Laboratoire 4 Développement d un système intelligent

Dimension: px
Commencer à balayer dès la page:

Download "Laboratoire 4 Développement d un système intelligent"

Transcription

1 DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement d un système intelligent pour le problème de la reconnaissance faciale ou du filtrage de pourriels. En vous basant sur les concepts vus en classe, vous devrez réaliser toutes les étapes de conception d un tel système, depuis la sélection du modèle jusqu à sa validation. L évaluation de ce travail sera basée sur la qualité de la conception, de même que sur la performance du système à l évaluation. Pour la réalisation du laboratoire, vous devrez choisir un seul problème parmi les deux suivants. 1.1 La reconnaissance faciale La reconnaissance faciale est un problème important de l apprentissage machine, ayant diverses applications en robotique, et en sécurité des systèmes. L objectif de ce problème consiste à reconnaître une personne parmi K individus possibles, à partir d une image montrant le visage de cette personne. Il s agît donc d une instance du problème de classification à K classes. Algorithmes suggérés Un grand nombre d approches a été proposé pour le problème de reconnaissance faciale. Parmi ces approches, nous suggérons les suivantes : L algorithme Eigenfaces [1], basé sur l analyse en composantes principales (PCA) L algorithme Fisherfaces [2], basé sur le discriminant de Fisher (LDA) Les machines à vecteurs de support (SVM) Les réseaux de neurones. 1

2 Les données Pour entraîner et évaluer la performance de votre méthode, des données vous sont fournies dans le fichier Faces-dataset.zip. L ensemble d entraînement est composé de 360 visages de 40 individus différents, où les images correspondant au i-ème individu sont situées dans le sousrépertoire nommé si. Les données employées pour l évaluation de la méthode sont situées dans le sous-répertoire test/ et comportent une image additionnelle pour chaque individu. L image porte le nom du sousrépertoire associé à l individu. Toutes les images sont en format PNG. 1.2 Le filtrage de pourriels Le problème de filtrage de pourriel (SPAM filtering) consiste à identifier les courriels non-sollicités dans une liste de courriels. Il s agît d un problème de classification binaire, où les deux classes sont spam et non spam. Comme tout problème de classification de données texte, la première étape consiste à extraire les mots les plus pertinents du corpus, c est-à-dire l ensemble de documents employé pour l entraînement de la méthode de classification. Ainsi, les mots qui sont fréquents dans les deux classes (ex : articles, pronoms, verbes être, etc.) n apportent aucune information utile à la classification, et sont retirés. Cette étape de pré-traitement a déjà été effectuée pour vous. Algorithmes suggérés Plusieurs approches d apprentissage machine existent pour le problème du filtrage de pourriels. Parmi ces approches, nous suggérons les suivantes : Une méthode basée sur le Classifieur naïf de Bayes [3] L approche de Latent Semantic Indexing, basé sur la PCA [4] Les arbres de décision Les machines à vecteurs de support (SVM) Les réseaux de neurones. Les données Les données d entraînement et de test sont fournies dans le fichier Spam-dataset.zip. Les exemples d entraînement se situent dans le fichier train.txt, où chaque ligne représente un exemple avec les caractéristiques suivantes : 48 valeurs réelles représentant la fréquence de 48 mots significatifs extraits du corpus : freq(w) = 100 Nombre de fois que le mot w apparaît dans le courriel Nombre total de mots dans le courriel 2

3 6 valeurs réelles donnant la fréquence de 6 caractères importants extraits du corpus : freq(c) = 100 Nombre de fois que le caractère c apparaît dans le courriel Nombre total de caractères dans le courriel 1 valeur réelle donnant la longueur moyenne des séquences ininterrompues de lettres majuscules 1 valeur réelle donnant la longueur de la plus longue séquence ininterrompue de lettres majuscules 1 valeur réelle donnant le nombre total de lettres majuscules dans le courriel 1 valeur binaire indiquant si le courriel et un pourriel (1) ou non (0). Voir les fichiers README.txt et names.txt pour plus d informations. Les données de test ont le même format et se trouvent dans le fichier test.txt. 2 Travail à réaliser La réalisation du laboratoire se fera en trois étapes : la modélisation de la méthode, l implémentation de la méthode et la validation de la méthode. Conception de la méthode Une fois le problème choisi parmi les deux options disponibles, vous devrez tout d abord faire la conception de la méthode employée pour résoudre le problème. Cette étape comprend normalement les éléments suivants : 1. Une courte revue de la littérature 2. Une analyse des données (ex : type des attributs, distribution des exemples, etc.) 3. La sélection d une approche de classification pour le problème (ex : Eigenfaces ou Fisherfaces pour le problème de reconnaissance faciale) 4. La définition du modèle et de ses paramètres (ex : distributions de vraisemblance et apriori dans une approcha bayésienne) 5. La définition de l approche de validation. Au terme de l étape de conception, vous devrez remettre un court rapport (environ 3-4 pages) détaillant votre démarche de conception, la solution retenue, ainsi qu une brève justification des choix de conception. Votre rapport devra clairement citer toute source d information utilisée durant la conception. Implémentation de la méthode Une fois l étape de conception terminée, vous devrez ensuite implémenter la solution retenue. Pour ce faire, vous avez la liberté d utiliser le langage de programmation de votre choix, ainsi que tout 3

4 logiciel ou librairie d apprentissage machine (ex : WEKA) pouvant faciliter votre travail. À noter qu il est interdit d utiliser tout logiciel implémentant la totalité de votre solution (ex : un logiciel faisant la reconnaissance de visage), au risque d obtenir la note 0 pour cette partie du laboratoire. L évaluation de l implémentation sera basée sur la fonctionnalité du programme, ainsi que sur la qualité et la clarté du code. Validation de la méthode Durant l élaboration de votre méthode, les données d entraînement (i.e., ensemble train) seront utilisées pour la sélection et l apprentissage des paramètres. Au terme du laboratoire, les solutions proposées par les différentes équipes seront évaluées sur les données de test (i.e., ensemble test). Une partie de l évaluation du laboratoire sera basée sur les résultats obtenus. 2.1 Consignes de remise Ce laboratoire comporte trois livrables : un rapport de conception, un rapport final et l implémentation (code source, scripts, etc.) de la solution. Le rapport de conception devra être remis au début de la troisième séance de ce laboratoire, soit au plus tard le vendredi, 13 juillet 8h00. Ce rapport d environ 3-4 pages, devra comporter les éléments suivants : 1. Une description du problème à résoudre 2. Une présentation de la démarche de conception 3. Une description de la solution retenue, en prenant soin de préciser le modèle et ses paramètres, et une justification de ce choix 4. Une présentation de l approche de validation utilisée 5. Les références à la littérature consultée. Ensuite, au plus tard le vendredi, 3 août 8h00, vous devrez remettre votre implémentation ainsi qu un rapport final d environ 6-8 pages, qui ajoute au rapport de conception les éléments suivants : 1. Une description de l implémentation (logiciels ou librairies employés, paramètres d utilisation, fonctionnalités, etc.) 2. Les résultats obtenus, selon l approche de validation proposée 3. Une discussion faisant l analyse des résultats, décrivant les problèmes rencontrés, et proposant des améliorations à la solution développée. Tous les livrables doivent être remis électroniquement à l adresse courriel Les fichiers de remise doivent être dans un répertoire compressé ayant comme nom log770-labo4-equipex, où X est le numéro de votre équipe. Consultez le site du cours pour avoir plus de détails sur les consignes de remise. 4

5 2.2 Barème de correction L évaluation du laboratoire sera faite sur un total de 50 points, distribués comme suit : COMPOSANTE POINTS Implémentation : (20 pts) Performance (précision) 5 Fonctionnalité 10 Clarté et documentation 5 Rapport de conception : (15 pts) Description du problème 1 Démarche de conception 2 Description de la solution retenue 5 Justification des choix de conception 4 Approche de validation 2 Références 1 Orthographe et présentation Pénalité jusqu à 4 pts Rapport final : (15 pts) Description de l implémentation 6 Présentation des résultats 3 Discussion et conclusion 6 Orthographe et présentation Pénalité jusqu à 4 pts TOTAL Pénalités et retard Une pénalité de 10% par jour, incluant les jours de fin de semaine, sera systématiquement appliquée à tout travail remis en retard. Un travail en retard de plus de trois (3) jours recevra automatiquement la note 0. Une pénalité allant jusqu à 10% pourra également être appliquée à tout travail ne respectant pas rigoureusement les directives de remise. Références [1] Turk, M.A. et Pentland, A.P. Face recognition using eigenfaces, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 91), pp , [2] Belhumeur, P.N., Hespanha, J.P., et Kriegman, D.J. Eigenfaces vs. Fisherfaces : recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp , [3] Sahami, M., Dumais, S., Heckerman, D., et Horvitz, E. A Bayesian approach to filtering junk , AAAI Workshop on Learning for Text Categorization, July 1998, Madison, Wisconsin. 5

6 [4] Gee, K.R. Using latent semantic indexing to filter spam, In Proceedings of the 2003 ACM symposium on Applied computing (SAC 03). ACM, New York, NY, USA, pp ,

Laboratoire 2 Conception du serveur d application et du client

Laboratoire 2 Conception du serveur d application et du client DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG660 - BASE DE DONNÉES HAUTE PERFORMANCE Laboratoire 2 Conception du serveur d application et du client 1 Introduction Au cours de la session, les laboratoires

Plus en détail

L'apport de la couleur à l'authentification de visage

L'apport de la couleur à l'authentification de visage L'apport de la couleur à l'authentification de visage Session B2: RFIA M. Fedias D. Saigaa 2 Departement d'électronique, Laboratoire de modélisation des systèmes énergétiques LMSE, Université Mohamed khider,

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Sélection de Caractéristiques pour le Filtrage de Spams

Sélection de Caractéristiques pour le Filtrage de Spams Sélection de Caractéristiques pour le Filtrage de Spams Kamilia MENGHOUR, Labiba SOUICI-MESLATI Laboratoire LRI, Université Badji Mokhtar, BP 12, 23000, Annaba, Algérie. k_menghour@yahoo.fr, souici_labiba@yahoo.fr

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 13 L exploration des données 13.1. Présentation de la semaine L exploration de données (ou data mining) est souvent associée à l intelligence

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Filtre CoopTel Guide d utilisateur

Filtre CoopTel Guide d utilisateur Filtre CoopTel Guide d utilisateur Droit d auteur Droit d auteur 2005, Barracuda Networks www.barracudanetworks.com v3.2.22 Tous droits réservés. L utilisation de ce produit et du manuel est soumise aux

Plus en détail

Analyse de protocoles binaires avec les N-Grams

Analyse de protocoles binaires avec les N-Grams Analyse de protocoles binaires avec les N-Grams N-Gram against the Machine : On the Feasibility of the N-Gram network Analysis for Binary Protocols Thomas LETAN 26 novembre 2012 Objectifs des auteurs :

Plus en détail

Vérification audiovisuelle de l identité

Vérification audiovisuelle de l identité Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire

Plus en détail

INFORMATIQUE - PROJET DE DEVELOPPEMENT INTERNET/INTRANET

INFORMATIQUE - PROJET DE DEVELOPPEMENT INTERNET/INTRANET MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INFORMATIQUE

Plus en détail

Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur

Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Réalisé par : Bassem Besbes Laboratoire d Informatique, Traitement de l Information

Plus en détail

Systèmes de Recommandation. David Loup

Systèmes de Recommandation. David Loup Systèmes de Recommandation David Loup Systèmes de recommandation Plan Définition Motivations Domaine : Films Techniques / Approches Exemples Problèmes Evolution future 2/33 Définition Une plateforme pour

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

IFT2251 Introduction au génie logiciel Plan de cours. 2. Description du cours et objectifs généraux

IFT2251 Introduction au génie logiciel Plan de cours. 2. Description du cours et objectifs généraux IFT2251 Introduction au génie logiciel Plan de cours Été 2008 Yann-Gaël Guéhéneuc 1. Introduction Les exigences et les attentes à l égard de la qualité logicielle sont de plus en plus grandes. La taille

Plus en détail

Première partie I. Aspects administratifs. Option reconnaissance des formes. Aspects pratiques. Le programme. Organisation du cours.

Première partie I. Aspects administratifs. Option reconnaissance des formes. Aspects pratiques. Le programme. Organisation du cours. Option reconnaissance des formes ntroduction Guillaume Wisniewski guillaume.wisniewski@limsi.fr Première partie Aspects administratifs Université Paris Sud LMS janvier 2011 Aspects pratiques Le programme

Plus en détail

SIO-6029-Z1 : Gestion de projet et du changement

SIO-6029-Z1 : Gestion de projet et du changement E SIO-6029-Z1 : Gestion de projet et du changement Hiver 2012 Enseignant : Jean-Pierre Bélanger, Chargé de cours Plage horaire du cours : Cours en salle : Mercredi 18h30 à 21h20 Local : PAP-2327 Du 11

Plus en détail

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA RÉCITAL 2005, Dourdan, 6-10 juin 2005 Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA Siham Boulaknadel (1,2), Fadoua Ataa-Allah (2) (1) LINA FRE

Plus en détail

CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA

CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA MRK-20712 - MARKETING DIRECT Syllabus Automne 2008 Local 3307 PAP CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration

Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration Pluquet Frédéric July, 3rd 2012 Etude de techniques efficaces de versionnement d objets pour les langages orientés

Plus en détail

Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon

Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon Travail pratique #1 «Réalisation d'une plateforme de vente aux enchères électronique» À réaliser individuellement ou en équipe

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE. TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2

PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE. TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2 PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2 Numéro du cours Pondération Automne 2010 Martin Cloutier Table des matières 1 NOTE PRÉLIMINAIRE... 3

Plus en détail

Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993)

Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993) Spécifications des exigences d'un logiciel (Adapté de la norme IEEE 830-1993) Ce document suggère un ensemble d éléments à préciser pour les exigences d'un système logiciel. Il débute par une Page de titre,

Plus en détail

Fouille de données/machine Learning/

Fouille de données/machine Learning/ Fouille de données/machine Learning/ Big Data Qu'est-ce que c'est? Ouvrages : Bioinformatics: The Machine Learning Approach, Second Edition (Adaptive Computation and Machine Learning) 2001 par Pierre Baldi

Plus en détail

Filtrage de SPAM par méthodes probabilistes

Filtrage de SPAM par méthodes probabilistes Fabrice Rossi http://apiacoa.org/ 1 sur 13 Filtrage de SPAM par méthodes probabilistes Les courriers électroniques publicitaires polluent les boîtes des internautes depuis de nombreuses années et le problème

Plus en détail

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3)

Sources d information : lexicale. Sources d information : phonotactique. Sources d information : prosodie (2/3) Sources d information : prosodie (1/3) Organisation de la présentation Reconnaissance automatique des langues RMITS 28 http://www.irit.fr/~jerome.farinas/rmits28/ Jérôme Farinas jerome.farinas@irit.fr Équipe SAMOVA (Structuration, Analyse et

Plus en détail

Dessin Technique GMEC1311. PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca

Dessin Technique GMEC1311. PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca Faculté d ingénierie PLAN DE COURS Génie mécanique Dessin Technique GMEC1311 PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca HORAIRE Théorie : Jeudi,

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

OPITER : Fouille de données d opinion pour les territoires

OPITER : Fouille de données d opinion pour les territoires OPITER : Fouille de données d opinion pour les territoires Sagéo Brest, 2013 Eric Kergosien (TETIS- LIRMM) Pierre Maurel (TETIS) Mathieu Roche (TETIS LIRMM) Maguelonne Teisseire (TETIS LIRMM) 26/09/2013

Plus en détail

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Méthodologie d'évaluation des filtres anti-spam

Méthodologie d'évaluation des filtres anti-spam Méthodologie d'évaluation des filtres anti-spam José-Marcio Martins da Cruz Mines ParisTech Centre de Calcul et Systèmes d'information 60, bd Saint Michel 75006 - Paris email:jose-marcio.martins@mines-paristech.fr

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton Linked Open Data Le Web de données Réseau, usages, perspectives Sommaire Histoire du Linked Open Data Structure et évolution du réseau Utilisations du Linked Open Data Présence sur le réseau LOD Futurs

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

CSC4002 : Contrôle continu «Bureau d Étude noté» Date : lundi 3 décembre 2012 Durée : 2H. Coordonnateurs : Christian Bac et Denis Conan

CSC4002 : Contrôle continu «Bureau d Étude noté» Date : lundi 3 décembre 2012 Durée : 2H. Coordonnateurs : Christian Bac et Denis Conan Corrigé et Barème Contrôle de connaissances 2012/2013 des étudiants de 2 è année (EI2) CSC4002 : Contrôle continu «Bureau d Étude noté» Date : lundi 3 décembre 2012 Durée : 2H Coordonnateurs : Christian

Plus en détail

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation

Plus en détail

S y l l a b u s RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A

S y l l a b u s RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A RECONNAISSANCE DES FORMES : CLASSIFICATION ET REGROUPEMENT IFT-64321 A S y l l a b u s Jean-Marie Beaulieu Département d'informatique Téléphone: 656-2131 poste 2564 Courriel: jean-marie.beaulieu@ift.ulaval.ca

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Reconnaissance de gestes : approches 2D & 3D

Reconnaissance de gestes : approches 2D & 3D Reconnaissance de gestes : approches 2D & 3D Maher Mkhinini et Patrick Horain Institut Mines-Télécom/Télécom SudParis Département Électronique et Physique, 9 rue Charles Fourier, 91011 Evry, France Email

Plus en détail

COMMENT REDIGER UN RAPPORT TECHNIQUE?

COMMENT REDIGER UN RAPPORT TECHNIQUE? COMMENT REDIGER UN RAPPORT TECHNIQUE? Christiaens Sébastien Université de Liège Département PROMETHEE Institut de Mécanique et de Génie Civil, Bât. B52 Chemin des Chevreuils, 1 B-4000 Liège, Belgique Janvier

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Apprentissage automatique

Apprentissage automatique Apprentissage automatique François Denis, Hachem Kadri, Cécile Capponi Laboratoire d Informatique Fondamentale de Marseille LIF - UMR CNRS 7279 Equipe QARMA francois.denis@lif.univ-mrs.fr 2 Chapitre 1

Plus en détail

Identification de thèmes cas de l Arabe standard

Identification de thèmes cas de l Arabe standard Identification de thèmes cas de l Arabe standard Mourad Abbas 1, Kamel Smaili 2, et Daoud Berkani 3 1 Speech Processing Laboratory, CRSTDLA, 1 rue Djamel Eddine Alfghani, 16000 Algiers, Algeria, m abbas04@yahoo.fr

Plus en détail

Plan de cours. Comportement organisationnel

Plan de cours. Comportement organisationnel ÉCOLE NATIONALE D ADMINISTRATION PUBLIQUE Plan de cours ENP 7106 Comportement organisationnel Hanoi Avril 2011 Joanne Greene, M. Ps. joanne.greene@enap.ca Ce cours permet à l étudiant d approfondir sa

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles

ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles MBA8V3B Projets publics urbains, gestion des risques Plan de cours É2014 Professeur : Benoit Duguay

Plus en détail

Méthodologie d'évaluation des filtres anti-spam

Méthodologie d'évaluation des filtres anti-spam Méthodologie d'évaluation des filtres anti-spam José-Marcio Martins da Cruz Mines ParisTech Centre de Calcul et Systèmes d'information 60, bd Saint Michel 75006 - Paris Résumé Depuis une dizaine d'années,

Plus en détail

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs

Plus en détail

A.E.C. - Gestion des Applications, TI LEA.BW

A.E.C. - Gestion des Applications, TI LEA.BW A.E.C. - Gestion des Applications, TI LEA.BW Groupe : 00051 Sécurité 420-PKF-SL (2-1-1) Quatrième étape Plan de cours Professeur Nom : Marcel Aubin Courrier électronique : maubin@cegep-st-laurent.qc.ca

Plus en détail

Système Expert pour Smartphones

Système Expert pour Smartphones INSA Rennes Département INFORMATIQUE Système Expert pour Smartphones Rapport de bilan de Planification Olivier Corridor;Romain Boillon;Quentin Decré;Vincent Le Biannic;Germain Lemasson;Nicolas Renaud;Fanny

Plus en détail

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications

Plus en détail

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul

Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Optimisation des performances du programme mpiblast pour la parallélisation sur grille de calcul Mohieddine MISSAOUI * Rapport de Recherche LIMOS/RR-06-10 20 novembre 2006 * Contact : missaoui@isima.fr

Plus en détail

Etat de l art de la Reconnaissance de Visage.

Etat de l art de la Reconnaissance de Visage. Chapitre 2 2.1 Introduction De nos jours, il existe des ordinateurs capables d effectuer des tâches faites par l homme, qui demandent de l intelligence. Malgré tout ce progrès, la machine est toujours

Plus en détail

Catalogue des PFE. Comment postuler

Catalogue des PFE. Comment postuler Catalogue des PFE 2012 2013 IP-TECH propose plusieurs sujets pour des stages de PFE. Ce fascicule est destiné aux étudiants et aux professeurs de l enseignement supérieur. Il commence par un aperçu rapide

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Formula Negator, Outil de négation de formule.

Formula Negator, Outil de négation de formule. Formula Negator, Outil de négation de formule. Aymerick Savary 1,2, Mathieu Lassale 1,2, Jean-Louis Lanet 1 et Marc Frappier 2 1 Université de Limoges 2 Université de Sherbrooke Résumé. Cet article présente

Plus en détail

Dossier de gestion de projet

Dossier de gestion de projet Dossier de gestion de projet Sommaire 1. Diagramme de Gantt... 2 a. Diagramme... 2 b. Tâches... 3 2. Description textuelle... 3 1. Dossiers... 3 2. Conception... 4 3. Répartition du travail... 5 4. Difficultés

Plus en détail

Visualisation d information

Visualisation d information Master SIAD 1 année Visualisation d information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine/ Master SIAD 1 année Visualisation d information Chapitre 1.0 Introduction Quand voir, c est comprendre

Plus en détail

Etat de l art sur l utilisation des techniques Web Sémantique en ECD

Etat de l art sur l utilisation des techniques Web Sémantique en ECD Etat de l art sur l utilisation des techniques Web Sémantique en ECD Hicham Behja ENSAM Meknès(1,2,3) Brigitte Trousse Projet AxIS INRIA Sophia Antipolis (2) Abdelaziz Marzak Faculté des sciences Casablanca

Plus en détail

Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation

Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation 443 Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation Diem Le Thi Hoang Equipe MRIM, Laboratoire CLIPS-IMAG 38041 Grenoble Cedex 9, France

Plus en détail

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012

Data Mining. Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 Data Mining Exposés logiciels, systèmes et réseaux. Damien Jubeau IR3 Lundi 19 novembre 2012 2 Plan Data mining : définition, utilisations et concepts Wolfram Alpha : extraction de données d'un compte

Plus en détail

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012

Christelle REYNES EA 2415 Epidémiologie, Biostatistique et Santé Publique Université Montpellier 1. 8 Juin 2012 Extraction et analyse des mesures haut-débit pour l identification de biomarqueurs : problèmes méthodologiques liés à la dimension et solutions envisagées EA 2415 Epidémiologie, Biostatistique et Santé

Plus en détail

Fouille de Données Médicales

Fouille de Données Médicales Journée Romande d Hygiène Hospitalière Fouille de Données Médicales Michèle Sebag Laboratoire de Recherche en Informatique, Université Paris-Sud http://www.lri.fr/ sebag/ Genève, 21 novembre 2002 MIT Technology

Plus en détail

Faculté des sciences de l administration Automne 2005

Faculté des sciences de l administration Automne 2005 Faculté des sciences de l administration Automne 2005 Département de finance et assurance Programmes de 1er cycle Université Laval ASR-15742 GESTION DES RISQUES ET ASSURANCE Professeur: M. Gilles Bernier,

Plus en détail

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Principaux contributeurs: Zhang Xiaopeng (CASIA-NLPR-LIAMA Coordinateur Groupe Image) Li HongJun (CASIA-NLPR-LIAMA

Plus en détail

Brique BDL Gestion de Projet Logiciel

Brique BDL Gestion de Projet Logiciel Brique BDL Gestion de Projet Logiciel Processus de développement pratiqué à l'enst Sylvie.Vignes@enst.fr url:http://www.infres.enst.fr/~vignes/bdl Poly: Computer elective project F.Gasperoni Brique BDL

Plus en détail

Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI

Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI Faculté des sciences Centre de formation en technologies de l information Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI 1. Mise en contexte

Plus en détail

Évaluation et implémentation des langages

Évaluation et implémentation des langages Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

LÉA, plateforme pédagogique

LÉA, plateforme pédagogique LÉA, plateforme pédagogique 16/10/2008 Collège Gérald-Godin Marie-Josée Desrochers Conseillère pédagogique TIC Gilles Boulanger Conseiller pédagogique TIC Table des matières En savoir plus sur Léa......

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Nom de l application

Nom de l application Ministère de l Enseignement Supérieur et de la Recherche Scientifique Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Gafsa Département Technologies de l Informatique

Plus en détail

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M.

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M. DEPARTEMENTT D'INFORMATIQUE MEMOIRE Présenté par B ARIGOU Baya Naouel Pour obtenir LE DIPLOME DE MAGISTER Spécialitéé Informatique Option : Automatique Informatique Intitulé : DÉTECTION DE COURRIELS INDÉSIRABLES

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

MARF : Modular Audio Recognition Framework

MARF : Modular Audio Recognition Framework : Modular Audio Recognition Framework Département d Informatique et Génie Logiciel Faculté de Génie et Informatique Université Concordia, Montréal, Québec, Canada mokhov@cse.concordia.ca ACFAS 2010 Introduction

Plus en détail

Une méthodologie de conception des systèmes distribués basée sur UML

Une méthodologie de conception des systèmes distribués basée sur UML Une méthodologie de conception des systèmes distribués basée sur UML Nouvelles Technologies de la Répartition (NOTERE 2005) 1 er septembre 2005 Ludovic Apvrille Pierre de Saqui-Sannes Axelle Apvrille Page

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

FutureSight. FutureSight! Document préparé pour Les vinitiques #3. 25 avril 2013. A Software and Service Company! Analytics & Complex Event Solving!

FutureSight. FutureSight! Document préparé pour Les vinitiques #3. 25 avril 2013. A Software and Service Company! Analytics & Complex Event Solving! nalytics & Complex Event Solving! FutureSight Document préparé pour Les vinitiques #3 25 avril 2013 Software and Service Company! «FutureSight permet à ses clients de délivrer, de façon répétable et continue,

Plus en détail

Journée Scientifique «Big Data» - 20/11/2014

Journée Scientifique «Big Data» - 20/11/2014 1 Un regard sur l exploitation des données de vols recueillies par les compagnies aériennes Nicolas Maille 2 Plan de la présentation 1. Contexte : gestion de la sécurité des vols Démarche de recueil et

Plus en détail

# Pistes d amélioration recommandées par KPMG État actuel Date cible

# Pistes d amélioration recommandées par KPMG État actuel Date cible 1 Mettre en place les mesures proposées par Loto-Québec : Diffuser une campagne de sensibilisation sur l importance d endosser les billets à l achat. Continu Depuis janvier 2008 Promouvoir le matériel

Plus en détail

Prise en compte du facteur humain. Cédric Soubrié

Prise en compte du facteur humain. Cédric Soubrié Prise en compte du facteur humain Cédric Soubrié 12/02/2011 Les deux cours + projet Conception centrée utilisateurs Les règles à suivre Définition du projet Conception Implémentation Nom : Cédric Soubrié

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

VISUALISATION DE NUAGES DE POINTS

VISUALISATION DE NUAGES DE POINTS ARNAUD BLETTERER MULTI-RÉSOLUTION 1/16 VISUALISATION DE NUAGES DE POINTS MULTI-RÉSOLUTION AU TRAVERS DE CARTES DE PROFONDEUR Arnaud Bletterer Université de Nice Sophia Antipolis Laboratoire I3S - Cintoo

Plus en détail