Laboratoire 4 Développement d un système intelligent

Dimension: px
Commencer à balayer dès la page:

Download "Laboratoire 4 Développement d un système intelligent"

Transcription

1 DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement d un système intelligent pour le problème de la reconnaissance faciale ou du filtrage de pourriels. En vous basant sur les concepts vus en classe, vous devrez réaliser toutes les étapes de conception d un tel système, depuis la sélection du modèle jusqu à sa validation. L évaluation de ce travail sera basée sur la qualité de la conception, de même que sur la performance du système à l évaluation. Pour la réalisation du laboratoire, vous devrez choisir un seul problème parmi les deux suivants. 1.1 La reconnaissance faciale La reconnaissance faciale est un problème important de l apprentissage machine, ayant diverses applications en robotique, et en sécurité des systèmes. L objectif de ce problème consiste à reconnaître une personne parmi K individus possibles, à partir d une image montrant le visage de cette personne. Il s agît donc d une instance du problème de classification à K classes. Algorithmes suggérés Un grand nombre d approches a été proposé pour le problème de reconnaissance faciale. Parmi ces approches, nous suggérons les suivantes : L algorithme Eigenfaces [1], basé sur l analyse en composantes principales (PCA) L algorithme Fisherfaces [2], basé sur le discriminant de Fisher (LDA) Les machines à vecteurs de support (SVM) Les réseaux de neurones. 1

2 Les données Pour entraîner et évaluer la performance de votre méthode, des données vous sont fournies dans le fichier Faces-dataset.zip. L ensemble d entraînement est composé de 360 visages de 40 individus différents, où les images correspondant au i-ème individu sont situées dans le sousrépertoire nommé si. Les données employées pour l évaluation de la méthode sont situées dans le sous-répertoire test/ et comportent une image additionnelle pour chaque individu. L image porte le nom du sousrépertoire associé à l individu. Toutes les images sont en format PNG. 1.2 Le filtrage de pourriels Le problème de filtrage de pourriel (SPAM filtering) consiste à identifier les courriels non-sollicités dans une liste de courriels. Il s agît d un problème de classification binaire, où les deux classes sont spam et non spam. Comme tout problème de classification de données texte, la première étape consiste à extraire les mots les plus pertinents du corpus, c est-à-dire l ensemble de documents employé pour l entraînement de la méthode de classification. Ainsi, les mots qui sont fréquents dans les deux classes (ex : articles, pronoms, verbes être, etc.) n apportent aucune information utile à la classification, et sont retirés. Cette étape de pré-traitement a déjà été effectuée pour vous. Algorithmes suggérés Plusieurs approches d apprentissage machine existent pour le problème du filtrage de pourriels. Parmi ces approches, nous suggérons les suivantes : Une méthode basée sur le Classifieur naïf de Bayes [3] L approche de Latent Semantic Indexing, basé sur la PCA [4] Les arbres de décision Les machines à vecteurs de support (SVM) Les réseaux de neurones. Les données Les données d entraînement et de test sont fournies dans le fichier Spam-dataset.zip. Les exemples d entraînement se situent dans le fichier train.txt, où chaque ligne représente un exemple avec les caractéristiques suivantes : 48 valeurs réelles représentant la fréquence de 48 mots significatifs extraits du corpus : freq(w) = 100 Nombre de fois que le mot w apparaît dans le courriel Nombre total de mots dans le courriel 2

3 6 valeurs réelles donnant la fréquence de 6 caractères importants extraits du corpus : freq(c) = 100 Nombre de fois que le caractère c apparaît dans le courriel Nombre total de caractères dans le courriel 1 valeur réelle donnant la longueur moyenne des séquences ininterrompues de lettres majuscules 1 valeur réelle donnant la longueur de la plus longue séquence ininterrompue de lettres majuscules 1 valeur réelle donnant le nombre total de lettres majuscules dans le courriel 1 valeur binaire indiquant si le courriel et un pourriel (1) ou non (0). Voir les fichiers README.txt et names.txt pour plus d informations. Les données de test ont le même format et se trouvent dans le fichier test.txt. 2 Travail à réaliser La réalisation du laboratoire se fera en trois étapes : la modélisation de la méthode, l implémentation de la méthode et la validation de la méthode. Conception de la méthode Une fois le problème choisi parmi les deux options disponibles, vous devrez tout d abord faire la conception de la méthode employée pour résoudre le problème. Cette étape comprend normalement les éléments suivants : 1. Une courte revue de la littérature 2. Une analyse des données (ex : type des attributs, distribution des exemples, etc.) 3. La sélection d une approche de classification pour le problème (ex : Eigenfaces ou Fisherfaces pour le problème de reconnaissance faciale) 4. La définition du modèle et de ses paramètres (ex : distributions de vraisemblance et apriori dans une approcha bayésienne) 5. La définition de l approche de validation. Au terme de l étape de conception, vous devrez remettre un court rapport (environ 3-4 pages) détaillant votre démarche de conception, la solution retenue, ainsi qu une brève justification des choix de conception. Votre rapport devra clairement citer toute source d information utilisée durant la conception. Implémentation de la méthode Une fois l étape de conception terminée, vous devrez ensuite implémenter la solution retenue. Pour ce faire, vous avez la liberté d utiliser le langage de programmation de votre choix, ainsi que tout 3

4 logiciel ou librairie d apprentissage machine (ex : WEKA) pouvant faciliter votre travail. À noter qu il est interdit d utiliser tout logiciel implémentant la totalité de votre solution (ex : un logiciel faisant la reconnaissance de visage), au risque d obtenir la note 0 pour cette partie du laboratoire. L évaluation de l implémentation sera basée sur la fonctionnalité du programme, ainsi que sur la qualité et la clarté du code. Validation de la méthode Durant l élaboration de votre méthode, les données d entraînement (i.e., ensemble train) seront utilisées pour la sélection et l apprentissage des paramètres. Au terme du laboratoire, les solutions proposées par les différentes équipes seront évaluées sur les données de test (i.e., ensemble test). Une partie de l évaluation du laboratoire sera basée sur les résultats obtenus. 2.1 Consignes de remise Ce laboratoire comporte trois livrables : un rapport de conception, un rapport final et l implémentation (code source, scripts, etc.) de la solution. Le rapport de conception devra être remis au début de la troisième séance de ce laboratoire, soit au plus tard le vendredi, 13 juillet 8h00. Ce rapport d environ 3-4 pages, devra comporter les éléments suivants : 1. Une description du problème à résoudre 2. Une présentation de la démarche de conception 3. Une description de la solution retenue, en prenant soin de préciser le modèle et ses paramètres, et une justification de ce choix 4. Une présentation de l approche de validation utilisée 5. Les références à la littérature consultée. Ensuite, au plus tard le vendredi, 3 août 8h00, vous devrez remettre votre implémentation ainsi qu un rapport final d environ 6-8 pages, qui ajoute au rapport de conception les éléments suivants : 1. Une description de l implémentation (logiciels ou librairies employés, paramètres d utilisation, fonctionnalités, etc.) 2. Les résultats obtenus, selon l approche de validation proposée 3. Une discussion faisant l analyse des résultats, décrivant les problèmes rencontrés, et proposant des améliorations à la solution développée. Tous les livrables doivent être remis électroniquement à l adresse courriel Les fichiers de remise doivent être dans un répertoire compressé ayant comme nom log770-labo4-equipex, où X est le numéro de votre équipe. Consultez le site du cours pour avoir plus de détails sur les consignes de remise. 4

5 2.2 Barème de correction L évaluation du laboratoire sera faite sur un total de 50 points, distribués comme suit : COMPOSANTE POINTS Implémentation : (20 pts) Performance (précision) 5 Fonctionnalité 10 Clarté et documentation 5 Rapport de conception : (15 pts) Description du problème 1 Démarche de conception 2 Description de la solution retenue 5 Justification des choix de conception 4 Approche de validation 2 Références 1 Orthographe et présentation Pénalité jusqu à 4 pts Rapport final : (15 pts) Description de l implémentation 6 Présentation des résultats 3 Discussion et conclusion 6 Orthographe et présentation Pénalité jusqu à 4 pts TOTAL Pénalités et retard Une pénalité de 10% par jour, incluant les jours de fin de semaine, sera systématiquement appliquée à tout travail remis en retard. Un travail en retard de plus de trois (3) jours recevra automatiquement la note 0. Une pénalité allant jusqu à 10% pourra également être appliquée à tout travail ne respectant pas rigoureusement les directives de remise. Références [1] Turk, M.A. et Pentland, A.P. Face recognition using eigenfaces, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 91), pp , [2] Belhumeur, P.N., Hespanha, J.P., et Kriegman, D.J. Eigenfaces vs. Fisherfaces : recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp , [3] Sahami, M., Dumais, S., Heckerman, D., et Horvitz, E. A Bayesian approach to filtering junk , AAAI Workshop on Learning for Text Categorization, July 1998, Madison, Wisconsin. 5

6 [4] Gee, K.R. Using latent semantic indexing to filter spam, In Proceedings of the 2003 ACM symposium on Applied computing (SAC 03). ACM, New York, NY, USA, pp ,

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

Sélection de Caractéristiques pour le Filtrage de Spams

Sélection de Caractéristiques pour le Filtrage de Spams Sélection de Caractéristiques pour le Filtrage de Spams Kamilia MENGHOUR, Labiba SOUICI-MESLATI Laboratoire LRI, Université Badji Mokhtar, BP 12, 23000, Annaba, Algérie. k_menghour@yahoo.fr, souici_labiba@yahoo.fr

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Vérification audiovisuelle de l identité

Vérification audiovisuelle de l identité Vérification audiovisuelle de l identité Rémi Landais, Hervé Bredin, Leila Zouari, et Gérard Chollet École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, Laboratoire

Plus en détail

Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur

Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Présentation du sujet de thèse Schémas temporels hybrides fondés sur les SVMs pour l analyse du comportement du conducteur Réalisé par : Bassem Besbes Laboratoire d Informatique, Traitement de l Information

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

SIO-6029-Z1 : Gestion de projet et du changement

SIO-6029-Z1 : Gestion de projet et du changement E SIO-6029-Z1 : Gestion de projet et du changement Hiver 2012 Enseignant : Jean-Pierre Bélanger, Chargé de cours Plage horaire du cours : Cours en salle : Mercredi 18h30 à 21h20 Local : PAP-2327 Du 11

Plus en détail

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA RÉCITAL 2005, Dourdan, 6-10 juin 2005 Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA Siham Boulaknadel (1,2), Fadoua Ataa-Allah (2) (1) LINA FRE

Plus en détail

CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA

CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA MRK-20712 - MARKETING DIRECT Syllabus Automne 2008 Local 3307 PAP CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA

Plus en détail

Spécificités, Applications et Outils

Spécificités, Applications et Outils Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala ricco.rakotomalala@univ-lyon2.fr http://chirouble.univ-lyon2.fr/~ricco/data-mining

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon

Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon Génie logiciel pour le commerce électronique Hiver 2003 Prof.: Julie Vachon Travail pratique #1 «Réalisation d'une plateforme de vente aux enchères électronique» À réaliser individuellement ou en équipe

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration

Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration Efficient Object Versioning for Object- Oriented Languages From Model to Language Integration Pluquet Frédéric July, 3rd 2012 Etude de techniques efficaces de versionnement d objets pour les langages orientés

Plus en détail

PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE. TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2

PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE. TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2 PLAN DE COURS DÉPARTEMENT ÉLECTRONIQUE INDUSTRIELLE TITRE DU COURS Ordinateur Outil 243-215-RA 1-4-2 Numéro du cours Pondération Automne 2010 Martin Cloutier Table des matières 1 NOTE PRÉLIMINAIRE... 3

Plus en détail

Filtrage de SPAM par méthodes probabilistes

Filtrage de SPAM par méthodes probabilistes Fabrice Rossi http://apiacoa.org/ 1 sur 13 Filtrage de SPAM par méthodes probabilistes Les courriers électroniques publicitaires polluent les boîtes des internautes depuis de nombreuses années et le problème

Plus en détail

Dessin Technique GMEC1311. PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca

Dessin Technique GMEC1311. PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca Faculté d ingénierie PLAN DE COURS Génie mécanique Dessin Technique GMEC1311 PROFESSEUR Gabriel Cormier, Ph.D. Bureau : 217G2 Tél : 858-4566 Courriel : gabriel.cormier@umoncton.ca HORAIRE Théorie : Jeudi,

Plus en détail

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École

Plus en détail

Méthodologie d'évaluation des filtres anti-spam

Méthodologie d'évaluation des filtres anti-spam Méthodologie d'évaluation des filtres anti-spam José-Marcio Martins da Cruz Mines ParisTech Centre de Calcul et Systèmes d'information 60, bd Saint Michel 75006 - Paris email:jose-marcio.martins@mines-paristech.fr

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12

Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 Reconnaissance de visages 2.5D par fusion des indices de texture et de profondeur ICI 12/12/12 2 Discrimination Invariance Expressions faciales Age Pose Eclairage 11/12/2012 3 Personne Inconnue Identité

Plus en détail

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien

Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Master d Informatique M1 Université Paris 7 - Denis Diderot Travail de Recherche Encadré Surf Bayesien Denis Cousineau Sous la direction de Roberto di Cosmo Juin 2005 1 Table des matières 1 Présentation

Plus en détail

COMMENT REDIGER UN RAPPORT TECHNIQUE?

COMMENT REDIGER UN RAPPORT TECHNIQUE? COMMENT REDIGER UN RAPPORT TECHNIQUE? Christiaens Sébastien Université de Liège Département PROMETHEE Institut de Mécanique et de Génie Civil, Bât. B52 Chemin des Chevreuils, 1 B-4000 Liège, Belgique Janvier

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Plan de cours. Comportement organisationnel

Plan de cours. Comportement organisationnel ÉCOLE NATIONALE D ADMINISTRATION PUBLIQUE Plan de cours ENP 7106 Comportement organisationnel Hanoi Avril 2011 Joanne Greene, M. Ps. joanne.greene@enap.ca Ce cours permet à l étudiant d approfondir sa

Plus en détail

Méthodologie d'évaluation des filtres anti-spam

Méthodologie d'évaluation des filtres anti-spam Méthodologie d'évaluation des filtres anti-spam José-Marcio Martins da Cruz Mines ParisTech Centre de Calcul et Systèmes d'information 60, bd Saint Michel 75006 - Paris Résumé Depuis une dizaine d'années,

Plus en détail

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton

Linked Open Data. Le Web de données Réseau, usages, perspectives. Eric Charton. Eric Charton Linked Open Data Le Web de données Réseau, usages, perspectives Sommaire Histoire du Linked Open Data Structure et évolution du réseau Utilisations du Linked Open Data Présence sur le réseau LOD Futurs

Plus en détail

ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles

ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles ÉCOLE DES SCIENCES DE LA GESTION DE L UQAM MBA pour cadres spécialisés en gestion des villes et métropoles MBA8V3B Projets publics urbains, gestion des risques Plan de cours É2014 Professeur : Benoit Duguay

Plus en détail

Reconnaissance de gestes : approches 2D & 3D

Reconnaissance de gestes : approches 2D & 3D Reconnaissance de gestes : approches 2D & 3D Maher Mkhinini et Patrick Horain Institut Mines-Télécom/Télécom SudParis Département Électronique et Physique, 9 rue Charles Fourier, 91011 Evry, France Email

Plus en détail

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein

Analyses croisées de sites Web pour détecter les sites de contrefaçon. Prof. Dr. Olivier Biberstein Analyses croisées de sites Web pour détecter les sites de contrefaçon Prof. Dr. Olivier Biberstein Division of Computer Science 14 Novembre 2013 Plan 1. Présentation générale 2. Projet 3. Travaux futurs

Plus en détail

Etat de l art de la Reconnaissance de Visage.

Etat de l art de la Reconnaissance de Visage. Chapitre 2 2.1 Introduction De nos jours, il existe des ordinateurs capables d effectuer des tâches faites par l homme, qui demandent de l intelligence. Malgré tout ce progrès, la machine est toujours

Plus en détail

A.E.C. - Gestion des Applications, TI LEA.BW

A.E.C. - Gestion des Applications, TI LEA.BW A.E.C. - Gestion des Applications, TI LEA.BW Groupe : 00051 Sécurité 420-PKF-SL (2-1-1) Quatrième étape Plan de cours Professeur Nom : Marcel Aubin Courrier électronique : maubin@cegep-st-laurent.qc.ca

Plus en détail

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche

Plus en détail

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Formula Negator, Outil de négation de formule.

Formula Negator, Outil de négation de formule. Formula Negator, Outil de négation de formule. Aymerick Savary 1,2, Mathieu Lassale 1,2, Jean-Louis Lanet 1 et Marc Frappier 2 1 Université de Limoges 2 Université de Sherbrooke Résumé. Cet article présente

Plus en détail

Faculté des sciences de l administration Automne 2005

Faculté des sciences de l administration Automne 2005 Faculté des sciences de l administration Automne 2005 Département de finance et assurance Programmes de 1er cycle Université Laval ASR-15742 GESTION DES RISQUES ET ASSURANCE Professeur: M. Gilles Bernier,

Plus en détail

Brique BDL Gestion de Projet Logiciel

Brique BDL Gestion de Projet Logiciel Brique BDL Gestion de Projet Logiciel Processus de développement pratiqué à l'enst Sylvie.Vignes@enst.fr url:http://www.infres.enst.fr/~vignes/bdl Poly: Computer elective project F.Gasperoni Brique BDL

Plus en détail

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière

Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Développements algorithmiques au LIAMA et àamap en vue de l'analyse d'une scène forestière Principaux contributeurs: Zhang Xiaopeng (CASIA-NLPR-LIAMA Coordinateur Groupe Image) Li HongJun (CASIA-NLPR-LIAMA

Plus en détail

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M.

MEMOIRE. Présenté par. Pour obtenir DIPLOME. Intitulé : B. Beldjilalii. B. Atmani. Encadreur : F. Barigou. S. Nait Bahloul. M. DEPARTEMENTT D'INFORMATIQUE MEMOIRE Présenté par B ARIGOU Baya Naouel Pour obtenir LE DIPLOME DE MAGISTER Spécialitéé Informatique Option : Automatique Informatique Intitulé : DÉTECTION DE COURRIELS INDÉSIRABLES

Plus en détail

Nom de l application

Nom de l application Ministère de l Enseignement Supérieur et de la Recherche Scientifique Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Gafsa Département Technologies de l Informatique

Plus en détail

Évaluation et implémentation des langages

Évaluation et implémentation des langages Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

Ne cherchez plus, soyez informés! Robert van Kommer

Ne cherchez plus, soyez informés! Robert van Kommer Ne cherchez plus, soyez informés! Robert van Kommer Le sommaire La présentation du contexte applicatif Le mariage: Big Data et apprentissage automatique Dialogues - interactions - apprentissages 2 Le contexte

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Prise en compte du facteur humain. Cédric Soubrié

Prise en compte du facteur humain. Cédric Soubrié Prise en compte du facteur humain Cédric Soubrié 12/02/2011 Les deux cours + projet Conception centrée utilisateurs Les règles à suivre Définition du projet Conception Implémentation Nom : Cédric Soubrié

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

FORMATION PROFESSIONNELLE INFORMATION GÉNÉRALE RECONNAISSANCE DES ACQUIS ET DES COMPÉTENCES DES QUESTIONS... DES RÉPONSES...

FORMATION PROFESSIONNELLE INFORMATION GÉNÉRALE RECONNAISSANCE DES ACQUIS ET DES COMPÉTENCES DES QUESTIONS... DES RÉPONSES... FORMATION PROFESSIONNELLE INFORMATION GÉNÉRALE RECONNAISSANCE DES ACQUIS ET DES COMPÉTENCES DES QUESTIONS... DES RÉPONSES... PROGRAMME DU DEP EN SECRÉTARIAT Description des cours PROGRAMME DU DEP EN COMPTABILITÉ

Plus en détail

VISUALISATION DE NUAGES DE POINTS

VISUALISATION DE NUAGES DE POINTS ARNAUD BLETTERER MULTI-RÉSOLUTION 1/16 VISUALISATION DE NUAGES DE POINTS MULTI-RÉSOLUTION AU TRAVERS DE CARTES DE PROFONDEUR Arnaud Bletterer Université de Nice Sophia Antipolis Laboratoire I3S - Cintoo

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

Jade. Projet Intelligence Artificielle «Devine à quoi je pense»

Jade. Projet Intelligence Artificielle «Devine à quoi je pense» Jade Projet Intelligence Artificielle «Devine à quoi je pense» Réalisé par Djénéba Djikiné, Alexandre Bernard et Julien Lafont EPSI CSII2-2011 TABLE DES MATIÈRES 1. Analyse du besoin a. Cahier des charges

Plus en détail

Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie

Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie Revue des algorithmes PCA, LDA et EBGM utilisés en reconnaissance 2D du visage pour la biométrie Nicolas MORIZET, Thomas EA, Florence ROSSANT, Frédéric AMIEL, Amara AMARA Institut Supérieur d Électronique

Plus en détail

Outils pour les réseaux de neurones et contenu du CD-Rom

Outils pour les réseaux de neurones et contenu du CD-Rom Outils pour les réseaux de neurones et contenu du CD-Rom Depuis le développement théorique des réseaux de neurones à la fin des années 1980-1990, plusieurs outils ont été mis à la disposition des utilisateurs.

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, luca.zingg@unifr.ch 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

CURRICULUM VITAE. Informations Personnelles

CURRICULUM VITAE. Informations Personnelles CURRICULUM VITAE Informations Personnelles NOM: BOURAS PRENOM : Zine-Eddine STRUCTURE DE RATTACHEMENT: Département de Mathématiques et d Informatique Ecole Préparatoire aux Sciences et Techniques Annaba

Plus en détail

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes

TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes TRS: Sélection des sous-graphes représentants par l intermédiaire des attributs topologiques et K-medoïdes Mohamed Moussaoui,Wajdi Dhifli,Sami Zghal,Engelbert Mephu Nguifo FSJEG, Université de Jendouba,

Plus en détail

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 5 (June 2013), PP.99-103 Solution A La Gestion Des Objets Java Pour Des

Plus en détail

EN BLANC AVANT IMPRESSION»»»

EN BLANC AVANT IMPRESSION»»» Ce modèle doit se trouver sous le répertoire C:\Users\toto\AppData\Roaming\Microsoft\Templates EN BLANC AVANT IMPRESSION»»» Version : 1.0.54 Date du livrable : Mars 2015. Pour rafraîchir le numéro de version,

Plus en détail

Mesure et modélisation de l énergie logicielle

Mesure et modélisation de l énergie logicielle Mesure et modélisation de l énergie logicielle Adel Noureddine, Romain Rouvoy, Lionel Seinturier Green Days @ Lille 29 novembre 2013 Plan Contexte! Problèmes et limitations! Mesure énergétique des logiciels

Plus en détail

Soutien technique en informatique

Soutien technique en informatique Service de formation aux adultes Soutien technique en informatique PLAN DE COURS Utilisation et création de bases de données 420-B64-GR 2-2-2 75 heures Session automne 2010 NOM DE L ENSEIGNANT : JIE YANG

Plus en détail

Gauthier, Benoît (dir.). 2010. Recherche sociale : de la problématique à la collecte des données. Québec : Presses de l Université du Québec.

Gauthier, Benoît (dir.). 2010. Recherche sociale : de la problématique à la collecte des données. Québec : Presses de l Université du Québec. Faculté des arts et des sciences Département de science politique POL 1100 (Méthodes de recherche en politique) Automne 2011 Local B-0245 Lundi de 13h00-14h30 Professeur : Éric Montpetit Bureau : C-4012

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

POL 1100 (Méthodes de recherche en politique) Hiver 2012 Local B-0305 Lundi de 13h00-14h30

POL 1100 (Méthodes de recherche en politique) Hiver 2012 Local B-0305 Lundi de 13h00-14h30 Faculté des arts et des sciences Département de science politique POL 1100 (Méthodes de recherche en politique) Hiver 2012 Local B-0305 Lundi de 13h00-14h30 Professeur : Erick Lachapelle Bureau : C-3124

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Conversion à un cycle de paie aux deux semaines pour les salariés foire aux questions

Conversion à un cycle de paie aux deux semaines pour les salariés foire aux questions Conversion à un cycle de paie aux deux semaines pour les salariés foire aux questions 1. Que signifie l introduction d un cycle de paie aux deux semaines? Cela signifie que dès le 1 er janvier 2014, vous

Plus en détail

LÉA, plateforme pédagogique

LÉA, plateforme pédagogique LÉA, plateforme pédagogique 16/10/2008 Collège Gérald-Godin Marie-Josée Desrochers Conseillère pédagogique TIC Gilles Boulanger Conseiller pédagogique TIC Table des matières En savoir plus sur Léa......

Plus en détail

E-Gen : traitement automatique des offres d emploi

E-Gen : traitement automatique des offres d emploi 591 E-Gen : traitement automatique des offres d emploi Rémy Kessler 1, 2, Marc El-Bèze 1 1 Laboratoire Informatique d Avignon, BP 1228 F-84911 Avignon Cedex 9 FRANCE 2 AKTOR Interactive Parc Technologique

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010

MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010 E MRK -6081 A : Méthodes d Analyse de Données en Marketing Automne 2010 Professeure :Elissar Toufaily Plage horaire du cours : Cours en salle Jeudi 15h 30-18h30 Local 4221 PAP Du 2 septembre. 2010 au 9

Plus en détail

Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons

Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Ahmad OSMAN 1a, Valérie KAFTANDJIAN b, Ulf HASSLER a a Fraunhofer Development Center

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Sécurité par compression! ReSIST 2010. Gilles RICHARD IRIT www.irit.fr/bite www.bite.ac.uk

Sécurité par compression! ReSIST 2010. Gilles RICHARD IRIT www.irit.fr/bite www.bite.ac.uk Sécurité par compression! ReSIST 2010 Gilles RICHARD IRIT www.irit.fr/bite www.bite.ac.uk Introduction Sécurité.. intrusion réseau, attaques (DoS,DDoS etc.) virus, etc... spams code injection (SQL,XSS,CSRF,...)

Plus en détail

Guide explicatif de l utilisation. de la plateforme d éducation en ligne (e-learning)

Guide explicatif de l utilisation. de la plateforme d éducation en ligne (e-learning) Guide explicatif de l utilisation de la plateforme d éducation en ligne (e-learning) Afin de mener à bien le déroulement du programme de formation de l IFCET, Al Imtithal for Islamic Finance met à votre

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Travailler avec les télécommunications

Travailler avec les télécommunications Travailler avec les télécommunications Minimiser l attrition dans le secteur des télécommunications Table des matières : 1 Analyse de l attrition à l aide du data mining 2 Analyse de l attrition de la

Plus en détail

Relever les défis des véhicules autonomes

Relever les défis des véhicules autonomes EMM 2014 12eme rencontre européenne de mécatronique Relever les défis des véhicules autonomes Mathias Perrollaz Ingénieur expert Inria Christian Laugier Directeur de recherche Inria E-Motion Team Annecy,

Plus en détail

UNIVERSITÉ LAVAL. PLAN DE COURS PROGRAMME en GESTION du DÉVELOPPEMENT TOURISTIQUE. Titre et sigle du cours : Marketing touristique, MRK 20578

UNIVERSITÉ LAVAL. PLAN DE COURS PROGRAMME en GESTION du DÉVELOPPEMENT TOURISTIQUE. Titre et sigle du cours : Marketing touristique, MRK 20578 1 UNIVERSITÉ LAVAL FACULTÉ DES SCIENCES DE L'ADMINISTRATION Certificat en gestion du développement touristique PLAN DE COURS PROGRAMME en GESTION du DÉVELOPPEMENT TOURISTIQUE IDENTIFICATION Titre et sigle

Plus en détail

Tour d horizon de l apprentissage statistique. from Machine Learning to Big Data Analytics

Tour d horizon de l apprentissage statistique. from Machine Learning to Big Data Analytics Tour d horizon de l apprentissage statistique. from Machine Learning to Big Data Analytics Stéphane Canu asi.insa-rouen.fr/enseignants/~scanu Codeur en Seine 2014, Université de Rouen 27 novembre 2014

Plus en détail

Contrôle stochastique d allocation de ressources dans le «cloud computing»

Contrôle stochastique d allocation de ressources dans le «cloud computing» Contrôle stochastique d allocation de ressources dans le «cloud computing» Jacques Malenfant 1 Olga Melekhova 1, Xavier Dutreilh 1,3, Sergey Kirghizov 1, Isis Truck 2, Nicolas Rivierre 3 Travaux partiellement

Plus en détail

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU

CommentWatcher. plateforme Web open-source pour analyser les discussions sur des forums en ligne. Marian-Andrei RIZOIU CommentWatcher plateforme Web open-source pour analyser les discussions sur des forums en ligne Marian-Andrei RIZOIU 2ème octobre 2013 BLEND 2013 Lyon, France Contexte Laboratoire ERIC Université Lumière

Plus en détail

CONSEILS POUR LA REDACTION DU RAPPORT DE RECHERCHE. Information importante : Ces conseils ne sont pas exhaustifs!

CONSEILS POUR LA REDACTION DU RAPPORT DE RECHERCHE. Information importante : Ces conseils ne sont pas exhaustifs! CONSEILS POUR LA REDACTION DU RAPPORT DE RECHERCHE Information importante : Ces conseils ne sont pas exhaustifs! Conseils généraux : Entre 25 et 60 pages (hormis références, annexes, résumé) Format d un

Plus en détail

Informatique et sciences du numérique

Informatique et sciences du numérique Informatique et sciences du numérique Philippe Marquet Colloque IREM, Lyon 25 mai 2013 Informatique et sciences du numérique Septembre 2012 : ISN, spécialité en classe de terminale S Pourquoi introduire

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

TANAGRA : un logiciel gratuit pour l enseignement et la recherche

TANAGRA : un logiciel gratuit pour l enseignement et la recherche TANAGRA : un logiciel gratuit pour l enseignement et la recherche Ricco Rakotomalala ERIC Université Lumière Lyon 2 5, av Mendès France 69676 Bron rakotoma@univ-lyon2.fr http://eric.univ-lyon2.fr/~ricco

Plus en détail

e-recrutement : recherche de mots-clés pertinents dans le titre des annonces d emploi

e-recrutement : recherche de mots-clés pertinents dans le titre des annonces d emploi e-recrutement : recherche de mots-clés pertinents dans le titre des annonces d emploi Julie Séguéla 1, 2, Gilbert Saporta 1, Stéphane Le Viet 2 1 Laboratoire Cédric CNAM 292 rue Saint Martin 75141 Paris

Plus en détail