Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Dimension: px
Commencer à balayer dès la page:

Download "Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires"

Transcription

1 Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique février 2007 FRANCORO V / ROADEF 07 Grenoble Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

2 Plan 1 Le problème du sac-à-dos Formulation du problème bi-01kp Solutions efficaces et points non dominés 2 Le point de départ Existant pour la résolution de bi-01kp Algorithme en deux phases pour bi-01kp Démarche adoptée utilisation d un ranking en seconde phase 3 Améliorations et nouveaux algorithmes Retour sur le branch and bound en phase 2 k meilleures solutions (ranking) 4 Expérimentations numériques Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

3 Plan 1 Le problème du sac-à-dos Formulation du problème bi-01kp Solutions efficaces et points non dominés 2 Le point de départ Existant pour la résolution de bi-01kp Algorithme en deux phases pour bi-01kp Démarche adoptée utilisation d un ranking en seconde phase 3 Améliorations et nouveaux algorithmes Retour sur le branch and bound en phase 2 k meilleures solutions (ranking) 4 Expérimentations numériques Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

4 Formalisation du bi-01kp n max. z j (x) = p j i x i j {1, 2} i=1 n s/c w i x i ω i=1 x i {0, 1} i {1,..., n} w i N i {1,..., n} p j i N i {1,..., n}, j {1, 2} Exclusion des cas triviaux : n w i > ω i=1 w i > 0, i (p 1 i > 0) (p 2 i > 0), i Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

5 Solutions efficaces et points non dominés Espace de décision X = {x {0, 1} n : Ax b} deux solutions x, x X Espace des objectifs Z = z(x) = {Cx : x X} points z(x), z(x ) X EM : l ensemble complet maximal des solutions efficaces. Toutes les solutions pour chaque point non dominé. X Em : un ensemble complet minimal des solutions efficaces. Une solution par point non dominé. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

6 Plan 1 Le problème du sac-à-dos Formulation du problème bi-01kp Solutions efficaces et points non dominés 2 Le point de départ Existant pour la résolution de bi-01kp Algorithme en deux phases pour bi-01kp Démarche adoptée utilisation d un ranking en seconde phase 3 Améliorations et nouveaux algorithmes Retour sur le branch and bound en phase 2 k meilleures solutions (ranking) 4 Expérimentations numériques Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

7 Travaux de référence Méthode en deux phases à base de branch and bound Two-phases Method and Branch and Bound Procedures to Solve the Bi-objective Knapsack Problem, M. Visée et al., Journal of Global Optimization, Méthode dichotomique utilisant un solveur MIP Un retour d expériences sur la résolution de problèmes combinatoires bi-objectifs, F. Degoutin et X. Gandibleux, Journée PM2O, Angers, Transformation de bi-01kp en un problème de plus courts chemins bi-objectif Solving bicriteria 0-1 knapsack problems using a labeling algorithm, M.E. Captivo et al., Computers & Operations Research, Les instances utlisées varient sur différents paramètres pour varier la difficulté de la résolution. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

8 Méthode en deux phases Two-phases Method and Branch and Bound Procedures to Solve the Bi-objective Knapsack Problem, M. Visée et al., Journal of Global Optimization, Principe Constat : il existe de nombreuses méthodes efficaces pour résoudre le problème de sac-à-dos mono-objectif. Idée génerale : profiter de cet existant pour développer une algorithmique pour le problème bi-objectif. phase 1 : recherche des solutions supportées méthode dichotomique phase 2 : recherche des solutions non supportées Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

9 Algorithme en deux phases phase 2 Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

10 Démarche adoptée Le travail effectué suit la démarche adoptée par A. Przybylski pour le problème d affectation bi-objectif. Two phases algorithms for the bi-objective assignment problem, A. Przybylski, X. Gandibleux and M. Ehrgott. Accepted in European Journal of Operational Research. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

11 Plan 1 Le problème du sac-à-dos Formulation du problème bi-01kp Solutions efficaces et points non dominés 2 Le point de départ Existant pour la résolution de bi-01kp Algorithme en deux phases pour bi-01kp Démarche adoptée utilisation d un ranking en seconde phase 3 Améliorations et nouveaux algorithmes Retour sur le branch and bound en phase 2 k meilleures solutions (ranking) 4 Expérimentations numériques Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

12 Retour sur le branch and bound en phase 2 Première amélioration La borne utilisée par Visée et al. est améliorée (Przybylski et al. 2005). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

13 Retour sur le branch and bound en phase 2 Première amélioration La borne utilisée par Visée et al. est améliorée (Przybylski et al. 2005). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

14 Retour sur le branch and bound en phase 2 Première amélioration La borne utilisée par Visée et al. est améliorée (Przybylski et al. 2005). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

15 Retour sur le branch and bound en phase 2 Première amélioration La borne utilisée par Visée et al. est améliorée (Przybylski et al. 2005). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

16 Retour sur le branch and bound en phase 2 Première amélioration La borne utilisée par Visée et al. est améliorée (Przybylski et al. 2005). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

17 Retour sur le branch and bound en phase 2 Seconde amélioration Des solution situées dans les zones grisées vont être construites. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

18 Retour sur le branch and bound en phase 2 Seconde amélioration Des solution situées dans les zones grisées vont être construites. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

19 Retour sur le branch and bound en phase 2 Seconde amélioration Des solution situées dans les zones grisées vont être construites. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

20 Retour sur le branch and bound en phase 2 Seconde amélioration dominance sur le point obtenu par RL (Gandibleux et Fréville 2000). Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

21 k meilleures solutions (ranking) Finding the k Shortest Paths, D. Eppstein. 35th IEEE Symp. Foundations of Comp. Sci., Santa Fe, 1994, pp Tech. Rep , ICS, UCI, SIAM J. Computing 28(2) : , Idée générale Génération les solutions dans l ordre décroissant d optimalité la borne inférieure se serre plus rapidement toute solution ajoutée l est définitivement Condition d arrêt : première solution qui tombe sous la borne Motivation : de très bons résultats sur le problème d affectation (Przybylski et al. 2005) Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

22 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

23 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

24 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

25 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

26 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

27 Illustration Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

28 Quelques mots sur la résolution Exploration d une bande et non plus d un triangle solutions générées dans les triangles proches Ces solutions permettront de calculer une borne inférieure plus serrée pour réduire la taille du graphe des plus longs chemins fixer plus de variables en pré-traitement L exploration d un triangle dépend des explorations précédentes. Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

29 Quelques mots sur la résolution Exploration d une bande et non plus d un triangle solutions générées dans les triangles proches Ces solutions permettront de calculer une borne inférieure plus serrée pour réduire la taille du graphe des plus longs chemins fixer plus de variables en pré-traitement L exploration d un triangle dépend des explorations précédentes. Heuristique : Les triangles sont explorés par ordre croissant de taille. Hypothèses : les triangles petits s explorent rapidement les solutions générées en dehors facilitent la résolution des plus gros Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

30 Plan 1 Le problème du sac-à-dos Formulation du problème bi-01kp Solutions efficaces et points non dominés 2 Le point de départ Existant pour la résolution de bi-01kp Algorithme en deux phases pour bi-01kp Démarche adoptée utilisation d un ranking en seconde phase 3 Améliorations et nouveaux algorithmes Retour sur le branch and bound en phase 2 k meilleures solutions (ranking) 4 Expérimentations numériques Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

31 Instances numériques Classe Nombre Tailles (vars.) Notes 1A 5 50 à 500 «tightness ratio» 1B à 500 A/B/C/D 2/UNCOR non correllées 2/WEAK à 1000 faiblement correllées 2/STRONG à 1000 fortement correllées Instances de la MCDMLib : http ://www.terry.uga.edu/mcdm/ Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

32 Gains obtenus (CPU) avec les améliorations du BB Amélioration de la borne instances résolues en au moins une demie seconde avec la modif : moyen : 45 % max : 70 % min : 25 % Test de dominance instances résolues en au moins une demie seconde avec la modif rapport aux temps obtenus avec la modif précédente moyen : 70 % max : 80 % min : 52 % Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

33 Amélioration du branch & bound limite de temps = 1 heure Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

34 Algorithmes de ranking limite de temps = 1 heure Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

35 Conclusions Améliorations de la 2 phases B&B existante plus rapide, les temps rejoignent PCC Algorithme de ranking pour la seconde phase gains importants, jusqu à 99.8 % de la version B&B ne résout pas les instances difficiles Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

36 Perspectives Réduire la taille du graphe et le temps d exploration utiliser de nouvelles coupes tirer de l information de la structure du problème (Gandibleux & Klamroth 2005) Généraliser les méthodes de résolution à 3, p objectifs à 2, 3, q dimensions Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

37 Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique février 2007 FRANCORO V / ROADEF 07 Grenoble Algorithme pour la résolution exacte d un 01-IP bi-objectif. J. Jorge, Master Thesis, Laboratoire d Informatique de Nantes Atlantique, Université de Nantes, sept Julien Jorge, Xavier Gandibleux (LINA) Résolution exacte du problème bi-01kp février / 24

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Résolution approchée du problème de set packing bi-objectif

Résolution approchée du problème de set packing bi-objectif Résolution approchée du problème de set packing bi-objectif Xavier Delorme 1,2, Xavier Gandibleux 2 et Fabien DEGOUTIN 1,2 1. Laboratoire d Automatique, de Mécanique et d Informatique industrielles et

Plus en détail

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines ROADEF 09, 10-12 février 2009, Nancy (France) O. Guyon 1.2, P. Lemaire 2, É. Pinson 1 et D. Rivreau 1 1 LISA - Institut

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Le problème du flot maximal avec contraintes sur le nombre de chemins

Le problème du flot maximal avec contraintes sur le nombre de chemins Le problème du flot maximal avec contraintes sur le nombre de chemins Jérôme Truffot, Christophe Duhamel, Philippe Mahey jerome.truffot@isima.fr, christophe.duhamel@isima.fr, philippe.mahey@isima.fr LIMOS,

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers Recherche Opérationnelle GC-SIE Branch & bound Algorithmes On distingue 3 types d algorithmes. Algorithmes exacts Ils trouvent la solution optimale Ils peuvent prendre un

Plus en détail

optimisation robuste de réseaux de télécommunications

optimisation robuste de réseaux de télécommunications optimisation robuste de réseaux de télécommunications Orange Labs Laboratoire Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne Olivier Klopfenstein thèse effectuée sous la direction de

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Programmation Par Contraintes

Programmation Par Contraintes Programmation Par Contraintes Cours 2 - Arc-Consistance et autres amusettes David Savourey CNRS, École Polytechnique Séance 2 inspiré des cours de Philippe Baptiste, Ruslan Sadykov et de la thèse d Hadrien

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Routage de camions dans le secteur du BTP

Routage de camions dans le secteur du BTP Routage de camions dans le secteur du BTP 1 / 25 Routage de camions dans le secteur du BTP Projet Orlogès Sylvain Rosembly 1 Nathalie Bostel 2 Pierre Dejax 3 1 Master ORO - Ecole des Mines de Nantes 2

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search () Universite de Montreal 6 avril 2010 Plan Motivations 1 Motivations 2 3 skewed variable neighborhood search variable neighborhood decomposition search 4 Le probleme d optimisation.

Plus en détail

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou Allocation de ressources pour réseaux virtuels Projet de fin d études Mikaël Capelle Marie-José Huguet Slim Abdellatif Pascal Berthou 27 Juin 2014 Plan 1 Introduction - La virtualisation de réseau 2 3

Plus en détail

Collecte des nœuds de raccordement abonnés chez Bouygues Telecom

Collecte des nœuds de raccordement abonnés chez Bouygues Telecom Collecte des nœuds de raccordement abonnés chez Bouygues Telecom Julien Darlay jdarlay@innovation24.fr Innovation 24 Groupe Bouygues 1 20 Innovation 24 Filiale Optimisation & Aide à la Décision du Groupe

Plus en détail

Modélisation et résolution du problème de transport de gaz: application au réseau principal français

Modélisation et résolution du problème de transport de gaz: application au réseau principal français Modélisation et résolution du problème de transport de gaz: application au réseau principal français Présentation des travaux de thèse GDF SUEZ - INPT - ENSIACET - LGC EMN 24 mars 2011 Le gaz en Europe

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Méthodes de la Recherche Opérationnelle pour l analyse de données

Méthodes de la Recherche Opérationnelle pour l analyse de données Méthodes de la Recherche Opérationnelle pour l analyse de données Julien Darlay G-SCOP 27 janvier 2011 Julien Darlay (G-SCOP) Méthodes de RO pour l analyse de données 27 janvier 2011 1 / 20 Plan Analyse

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

The Current State and Future of Search Based Software Engineering

The Current State and Future of Search Based Software Engineering The Current State and Future of Search Based Software Engineering Mark Harman 1 IEEE International Conference on Software Engineering FoSE 07: Future of Software Engineering 1 King's College, LONDON, UK

Plus en détail

Optimisation de plans de financement immobiliers

Optimisation de plans de financement immobiliers Optimisation de plans de financement immobiliers ~ Frédéric GARDI 03/07/2007 Présentation du problème Plan/solution de financement : assemblage/mix de produits Pour chaque prêt du plan : son montant, sa

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Evolution d un scénario dans l expérience e-colab EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Cadre général Groupe e-colab au sein de l INRP Collaboration

Plus en détail

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification 1/54 Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification Étienne Baudrier CReSTIC vendredi 9 décembre 2005 2/54 Contexte programme national de

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Rédiger un rapport technique

Rédiger un rapport technique Rédiger un rapport technique Prof. N. Fatemi Plan Introduction Présentation écrite Programmation du travail Rédaction Conseils génériques Références 2 Introduction Objectifs du cours Savoir étudier un

Plus en détail

Optimisation du trafic au sol sur les grands aéroportsa

Optimisation du trafic au sol sur les grands aéroportsa Optimisation du trafic au sol sur les grands aéroportsa Plan Contexte Simulations accélérées du trafic au sol Optimisation des séquences d'avions sur les pistes Résolution des conflits au roulage Applications

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Impact du chevauchement d activités sur la diminution de la durée de projet

Impact du chevauchement d activités sur la diminution de la durée de projet Colloque sur les enjeux et outils modernes de gestion de projet Impact du chevauchement d activités sur la diminution de la durée de projet Francois Berthaut, Ing. Jr., M.Sc.A., École Polytechnique francois.berthaut@polymtl.ca

Plus en détail

Un algorithme de programmation par contraintes pour la recherche d allocations leximin-optimales.

Un algorithme de programmation par contraintes pour la recherche d allocations leximin-optimales. Un algorithme de programmation par contraintes pour la recherche d allocations leximin-optimales. Sylvain Bouveret et Michel Lemaître Office National d Études et de Recherches Aérospatiales Centre National

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE 6 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 06 - du 3 au 5 avril 2006 - Rabat - Maroc Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités PREMIER RETOUR D

Plus en détail

Modélisation et optimisation combinatoire de la

Modélisation et optimisation combinatoire de la Modélisation et optimisation combinatoire de la gestion d énergie pour un système multi-sources Yacine Gaoua (1)(2)(3) 1.Institut National Polytechnique de Toulou, INPT 2.Laboratoire PLAsma et Conversion

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Proet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Université Toulouse 3 Paul Sabatier Présenté par : Mohamed Esseghir LALAMI Titre

Plus en détail

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau Nadia Lahrichi, Walter Rei ROADEF 2010 Plan de la présentation

Plus en détail

Problème de chargement de camions-citernes Tank Truck Loading Problem

Problème de chargement de camions-citernes Tank Truck Loading Problem Problème de chargement de camions-citernes Tank Truck Loading Problem Fabien Cornillier CENTOR, Université Laval fabien.cornillier@centor.ulaval.ca Fayez F. Boctor CENTOR, Université Laval Gilbert Laporte

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Gestion de tampon en ligne

Gestion de tampon en ligne Gestion de tampon en ligne pour illustrer des techniques centrales en algorithmique en ligne C. Dürr CNRS, LIP6 roadef 2014 La scène devant le frigo jeter les aliments périmés découvrir ce que son compagnon

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Algorithmes de recherche locale

Algorithmes de recherche locale Algorithmes de recherche locale Recherche Opérationnelle et Optimisation Master 1 Sébastien Verel verel@lisic.univ-littoral.fr http://www-lisic.univ-littoral.fr/~verel Université du Littoral Côte d Opale

Plus en détail

Autour de problèmes de plongements de graphes

Autour de problèmes de plongements de graphes Laurent Beaudou Institut Fourier Université Joseph Fourier Grenoble, France Directeur de thèse : Sylvain Gravier Métro nouméen St-Herblain Pouembout La Tontouta-aéroport Poum Nouville Baie des citrons

Plus en détail

4. Programmation en nombres entiers

4. Programmation en nombres entiers IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers b. Séparation et évaluation progressive c. Plans de coupes Résolution de modèles entiers Programmation en nombres entiers

Plus en détail

C est quoi la RO : des théorèmes ou des logiciels?

C est quoi la RO : des théorèmes ou des logiciels? C est quoi la RO : des théorèmes ou des logiciels? Frédéric Gardi Bouygues e-lab & LocalSolver, Paris fgardi@localsolver.com Prix Robert Faure ROADEF 2012, Angers 1/10 Mon parcours Professionnel : - 2000

Plus en détail

Planification des salles opératoires avec durées d interventions aléatoires

Planification des salles opératoires avec durées d interventions aléatoires Planification des salles opératoires avec durées d interventions aléatoires Mehdi LAMIRI, Xiaolan XIE, Alexandre DOLGUI et Frédéric GRIMAUD Centre Ingénierie et santé Centre Génie Industriel et Informatique

Plus en détail

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes

Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes Gestion optimale des unités de production dans un réseau compte tenu de la dynamique de la température des lignes M. Nick, R. Cherkaoui, M. Paolone «Le réseau électrique de demain» - EPFL, 21.05.2015 Table

Plus en détail

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi - 14 Juin 2005 - - Faculté des Sciences de Luminy - 1. Introduction

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits 1 d Automatisation de la certification formelle de systèmes critiques par instrumentation d sous la direction de Michaël Périn Soutenance de Thèse de Doctorat Université de Grenoble - Laboratoire Verimag

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

C09: Conception parallèle

C09: Conception parallèle méthodologie de conception en quatre étapes virtualisation applications structurées et non structurées aspect analytique: S, E Accélération Amdahl Accélération Gustafson Surcharge de parallélisation Conception

Plus en détail

Localisation de ressources dans les réseaux CDN

Localisation de ressources dans les réseaux CDN Cas de la VoD LIP6 DESIR - FT R&D Octobre 2008 Plan Introduction 1 Introduction 2 3 4 Introduction DESIR : DÉcision, Systèmes Intelligents et Recherche opérationnelle La recherche opérationnelle : (boite

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

Gestion dynamique des tâches dans les grappes

Gestion dynamique des tâches dans les grappes Gestion dynamique des tâches dans les grappes une approche à base de machines virtuelles Fabien Hermenier Équipe ASCOLA, École des Mines de Nantes 26 novembre 2009 Fabien Hermenier (ASCOLA) Gestion dynamique

Plus en détail

METHODES A BASE DE DIVERGENCES POUR LES PROBLEMES D ORDONNANCEMENT FLEXIBLE

METHODES A BASE DE DIVERGENCES POUR LES PROBLEMES D ORDONNANCEMENT FLEXIBLE Abir Ben Hmida 1/6 METHODES A BASE DE DIVERGENCES POUR LES PROBLEMES D ORDONNANCEMENT FLEXIBLE Abir BEN HMIDA 1 Directeur(s) de thèse: Pierre LOPEZ*, Marie-José HUGUET* et Mohamed HAOUARI ** Laboratoire

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Cours d Algorithmique et structures de données 1

Cours d Algorithmique et structures de données 1 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique

Plus en détail

Mes histoires d amour avec les travaux de Maxime Crochemore. Gregory Kucherov LIFL/CNRS/INRIA, Lille, France

Mes histoires d amour avec les travaux de Maxime Crochemore. Gregory Kucherov LIFL/CNRS/INRIA, Lille, France Mes histoires d amour avec les travaux de Maxime Crochemore Gregory Kucherov LIFL/CNRS/INRIA, Lille, France Marne-la-Vallée, 26 octobre 2007 travaux de Maxime (données du 2/11/2006) 59 articles de revue

Plus en détail

Minimisation des distances dans un réseau de transports publics urbains avec demande élastique

Minimisation des distances dans un réseau de transports publics urbains avec demande élastique Minimisation des distances dans un réseau de transports publics urbains avec demande élastique Loïc YON LIMOS UMR 6158, Université Blaise Pascal Résumé Dans un contexte économique toujours plus exigeant,

Plus en détail

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Emmanuel Rachelson 1 Patrick Fabiani 1 Frédérick Garcia 2 Gauthier Quesnel 2 1 ONERA-DCSD

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Algorithmes de recherche d itinéraires en transport multimodal

Algorithmes de recherche d itinéraires en transport multimodal de recherche d itinéraires en transport multimodal Fallou GUEYE 14 Décembre 2010 Direction : Christian Artigues LAAS-CNRS Co-direction : Marie José Huguet LAAS-CNRS Encadrant industriel : Frédéric Schettini

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel

Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel Inès Alaya * Christine Solnon ** Khaled Ghédira * * SOIE, Institut Supérieur de Gestion de Tunis 41 Rue de

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Exploration des capacités des CSP pour la localisation d erreurs à partir de. contre-exemples

Exploration des capacités des CSP pour la localisation d erreurs à partir de. contre-exemples École Doctorale STIC de l Université de Nice Sophia-Antipolis capacités des CSP pour la localisation d erreurs Domaine: Mathématique-informatique Filière: Informatique Juin 2012 Présenté par : BEKKOUCHE

Plus en détail

Des fourmis pour le problème d ordonnancement de voitures

Des fourmis pour le problème d ordonnancement de voitures Actes JFPC 2006 Des fourmis pour le problème d ordonnancement de voitures Christine Solnon LIRIS CNRS UMR 5205, Université Lyon I Nautibus, 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France christine.solnon@liris.cnrs.fr

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Programmation par contraintes. Laurent Beaudou

Programmation par contraintes. Laurent Beaudou Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution

Plus en détail

des réapprovisionnements pour système d assemblage à deux niveaux quand les délais d approvisionnement sont aléatoires

des réapprovisionnements pour système d assemblage à deux niveaux quand les délais d approvisionnement sont aléatoires Planification des réapprovisionnements pour système d assemblage à deux niveaux quand les délais d approvisionnement sont aléatoires Oussama Ben Ammar, Faicel Hnaien, Hélène Marian, Alexandre Dolgui To

Plus en détail

Utilisation pédagogique d une Webcam

Utilisation pédagogique d une Webcam Utilisation pédagogique d une Webcam Sébastien PEYROT - sebastien.peyrot@ac-poitiers.fr Collège Jules VERNE - Angoulême Année scolaire 2007-2008 Table des matières 1 Introduction 2 Choix du matériel 3

Plus en détail

Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources

Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources Jonathan Lejeune LIP6-UPMC/CNRS, Inria 19 septembre 2014 Directeur : Pierre Sens Encadrants : Luciana Arantes et

Plus en détail

Notion de complexité

Notion de complexité 1 de 27 Algorithmique Notion de complexité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www-igm.univ-mlv.fr/ hivert Outils mathématiques 2 de 27 Outils mathématiques : analyse

Plus en détail

Implanter les algorithmes Oum-Seymour et Oum

Implanter les algorithmes Oum-Seymour et Oum Implanter les algorithmes Oum-Seymour et Oum J.-F Raymond, B.-M Bui-Xuan et P. Trébuchet jeanflorent.raymond@ens-lyon.fr LIP6, Université Pierre et Marie Curie 17/11/2011 J.-F Raymond, B.-M Bui-Xuan et

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

Dual decomposition methods and parallel computing

Dual decomposition methods and parallel computing Dual decomposition methods and parallel computing Jonas Koko LIMOS UMR 6158 Université Blaise Pascal - CNRS Dijon 29/06/2015 Jonas Koko (LIMOS) Dual decomposition methods Dijon 29/06/2015 1 / 18 Plan 1

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Recherche opérationnelle dans le secteur de la construction (3/5)

Recherche opérationnelle dans le secteur de la construction (3/5) Recherche opérationnelle dans le secteur de la construction (3/5) Antoine Jeanjean Ingénieur de recherche Ecole des Mines de Nantes Amphi Georges Besse 14h30-16h30 Plan de la présentation Le Groupe Bouygues

Plus en détail

Retour-en-arrière et branch-and-bound

Retour-en-arrière et branch-and-bound Retour-en-arrière et branch-and-bound Pour résoudre un problème, on peut représenter notre recherche de solutions comme un graphe où chaque noeud contient une solution partielle de notre problème et chaque

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail