs» couverture thématique nouveauté J.F. Bonastre 16 8

9 Technologies Technologies (1) Paramétrisation et Séparation en classes/locuteurs Représentation du signal (paramétrisation) Représentation tempsfréquence Atténuation des bruits, normalisations Traitements «acoustiques» Segmentation en classes Segmentation en locuteurs Identification/Suivi des locuteurs Traitement du signal Apprentissage automatique Techniques statistiques J.F. Bonastre 18 9

10 Technologies (2) Apprentissage automatique «statistique» Estimateur de densité GMM à partir d exemples (et connaissances) -> modèle de la distribution Mélange de Gaussiennes Multidimensionnelles Algo standards (EM, MAP ) J.F. Bonastre 19 Technologies (3) Moteur de reconnaissance de la parole Modélisation acoustique Modèles initiaux (par condition) Adaptation au locuteur Adaptation aux conditions Modélisation linguistique Algorithme de décodage Graphe d hypothèses très, trop large Apprentissage automatique Techniques statistiques + connaissances Algorithmes de parcours efficaces (Token, Stack, A* ) J.F. Bonastre 20 10

11 Technologies (4) Modélisation acoustique Passer du «statique au dynamique» Mot ->Modèles composés I U F Connaissances HMM (Modèles de Markov Cachés) Transitions (probabilités) Etats (p. émission -> GMM) Viterbi, Baum-Welch Lexique de mots 1 mot = suite de phone 1 phone = 1 phonème en contexte = 1 HMM 3 états Choix des triphones (contextes manquants) Constitution du lexique (mots composés ) J.F. Bonastre 21 Technologies (5) Apprentissage automatique «statistique» Modèles de langage Ngram : probabilité de i connaissant i-1,, i-n Mot i-2 Mot i-1 Mot i Nclass : probabilité de la classe i connaissant les classes i-1, i-n Mot -> classe Ngram Grammaires spécifiques, règles, combinaison Difficultés : * backoff * corpus * lexique * nettoyage * noms propres * évolutions Exemple présenté : * 3 gram * 20 M transcriptions * 550 M «le monde» J.F. Bonastre 22 11

12 Technologies (6) Segmentation en phase, Entités Nommées Segmentation Conditional Random Fields Informations hétérogènes Linguistique (Transcription, Étiquettes syntaxiques) Prosodiques (Pauses, Pente de f0, Tours de parole) Entités Nommées Noms de personnes, organisations, lieux Dates et quantités numériques Stratégie mixte Grammaires locales Modèles N-gram J.F. Bonastre 23 Segmentation en phrases CRF (CRF++) Mots (bigram) Etiquetage morphosyntaxique (LIA_TAG) Changement de locuteurs Prosodie Fin de segments Pause avant, entre les 2 mots Fo (sur 3 horizons t.) J.F. Bonastre 24 12

13 Technologies (7) Extraction de connaissance, résumé Représentation sous forme vectorielle (~dim. 65 k) Latent Semantic Analysis Représentation conceptuelle Projection des phases dans un espace conceptuel Fonction des cooccurrences Rend compte de la «proximité sémantique» Réduction de l espace (SVD) Création de «concepts» Réponse «temps réel» Espace pré-appris Maximal Marginal Relevance Sélection des phrases Maximum de couverture Minimum de redondance Séparation des calculs Intérêt général des phrases/mots (pré-calculé) Dépendant de la requête J.F. Bonastre 25 Maximal Margin Relevance (MMR) Objectifs Sélection de phrases suivant un besoin Maximiser l information, minimiser la redondance Adaptation au contexte (efficacité et interactivité) Informations sur la forme, précalculées Informations venant du besoin utilisateur, calculées à la demande Appliquée dans un «espace sémantique» J.F. Bonastre 26 13

14 L espace sémantique VSM - Modèle algébrique/vectoriel classique Requêtes et candidats sont exprimés sous forme d un vecteur Une dimension = 1 mot du vocabulaire Une valeur = nb occurrences du mot dans le document concerné En fait, Inverse Document Frequency J.F. Bonastre 27 L espace sémantique VSM - Modèle algébrique/vectoriel classique Modèle «sac de mots» Ne prend pas en compte l ordre des mots Ne prend pas en compte les corrélations inter mots Evolution vers GVSM Basé sur les corrélations inter mots Complexe pour peu d amélioration J.F. Bonastre 28 14

15 L espace sémantique Latent Semantic Analysis Même principe que GVSM (corrélations) Le point de départ est une matrice de cooccurrence Case i,j donne le nombre de cooccurrences des mots i et j dans un contexte donné Le contexte? Phrase, document, fenêtre Utilisation d une décomposition en valeurs singulières (SVD) Réduction de la complexité (représentation par une matrice de taille réduite) Emergence de «thèmes» = axes J.F. Bonastre 29 L espace sémantique Latent Semantic Analysis Matrice initiale de cooccurrences Décomposition par SVD Vecteurs singuliers orthogonaux (nvle base) «thèmes» Matrice diagonale des valeurs singulières Réduction à une dimension k J.F. Bonastre 30 15

16 L espace sémantique Latent Semantic Analysis Projection d un document dans LSA Mesure cosine de similarité J.F. Bonastre 31 Performances de la chaîne de structuration LIA (data de la démo) J.F. Bonastre 32 16

Reconnaissance vocale

Reconnaissance vocale Reconnaissance vocale Définition : La reconnaissance vocale ou (Automatic Speech Recognition ASR) est une technologie de transcription d'un système «phonatoire organique»exploitable par une machine. La

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Chaînes de Markov Cachées Floues et Segmentation d Images

Chaînes de Markov Cachées Floues et Segmentation d Images Introduction Chaînes de Markov Cachées Floues et Segmentation d Images Cyril Carincotte et Stéphane Derrode Équipe GSM Groupe Signaux Multi-dimensionnels Institut Fresnel (UMR 6133) EGIM Université Paul

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Abderrahmane BENDAHMANE Laboratoire SIMPA Département d informatique Université

Plus en détail

Présentation de la plateforme d analyse linguistique médiévale

Présentation de la plateforme d analyse linguistique médiévale Présentation de la plateforme d analyse linguistique médiévale 1. Introduction Tout au long de ce document, notre projet sera présenté à travers la méthodologie suivie pour développer la plateforme d analyse

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

Les sections 6 et 7. du ComitéNational de la RechercheScientifique

Les sections 6 et 7. du ComitéNational de la RechercheScientifique Les sections 6 et 7 du ComitéNational de la RechercheScientifique (CoNRS) Frédérique Bassino et Michèle Basseville Plan Le comité national Les missions des sections Les sections 6 et 7 Le comiténational

Plus en détail

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008 Master IAD Module PS IV. Reconnaissance de la parole Gaël RICHARD Février 2008 1 Contenu Introduction aux technologies vocales Production et Perception de la parole Modélisation articulatoire Synthèse

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES (ORLEANS) FACULTÉ de TECHNOLOGIE (Sétif) Laboratoire PRISME THÈSE EN COTUTELLE INTERNATIONALE présentée par : Abdenour Hacine-Gharbi soutenue le : 09 décembre 2012

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Fouille de données et sémantique : des techniques pour donner du sens aux données

Fouille de données et sémantique : des techniques pour donner du sens aux données Fouille de données et sémantique : des techniques pour donner du sens aux données Nathalie Aussenac-Gilles (IRIT) co-animatrice avec M. Boughanem de l axe masse de données et calcul http://www.irit.fr/-masses-de-donnees-et-calcul,677-?lang=fr

Plus en détail

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans Introduction aux CRF via l annotation par des modèles graphiques Isabelle Tellier LIFO, Université d Orléans Plan 1. Annoter pour quoi faire 2. Apprendre avec un modèle graphique 3. Annnoter des chaînes

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis Analyse Quantitative et Qualitative de données textuelles Normand Péladeau, Ph.D. Président Recherches Provalis Les Produits de Recherches Provalis SIMSTAT (1989) Analyses Statistiques Simstat v2.5 Les

Plus en détail

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28 MIXMOD Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD F. Langrognet () MIXMOD Avril 2012 1 / 28 PLAN 1 La classification des données 2 MIXMOD, ensemble logiciel de classification

Plus en détail

Analyse et modélisation de visages

Analyse et modélisation de visages Analyse et modélisation de visages Pascal Bourdon Laboratoire XLIM-SIC (UMR CNRS 7252) / Université de Poitiers pascal.bourdon@univ-poitiers.fr Analyse et modélisation de visages Plan Introduction Outils

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

PJE : Analyse de comportements avec Twitter Classification supervisée

PJE : Analyse de comportements avec Twitter Classification supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie

Plus en détail

Maintien des personnes âgées à domicile

Maintien des personnes âgées à domicile Maintien des personnes âgées à domicile Enjeux scientifiques et technologiques liés à la vision par ordinateur Christian Wolf http://liris.cnrs.fr/christian.wolf Introduction Sommaire Les données et les

Plus en détail

Avancée en classification multi-labels de textes en langue chinoise

Avancée en classification multi-labels de textes en langue chinoise Avancée en classification multi-labels de textes en langue chinoise Thèse en cotutelle présentée par Zhihua WEI pour les doctorats en informatique des Universités Lyon2 et Tongji La thèse est centrée sur

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

THÈSE. Décodage conceptuel : co-articulation des processus de transcription et compréhension dans les systèmes de dialogue

THÈSE. Décodage conceptuel : co-articulation des processus de transcription et compréhension dans les systèmes de dialogue ACADÉMIE D AIX-MARSEILLE UNIVERSITÉ D AVIGNON ET DES PAYS DE VAUCLUSE THÈSE Présentée pour obtenir le grade de Docteur en Sciences de l Université d Avignon et des Pays de Vaucluse SPÉCIALITÉ : INFORMATIQUE

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Traitement Automatique des Langues pour les Systèmes d'information. Introduction. Damien Nouvel Nathalie Friburger Jean-Yves Antoine

Traitement Automatique des Langues pour les Systèmes d'information. Introduction. Damien Nouvel Nathalie Friburger Jean-Yves Antoine Langues pour les Systèmes d'information Introduction Nathalie Friburger Jean-Yves Antoine Organisation du cours Introduction : 1h cours (D. Nouvel) Morphologie, terminologie et lexiques : 3h cours, 2h

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/? Ingénierie de Systèmes Intelligents Maria Malek maria.malek@eisti.fr Ecole Internationale des Sciences de Traitement de l Information (EISTI) http://www.eisti.fr/

Plus en détail

Introduction au TALN et à l ingénierie linguistique. Isabelle Tellier ILPGA

Introduction au TALN et à l ingénierie linguistique. Isabelle Tellier ILPGA Introduction au TALN et à l ingénierie linguistique Isabelle Tellier ILPGA Plan de l exposé 1. Quelques notions de sciences du langage 2. Applications et enjeux du TAL/ingénierie linguistique 3. Les deux

Plus en détail

Plan d Evaluation (phase 1) Version 1.1

Plan d Evaluation (phase 1) Version 1.1 Evaluation des Systèmes de Transcription enrichie d Emissions Radiophoniques (ESTER) Plan d Evaluation (phase 1) Version 1.1 Dernière mise à jour le 21 novembre 2003. 1 Préambule Ce document décrit le

Plus en détail

l Intelligence Artificielle

l Intelligence Artificielle 1 Introduction à l Intelligence Artificielle Antoine Cornuéjols antoine@lri.fr http://www.iie.cnam.fr/~cornuejols/ I.I.E. & L.R.I., Université d Orsay Intelligence Artificielle : plan 2 1-2- 3-4- 5-6-

Plus en détail

INGENIERIE DES LANGUES. Master en Informatique 1ère Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie

INGENIERIE DES LANGUES. Master en Informatique 1ère Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie INGENIERIE DES LANGUES Master en Informatique 1ère Année Semestre 1 Département d'informatique Université de Caen Basse-Normandie https://dias.users.greyc.fr/?op=paginas/nlp.html Plan Intuition Modèles

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Informatique, spécialité AIGLE

Informatique, spécialité AIGLE Université de MONTPELLIER 2 1/3 Informatique, spécialité AIGLE L1 S1 Algebre et Analyse 1 10 L1 S1 Calculus 5 L1 S1 Du binaire au web 5 L1 S1 Introduction à l'algorithmique 5 L1 S1 Physique générale 5

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Accès aux connaissances orales par le résumé automatique

Accès aux connaissances orales par le résumé automatique Benoît Favre, Jean-François Bonastre, Patrice Bellot, François Capman Thales, Laboratoire MMP, 160 Bd de Valmy, 92700 Colombes, benoit.favre@fr.thalesgroup.com, francois.capman@fr.thalesgroup.com Université

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Modélisation des processus d acquisition du langage par des méthodes statistiques

Modélisation des processus d acquisition du langage par des méthodes statistiques INSA 135 avenue de Rangueil 31400 TOULOUSE LSCP 29 rue d Ulm 75005 PARIS Rapport de stage de 5ème année GMM - MMN Modélisation des processus d acquisition du langage par des méthodes statistiques Isabelle

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Les outils de veille sur Internet Panorama, évolutions, nouveautés. Myriel Brouland SCIP France -10 Mai 2006

Les outils de veille sur Internet Panorama, évolutions, nouveautés. Myriel Brouland SCIP France -10 Mai 2006 Les outils de veille sur Internet Panorama, évolutions, nouveautés Myriel Brouland SCIP France -10 Mai 2006 1 La veille en France: une situation paradoxale Une situation contrastée Une prise de conscience

Plus en détail

1.2 Unité responsable Département d informatique, Faculté des sciences

1.2 Unité responsable Département d informatique, Faculté des sciences 1. Identification du programme 1.1 Titre du programme Maîtrise ès sciences (informatique) 1.2 Unité responsable Département d informatique, Faculté des sciences 1.3 Diplôme accordé M. Sc. (Informatique)

Plus en détail

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours

ENSIIE - Intelligence Artificielle (RIIA) - 1er cours ENSIIE - Intelligence Artificielle (RIIA) - 1er cours Benjamin PIWOWARSKI 28 septembre 2015 Benjamin PIWOWARSKI IA - 1er cours 28 septembre 2015 1 / 53 Introduction Plan 1 Introduction 2 Définitions 3

Plus en détail

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L identification vocale dans le milieu judiciaire Une motivation

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données Textuelles

Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données Textuelles N o d ordre : N o attribué par la bibliothèque : Université Paris 13 Institut Galilée Laboratoire d Informatique de Paris Nord UMR 7030 du CNRS THÈSE présentée pour l obtention du titre de Docteur en Sciences

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Leçon 4 : Typologie des SI

Leçon 4 : Typologie des SI Leçon 4 : Typologie des SI Typologie des SI Système formel Système informel Typologie des SI Chaque jour au sein d une organisation Le système d info stocke, traie ou restitue des quantités importantes

Plus en détail

CarrotAge, un logiciel pour la fouille de données agricoles

CarrotAge, un logiciel pour la fouille de données agricoles CarrotAge, un logiciel pour la fouille de données agricoles F. Le Ber (engees & loria) J.-F. Mari (loria) M. Benoît, C. Mignolet et C. Schott (inra sad) Conférence STIC et Environnement, Rouen, 19-20 juin

Plus en détail

Vers une meilleure modélisation du langage : la prise en compte des séquences dans les modèles statistiques

Vers une meilleure modélisation du langage : la prise en compte des séquences dans les modèles statistiques Vers une meilleure modélisation du langage : la prise en compte des séquences dans les modèles statistiques Imed Zitouni, Kamel Smaïli To cite this version: Imed Zitouni, Kamel Smaïli. Vers une meilleure

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL MODÉLISATION CONNEXIONNISTE DU REPÉRAGE DE L'INFORMATION

UNIVERSITÉ DU QUÉBEC À MONTRÉAL MODÉLISATION CONNEXIONNISTE DU REPÉRAGE DE L'INFORMATION UNIVERSITÉ DU QUÉBEC À MONTRÉAL MODÉLISATION CONNEXIONNISTE DU REPÉRAGE DE L'INFORMATION THÈSE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN INFORMATIQUE COGNITIVE PAR GUY DESJARDINS AOÛT 2006 TABLE

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

INDEXATION des IMAGES

INDEXATION des IMAGES INDEXATION des IMAGES Marine Campedel www.tsi.enst.fr/~campedel mars 2005 Plan du cours Généralités Méthodes Indexation textuelle Indexation par le contenu Récupération de l information (retrieval) Feedback

Plus en détail

Les techniques d exploitation de données (Data Mining)

Les techniques d exploitation de données (Data Mining) Les techniques d exploitation de données (Data Mining) 1 Présenté par : Emer Mestiri, M.sc Finance, Data Scientist Conseiller Gestion de risque de crédit, Mouvement Desjardins Sommaire 2 I. Logiciel SAS

Plus en détail

Segmentation non supervisée d images par chaîne de Markov couple

Segmentation non supervisée d images par chaîne de Markov couple Segmentation non supervisée d images par chaîne de Markov couple Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Nationale Supérieure de Physique de Marseille, Groupe Signaux Multidimensionnels, laboratoire

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur

Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur 18/12/2003 p.1/50 Systèmes de représentation multi-échelles pour l indexation et la restauration d archives médiévales couleur Julien DOMBRE Laboratoire IRCOM-SIC, UMR-CNRS 6615. En partenariat avec le

Plus en détail

L authentification biométrique vocale

L authentification biométrique vocale L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 17 Mars 2005 Contexte A partir d un signal de parole, des informations de

Plus en détail

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA RÉCITAL 2005, Dourdan, 6-10 juin 2005 Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA Siham Boulaknadel (1,2), Fadoua Ataa-Allah (2) (1) LINA FRE

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

ACADÉMIE D AIX-MARSEILLE École Doctorale Sciences et Agronomie THÈSE

ACADÉMIE D AIX-MARSEILLE École Doctorale Sciences et Agronomie THÈSE ACADÉMIE D AIX-MARSEILLE École Doctorale Sciences et Agronomie THÈSE Présentée pour obtenir le grade de Docteur en Sciences de l Université d Avignon et des Pays de Vaucluse Spécialité : Informatique Stratégies

Plus en détail

Intelligence Artificielle

Intelligence Artificielle Intelligence Artificielle p. 1/1 Intelligence Artificielle Les arbres de décisions Maria Malek Département Systèmes Informatiques Formels & Intelligents Intelligence Artificielle p. 2/1 Extraire les connaissances

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 commun aux spécialités (MSIR, IDL, TechMed) Type d'u.e. (1) OP Intitulé et descriptif des U.E. GENIE LOGICIEL AVANCE Gestion de projets. Qualité logicielle.

Plus en détail

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro]

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro] [] Indexation conceptuelle application au domaine biomédical Mesures de similarité dans les ontologies Sylvie Ranwez Sébastien Harispe LGI2P de l école des mines d Alès équipe KID (Knowledge and Image

Plus en détail

Champ de Markov couple pour la segmentation d images texturées

Champ de Markov couple pour la segmentation d images texturées Champ de Markov couple pour la segmentation d images texturées Juliette Blanchet INRIA Rhône-Alpes Equipes Mistis et Lear 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats

Plus en détail

Profil du candidat et connaissances techniques à connaître/maîtriser

Profil du candidat et connaissances techniques à connaître/maîtriser Utilisation d algorithmes de deep learning pour la reconnaissance d iris. jonathan.milgram@morpho.com Dans ce cadre, l'unité de recherche et technologie a pour but de maintenir le leadership Au sein de

Plus en détail

Extraction d entités nommées à partir de graphes de mots

Extraction d entités nommées à partir de graphes de mots Extraction d entités nommées à partir de graphes de mots Frédéric Béchet Aix Marseille Université LIF-CNRS Laboratoire d Informatique Fondamentale de Marseille Introduction Pourquoi utiliser des graphes

Plus en détail

APPLICATION DE TECHNIQUES PARCIMONIEUSES ET HIÉRARCHIQUES EN RECONNAISSANCE DE LA PAROLE

APPLICATION DE TECHNIQUES PARCIMONIEUSES ET HIÉRARCHIQUES EN RECONNAISSANCE DE LA PAROLE UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie électrique et de génie informatique APPLICATION DE TECHNIQUES PARCIMONIEUSES ET HIÉRARCHIQUES EN RECONNAISSANCE DE LA PAROLE Mémoire de maîtrise

Plus en détail

TEXT MINING Tour d Horizon

TEXT MINING Tour d Horizon TEXT MINING Tour d Horizon Media Campus WAN IFRA "Structurer, optimiser et valoriser son contenu éditorial : les outils de text mining" 24 novembre 2009, PARIS Philippe BONNY Cabinet de Conseil et d Etudes

Plus en détail

Classification du genre vidéo reposant sur des transcriptions automatiques

Classification du genre vidéo reposant sur des transcriptions automatiques TALN 2010, Montréal, 19 23 juillet 2010 Classification du genre vidéo reposant sur des transcriptions automatiques Stanislas Oger, Mickael Rouvier, Georges Linarès LIA, Université d Avignon, France {stanislas.oger,

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

Intégration de la dimension sémantique dans les réseaux sociaux

Intégration de la dimension sémantique dans les réseaux sociaux Intégration de la dimension sémantique dans les réseaux sociaux Application : systèmes de recommandation Maria Malek LARIS-EISTI maria.malek@eisti.fr 1 Contexte : Recommandation dans les réseaux sociaux

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine : Sciences, Technologies, Santé Nature de la formation : Mention Niveau d'étude

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail