Apprentissage Automatique

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage Automatique"

Transcription

1 Apprentissage Automatique Introduction-I Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs d'étude de l'intelligence artificielle. L'apprentissage automatique fait référence au développement, à l'analyse et à l'implémentation de méthodes qui permettent à une machine (au sens large) d'évoluer grâce à un processus d'apprentissage, et ainsi de remplir des tâches qu'il est difficile ou impossible de remplir par des moyens algorithmiques plus classiques. J.F. Bonastre 2 1

2 Qu est ce que «l apprentissage automatique»?? Extraire de l information à partir de données (corpus based approaches) J.F. Bonastre 3 Définition (http://www.grappa.univ-lille3.fr/polys/apprentissage/index.html) Apprentissage à partir d exemples Classification supervisée Lien Apprentissage Classification J.F. Bonastre 4 2

3 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Apprentissage automatique un carrefour J.F. Bonastre 5 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Vision Statistique But = apprendre des fonctions à partir de données Fonctions complexes vs non paramétriques Dimensionnalité de l espace Taille des corpus Inspiration Vision Intelligence artificielle But : imiter ou reproduire des comportements intelligents naturels source de problèmes classiques (reconnaissance d écriture, parole, etc.) différences approche inductive apprentissage a partir des exemples approche probabiliste J.F. Bonastre 6 3

4 Définition (http://indico.lal.in2p3.fr/conferencedisplay.py?confid=a0637) Théorie des probabilités outils d analyse de modèles théoriques Théorie de l optimisation outils algorithmiques Sciences cognitives, neurosciences Sources d inspiration Théorie de l information, traitement du signal Problèmes et méthodologies partagés J.F. Bonastre 7 Types d algorithmes (Wikipedia) L'apprentissage supervisé : un expert (ou oracle) est employé pour étiqueter correctement des exemples. L'apprenant doit alors trouver ou approximer la fonction qui permet d'affecter la bonne étiquette à ces exemples. L'apprentissage non-supervisé L'apprentissage par renforcement J.F. Bonastre 8 4

5 Quelques algos (Wikipedia) les machines à vecteur de support le boosting les réseaux de neurones pour un apprentissage supervisé ou nonsupervisé la méthode des k plus proches voisins pour un apprentissage supervisé les arbres de décision les méthodes statistiques comme le modèle de mixture gaussienne la régression logistique l'analyse discriminante linéaire la logique floue les algorithmes génétiques et la programmation génétique J.F. Bonastre 9 A quoi ça sert?? Analyse financière : prévision d'évolution de marchés Marketing : établir un profil client, mailing Banque : attribution de prêts Médecine : aide au diagnostic, Télecom : détection de fraudes. Biométrie Robotique Reconnaissance de forme OCR Transcription de la parole Compréhension/Dialogue Recherche d information (moteur internet, moteur multimédia) J.F. Bonastre 10 5

6 Un exemple Un exemple d outil (1) Navigation dans des bases de données audio Orientation «moteur de recherche» Présentation synthétique de l information Technologies développées au LIA Travail (très) coopératif Nombreuses thèses dont celle de Benoît Favre (mars 2007) en collaboration avec Thales Communications J.F. Bonastre 12 6

7 Un exemple d outil (2) Des données (~ 100h) Un besoin d information («Chirac») Une réponse sous forme d un résumé audio par concaténation Problèmes Perte du contexte Difficulté pour naviguer Nécessité de connaître précisément l objectif Solution? Frise J.F. Bonastre 13 Un exemple d outil (3) Annexes J.F. Bonastre 14 7

8 Un exemple d outil (4) Commentaires ~100 heures de parole (base publique, ESTER) Peu de couverture temporelle (les données sont espacées sur une longue période) Etendu à 1700 heures. Pas de soucis hormis l interface (temps d accès aux données audio) 100 % automatique Analyse sémantique réalisée sur les données «le monde», ~ 500 millions de mots En ligne (http://pc-favre.iup.univ-avignon.fr:7777/) J.F. Bonastre 15 Un exemple d outil (5) Limites Démonstrateur! L'identité du locuteur n'est pas encore ajoutée au niveau des traitements sémantiques Id pour des marqueurs liés à la parole («émotions»/style, taux d'interaction,...) Ajout de «curseurs» couverture thématique nouveauté J.F. Bonastre 16 8

9 Technologies Technologies (1) Paramétrisation et Séparation en classes/locuteurs Représentation du signal (paramétrisation) Représentation tempsfréquence Atténuation des bruits, normalisations Traitements «acoustiques» Segmentation en classes Segmentation en locuteurs Identification/Suivi des locuteurs Traitement du signal Apprentissage automatique Techniques statistiques J.F. Bonastre 18 9

10 Technologies (2) Apprentissage automatique «statistique» Estimateur de densité GMM à partir d exemples (et connaissances) -> modèle de la distribution Mélange de Gaussiennes Multidimensionnelles Algo standards (EM, MAP ) J.F. Bonastre 19 Technologies (3) Moteur de reconnaissance de la parole Modélisation acoustique Modèles initiaux (par condition) Adaptation au locuteur Adaptation aux conditions Modélisation linguistique Algorithme de décodage Graphe d hypothèses très, trop large Apprentissage automatique Techniques statistiques + connaissances Algorithmes de parcours efficaces (Token, Stack, A* ) J.F. Bonastre 20 10

11 Technologies (4) Modélisation acoustique Passer du «statique au dynamique» Mot ->Modèles composés I U F Connaissances HMM (Modèles de Markov Cachés) Transitions (probabilités) Etats (p. émission -> GMM) Viterbi, Baum-Welch Lexique de mots 1 mot = suite de phone 1 phone = 1 phonème en contexte = 1 HMM 3 états Choix des triphones (contextes manquants) Constitution du lexique (mots composés ) J.F. Bonastre 21 Technologies (5) Apprentissage automatique «statistique» Modèles de langage Ngram : probabilité de i connaissant i-1,, i-n Mot i-2 Mot i-1 Mot i Nclass : probabilité de la classe i connaissant les classes i-1, i-n Mot -> classe Ngram Grammaires spécifiques, règles, combinaison Difficultés : * backoff * corpus * lexique * nettoyage * noms propres * évolutions Exemple présenté : * 3 gram * 20 M transcriptions * 550 M «le monde» J.F. Bonastre 22 11

12 Technologies (6) Segmentation en phase, Entités Nommées Segmentation Conditional Random Fields Informations hétérogènes Linguistique (Transcription, Étiquettes syntaxiques) Prosodiques (Pauses, Pente de f0, Tours de parole) Entités Nommées Noms de personnes, organisations, lieux Dates et quantités numériques Stratégie mixte Grammaires locales Modèles N-gram J.F. Bonastre 23 Segmentation en phrases CRF (CRF++) Mots (bigram) Etiquetage morphosyntaxique (LIA_TAG) Changement de locuteurs Prosodie Fin de segments Pause avant, entre les 2 mots Fo (sur 3 horizons t.) J.F. Bonastre 24 12

13 Technologies (7) Extraction de connaissance, résumé Représentation sous forme vectorielle (~dim. 65 k) Latent Semantic Analysis Représentation conceptuelle Projection des phases dans un espace conceptuel Fonction des cooccurrences Rend compte de la «proximité sémantique» Réduction de l espace (SVD) Création de «concepts» Réponse «temps réel» Espace pré-appris Maximal Marginal Relevance Sélection des phrases Maximum de couverture Minimum de redondance Séparation des calculs Intérêt général des phrases/mots (pré-calculé) Dépendant de la requête J.F. Bonastre 25 Maximal Margin Relevance (MMR) Objectifs Sélection de phrases suivant un besoin Maximiser l information, minimiser la redondance Adaptation au contexte (efficacité et interactivité) Informations sur la forme, précalculées Informations venant du besoin utilisateur, calculées à la demande Appliquée dans un «espace sémantique» J.F. Bonastre 26 13

14 L espace sémantique VSM - Modèle algébrique/vectoriel classique Requêtes et candidats sont exprimés sous forme d un vecteur Une dimension = 1 mot du vocabulaire Une valeur = nb occurrences du mot dans le document concerné En fait, Inverse Document Frequency J.F. Bonastre 27 L espace sémantique VSM - Modèle algébrique/vectoriel classique Modèle «sac de mots» Ne prend pas en compte l ordre des mots Ne prend pas en compte les corrélations inter mots Evolution vers GVSM Basé sur les corrélations inter mots Complexe pour peu d amélioration J.F. Bonastre 28 14

15 L espace sémantique Latent Semantic Analysis Même principe que GVSM (corrélations) Le point de départ est une matrice de cooccurrence Case i,j donne le nombre de cooccurrences des mots i et j dans un contexte donné Le contexte? Phrase, document, fenêtre Utilisation d une décomposition en valeurs singulières (SVD) Réduction de la complexité (représentation par une matrice de taille réduite) Emergence de «thèmes» = axes J.F. Bonastre 29 L espace sémantique Latent Semantic Analysis Matrice initiale de cooccurrences Décomposition par SVD Vecteurs singuliers orthogonaux (nvle base) «thèmes» Matrice diagonale des valeurs singulières Réduction à une dimension k J.F. Bonastre 30 15

16 L espace sémantique Latent Semantic Analysis Projection d un document dans LSA Mesure cosine de similarité J.F. Bonastre 31 Performances de la chaîne de structuration LIA (data de la démo) J.F. Bonastre 32 16

Reconnaissance vocale

Reconnaissance vocale Reconnaissance vocale Définition : La reconnaissance vocale ou (Automatic Speech Recognition ASR) est une technologie de transcription d'un système «phonatoire organique»exploitable par une machine. La

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif

Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif Séminaire DIXIT - Les nouvelles frontières de la «data intelligence» : content analytics, machine-learning, prédictif 13 avril 2015 LES INNOVATIONS DANS LA SOCIAL MEDIA INTELLIGENCE Expérience informationnelle

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Les outils de veille sur Internet Panorama, évolutions, nouveautés. Myriel Brouland SCIP France -10 Mai 2006

Les outils de veille sur Internet Panorama, évolutions, nouveautés. Myriel Brouland SCIP France -10 Mai 2006 Les outils de veille sur Internet Panorama, évolutions, nouveautés Myriel Brouland SCIP France -10 Mai 2006 1 La veille en France: une situation paradoxale Une situation contrastée Une prise de conscience

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Ingénierie d aide à la décision

Ingénierie d aide à la décision Ingénierie d aide à la décision Maria Malek 1 er septembre 2009 1 Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2.

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Les sections 6 et 7. du ComitéNational de la RechercheScientifique

Les sections 6 et 7. du ComitéNational de la RechercheScientifique Les sections 6 et 7 du ComitéNational de la RechercheScientifique (CoNRS) Frédérique Bassino et Michèle Basseville Plan Le comité national Les missions des sections Les sections 6 et 7 Le comiténational

Plus en détail

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28

MIXMOD. Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD. F. Langrognet () MIXMOD Avril 2012 1 / 28 MIXMOD Un ensemble logiciel de classification des données par modèles de mélanges MIXMOD F. Langrognet () MIXMOD Avril 2012 1 / 28 PLAN 1 La classification des données 2 MIXMOD, ensemble logiciel de classification

Plus en détail

LSA : les limites d'une approche statistique

LSA : les limites d'une approche statistique LSA : les limites d'une approche statistique Atelier «Fouille de Données Complexes» (FDC'6), 7 janvier 26 Mathieu Roche et Jacques Chauché Equipe TAL, LIRMM, Université Montpellier 2 Plan Motivations LSA

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Chaînes de Markov Cachées Floues et Segmentation d Images

Chaînes de Markov Cachées Floues et Segmentation d Images Introduction Chaînes de Markov Cachées Floues et Segmentation d Images Cyril Carincotte et Stéphane Derrode Équipe GSM Groupe Signaux Multi-dimensionnels Institut Fresnel (UMR 6133) EGIM Université Paul

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Présentation de la plateforme d analyse linguistique médiévale

Présentation de la plateforme d analyse linguistique médiévale Présentation de la plateforme d analyse linguistique médiévale 1. Introduction Tout au long de ce document, notre projet sera présenté à travers la méthodologie suivie pour développer la plateforme d analyse

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Plan d Evaluation (phase 1) Version 1.1

Plan d Evaluation (phase 1) Version 1.1 Evaluation des Systèmes de Transcription enrichie d Emissions Radiophoniques (ESTER) Plan d Evaluation (phase 1) Version 1.1 Dernière mise à jour le 21 novembre 2003. 1 Préambule Ce document décrit le

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Évaluation de la classification et segmentation d'images en environnement incertain

Évaluation de la classification et segmentation d'images en environnement incertain Évaluation de la classification et segmentation d'images en environnement incertain EXTRACTION ET EXPLOITATION DE L INFORMATION EN ENVIRONNEMENTS INCERTAINS / E3I2 EA3876 2, rue F. Verny 29806 Brest cedex

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

INGENIERIE DES LANGUES. Master en Informatique 1ère Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie

INGENIERIE DES LANGUES. Master en Informatique 1ère Année Semestre 1. Département d'informatique Université de Caen Basse-Normandie INGENIERIE DES LANGUES Master en Informatique 1ère Année Semestre 1 Département d'informatique Université de Caen Basse-Normandie https://dias.users.greyc.fr/?op=paginas/nlp.html Plan Intuition Modèles

Plus en détail

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get.

Recherche d informations et veille marketing. Beth Krasna 17.10.2003. What you mean is what you get. Recherche d informations et veille marketing Beth Krasna 17.10.2003. Le Cycle de Connaissance KM Adapter Organiser Utiliser Collaboration Publier Analyser Collecter MI Données Information Connaissance

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro]

Indexation conceptuelle application au domaine biomédical. Mesures de similarité dans les ontologies. [Séminaire MIAD Montpellier SupAgro] [] Indexation conceptuelle application au domaine biomédical Mesures de similarité dans les ontologies Sylvie Ranwez Sébastien Harispe LGI2P de l école des mines d Alès équipe KID (Knowledge and Image

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Analyse et modélisation de visages

Analyse et modélisation de visages Analyse et modélisation de visages Pascal Bourdon Laboratoire XLIM-SIC (UMR CNRS 7252) / Université de Poitiers pascal.bourdon@univ-poitiers.fr Analyse et modélisation de visages Plan Introduction Outils

Plus en détail

Introduction au TALN et à l ingénierie linguistique. Isabelle Tellier ILPGA

Introduction au TALN et à l ingénierie linguistique. Isabelle Tellier ILPGA Introduction au TALN et à l ingénierie linguistique Isabelle Tellier ILPGA Plan de l exposé 1. Quelques notions de sciences du langage 2. Applications et enjeux du TAL/ingénierie linguistique 3. Les deux

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia)

Département d informatique et de génie logiciel Université Laval. MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) Département d informatique et de génie logiciel Université Laval MULTIMÉDIA Concentration (4 cours) (Notre salle multimédia) A. Avant propos... 2 B. Cours de multimédia (4 cours obligatoires)... 3 a. IFT-10558

Plus en détail

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008 Master IAD Module PS IV. Reconnaissance de la parole Gaël RICHARD Février 2008 1 Contenu Introduction aux technologies vocales Production et Perception de la parole Modélisation articulatoire Synthèse

Plus en détail

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA

Découverte de Règles Associatives Hiérarchiques entre termes. Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA Découverte de Règles Associatives Hiérarchiques entre termes Sandra BSIRI Hamza Mahdi ZARG AYOUNA Chiraz L.Chérif Sadok BENYAHIA 1 Plan Problématique et État de l art Nouvelle approche Approche Conceptuelle

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Maintien des personnes âgées à domicile

Maintien des personnes âgées à domicile Maintien des personnes âgées à domicile Enjeux scientifiques et technologiques liés à la vision par ordinateur Christian Wolf http://liris.cnrs.fr/christian.wolf Introduction Sommaire Les données et les

Plus en détail

Contenu. Sources et références. Classification supervisée. Classification supervisée vs. non-supervisée

Contenu. Sources et références. Classification supervisée. Classification supervisée vs. non-supervisée PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2012-2013 B. Derbel L. Jourdan A. Liefooghe Contenu Classification

Plus en détail

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 WEKA : c est quoi? Brigitte Bigi LPL - Équipe C3I 15 février 2011 Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 Introduction 1 Introduction 2 Classification supervisée 3 WEKA

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Accélérer l agilité de votre site de e-commerce. Cas client

Accélérer l agilité de votre site de e-commerce. Cas client Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible

Plus en détail

Informatique, spécialité AIGLE

Informatique, spécialité AIGLE Université de MONTPELLIER 2 1/3 Informatique, spécialité AIGLE L1 S1 Algebre et Analyse 1 10 L1 S1 Calculus 5 L1 S1 Du binaire au web 5 L1 S1 Introduction à l'algorithmique 5 L1 S1 Physique générale 5

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE

MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE MASTER INFORMATIQUE - SPÉCIALITÉ : INTELLIGENCE ARTIFICIELLE RÉSUMÉ DE LA FORMATION Type de diplôme : Master (LMD) Domaine : Sciences, Technologies, Santé Nature de la formation : Mention Niveau d'étude

Plus en détail

Intelligence Artificielle. Dorra BEN AYED

Intelligence Artificielle. Dorra BEN AYED Intelligence Artificielle Dorra BEN AYED Chapitre 1 Introduction et Présentation Générale Sommaire Introduction Historique Définitions de l IAl Domaines d applicationd Les approches de l IA cognitive,

Plus en détail

Profil du candidat et connaissances techniques à connaître/maîtriser

Profil du candidat et connaissances techniques à connaître/maîtriser Utilisation d algorithmes de deep learning pour la reconnaissance d iris. jonathan.milgram@morpho.com Dans ce cadre, l'unité de recherche et technologie a pour but de maintenir le leadership Au sein de

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en Java

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en Java Avant-propos 1. Objectifs du livre 15 2. Public et prérequis 15 3. Structure du livre 16 4. Code en téléchargement 18 Introduction 1. Présentation du chapitre 19 2. Définir l intelligence 19 3. L intelligence

Plus en détail

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec Piria

De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec Piria De 2 à 22 millions d'images; Création, Indexation et Recherche par le contenu avec Piria contact : patrick.hede@cea.fr Commissariat à l'energie Atomique List sensorielles 13/05/07 1 Plan Le CEA, le Lic2m

Plus en détail

CarrotAge, un logiciel pour la fouille de données agricoles

CarrotAge, un logiciel pour la fouille de données agricoles CarrotAge, un logiciel pour la fouille de données agricoles F. Le Ber (engees & loria) J.-F. Mari (loria) M. Benoît, C. Mignolet et C. Schott (inra sad) Conférence STIC et Environnement, Rouen, 19-20 juin

Plus en détail

Intelligence Artificielle

Intelligence Artificielle Intelligence Artificielle p. 1/1 Intelligence Artificielle Les arbres de décisions Maria Malek Département Systèmes Informatiques Formels & Intelligents Intelligence Artificielle p. 2/1 Extraire les connaissances

Plus en détail

Cours Fouille de données avancée

Cours Fouille de données avancée Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis Analyse Quantitative et Qualitative de données textuelles Normand Péladeau, Ph.D. Président Recherches Provalis Les Produits de Recherches Provalis SIMSTAT (1989) Analyses Statistiques Simstat v2.5 Les

Plus en détail

Traitement automatique des messages courts par des approches de Fouille de Textes

Traitement automatique des messages courts par des approches de Fouille de Textes Traitement automatique des messages courts par des approches de Fouille de Textes Mathieu ROCHE Equipe TEXTE LIRMM, CNRS, Université Montpellier 2 1 Séminaire Sud4Science 28 septembre 2011 1. Introduction

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/? Ingénierie de Systèmes Intelligents Maria Malek maria.malek@eisti.fr Ecole Internationale des Sciences de Traitement de l Information (EISTI) http://www.eisti.fr/

Plus en détail

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en C#

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en C# Introduction 1. Structure du chapitre 19 2. Définir l intelligence 19 3. L intelligence du vivant 22 4. L intelligence artificielle 23 5. Domaines d application 25 6. Synthèse 27 Systèmes experts 1. Présentation

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Examen de Bases de données multimédia 5 février 2014 durée : 2h00

Examen de Bases de données multimédia 5 février 2014 durée : 2h00 Examen de Bases de données multimédia 5 février 2014 durée : 2h00 Documents autorisés : transparents du cours, notes de cours. Calculatrice non autorisée. Bonus = points en plus hors barème. EXERCICE 1.

Plus en détail

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013 École de technologie supérieure Département de génie de la production automatisée Responsable(s) du cours : Crédits : Richard Lepage, ing., Ph.D. GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Comparaison d approches statistiques pour la classification de textes d opinion. Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM)

Comparaison d approches statistiques pour la classification de textes d opinion. Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM) Comparaison d approches statistiques pour la classification de textes d opinion Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM) Caractéristiques des traitements Approche identique pour les

Plus en détail

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L identification vocale dans le milieu judiciaire Une motivation

Plus en détail

Veille technologique en télécommunications

Veille technologique en télécommunications Veille technologique en télécommunications Khalid EL HIMDI Ismail KASSOU Hamid MACHCHOUR 1 Techniques d analyse de contenus L analyse de contenus est au cœur de la gestion du cycle de vie de l information

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives

Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives Les serveurs vocaux au service de l nformation voyageurs: Etat de l art et perspectives Bernard PROUTS L Information Voyageur Horaires théoriques Situations perturbées Horaires «Temps réel» Itinéraires

Plus en détail

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE Paul Pașcu, Assist Prof, PhD, Ștefan cel Mare University of Suceava Abstract: This article aims to present a number

Plus en détail

Systèmes de dialogue homme-machine

Systèmes de dialogue homme-machine Systèmes de dialogue homme-machine Une introduction rapide Sophie Rosset Groupe Traitement du Langage Parlé Département Communication Homme-Machine LIMSI - CNRS Sophie Rosset (LIMSI) Systèmes de dialogue

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et l'anglais. L'étudiant a le choix entre deux filières

Plus en détail

Introduction à l Intelligence Artificielle

Introduction à l Intelligence Artificielle Introduction à l Intelligence Artificielle p. 1/41 Introduction à l Intelligence Artificielle Cyril Terrioux Laboratoire des Sciences de l Information et des Systèmes LSIS - UMR CNRS 6168 Introduction

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

L'intelligence artificielle

L'intelligence artificielle Texte de la 263 e conférence de l'université de tous les savoirs donnée le 19 septembre 2000. L'intelligence artificielle par JEAN-PAUL HATON Dès le début de l intelligence artificielle (IA) dans les années

Plus en détail

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Abderrahmane BENDAHMANE Laboratoire SIMPA Département d informatique Université

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

Avancée en classification multi-labels de textes en langue chinoise

Avancée en classification multi-labels de textes en langue chinoise Avancée en classification multi-labels de textes en langue chinoise Thèse en cotutelle présentée par Zhihua WEI pour les doctorats en informatique des Universités Lyon2 et Tongji La thèse est centrée sur

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Construction et enrichissement automatique d ontologie à partir de ressources externes

Construction et enrichissement automatique d ontologie à partir de ressources externes Construction et enrichissement automatique d ontologie à partir de ressources externes JFO 2009 Jeudi 3 décembre 2009 E. Kergosien (LIUPPA, Pau) M. Kamel (IRIT- UPS, Toulouse) M. Sallabery (LIUPPA, Pau)

Plus en détail

Outils de veille : typologie

Outils de veille : typologie Outils de veille : typologie Claire FRANCOIS Unité de recherche et Innovation INIST / CNRS Plan Introduction Les grands types d outils de veille Les différentes fonctionnalités Les technologies mises en

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole

Abdenour Hacine-Gharbi. Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES (ORLEANS) FACULTÉ de TECHNOLOGIE (Sétif) Laboratoire PRISME THÈSE EN COTUTELLE INTERNATIONALE présentée par : Abdenour Hacine-Gharbi soutenue le : 09 décembre 2012

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail