Optimisation for Cloud Computing and Big Data

Dimension: px
Commencer à balayer dès la page:

Download "Optimisation for Cloud Computing and Big Data"

Transcription

1 1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois

2 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes [ICDCS 2011] Très général Avec contraintes de fiabilité en plus Placement de services constitués de plusieurs VMs Avec fiabilité, non découpable [NOMS 2010] Sans fiabilité, découpable, réaction dynamique à des modifications [WEA 2005, WWW 2007] Avec fiabilité, découpable [HIPC 2014]

3 3 / 23 Problème général de placement de VMs [ICDCS 2011] Formulation du problème Pour chaque ressource k (CPU, mémoire, réseau,... ), VM v a une occupation sv k PM h a une capacité Ch k Contraintes d indisponibilité I d une VM sur une PM Contraintes de séparation S entre deux VMs v et v Programmation par contraintes Variables p v pour chaque VM v, qui indique sur quel noeud elle est placée Contraintes : j, k, i tq p v=j sk i Cj k (v, h) I, p v h (v, v ) S, p v p v

4 4 / 23 Fiabilité: placement de VMs Contrainte de k-résilience pour une VM: Tant qu il n y a pas plus que k pannes de machines, la VM peut toujours s exécuter. k peut être différent d une VM à l autre: k v Objectif: pouvoir trouver un emplacement de rechange pour chaque VM présente sur un noeud en panne Comment modifier la formulation précédente pour assurer la résilience?

5 5 / 23 Fonctions d évacuation Fournir une fonction evac() en plus du placement p v Si le noeud f tombe en panne, nouveau placement: p v = evac(v) si p v = f et si k v 1 p v = p i sinon Le nouveau placement doit être valide, et il faut une nouvelle fonction evac() pour la prochaine panne Pour chaque séquence de pannes (f 1, f 2,..., f u ), on a une séquence de placements P 0,P 1,...,P u valides et de fonctions evac 0 (), evac() 1,..., evac() u

6 6 / 23 VMs fantômes Idée: placer k v répliques fantômes de la VM v (v 1, v 2,...) Fonctions d évacuations: Pour la i-ème panne, on utilise la réplique numéro i (evac i (v) = p v i ) Et si ce noeud est déjà en panne? Séquence de pannes (f 1, f 2,..., f i ) evac i (v) p v i Tant que evac i (v) = f j, evac i (v) p v j Si les fantômes sont séparés, cette procédure termine Preuve?

7 7 / 23 Contraintes de faisabilité Séparer les fantômes: v, i < j, p v i p v j Aucun fantôme sur une PM interdite: (v, h) I, i, p v i h Séparation: (u, v) S, p u 0 p v 0 i j, p u i p v j Preuve que ces contraintes garantissent que u et v ne sont jamais ensemble?

8 8 / 23 Contrainte de capacité Considérons un noeud h, et une VM v tq p v i = h. Si le noeud n tombe en panne en position i, et si n = p v j pour j i, alors v peut être évacuée sur h. Si j = 0, évacuation directe Si j < i, évacuation vers n à la panne j, puis vers h Si j > i, essai d évacuation sur n à la j-ème panne On note E(n, i, h) = {v tq p v i = h et n = p v j, j i} Il suffit d avoir u E(n,i,h) sk i disponible de la ressource k pour garantir assez de capacité en cas de panne du noeud n en position i. Pour la i-ème panne, il suffit d avoir max n h u E(n,i,h) sk i Au total, condition suffisante: k, p v=h sk v + i max n h u E(n,i,h) sk i Ch k

9 9 / 23 Résultats Pour 16 noeuds et 64 VMs, résolu en 20 secondes Pour 32 noeuds et 128 VMs, résolu en 300 secondes Sur une grosse plate-forme: partitionner en sous-problèmes

10 10 / 23 Placement de services [Machida 2010] Commençons par un modèle simple Chaque serveur peut contenir p machines virtuelles Chaque service i nécessite c i machines virtuelles On veut un placement qui supporte k pannes Même après k pannes, il reste c i VMs pour le service i Pour cela on alloue plus de machines virtuelles que nécessaire

11 11 / 23 Borne inférieure Étant donnés (c 1,..., c n ), k et p, combien de PMs sont nécessaires? Après k pannes, il reste (m k)p emplacements. Au total, il faut que tous les services puissent tourner i c i (m k)p m 1 p i c i + k

12 12 / 23 Première approche, classique On donne c i + k VMs à chaque service On s assure que chacune de ces VMs s exécutent sur des serveurs différents Combien de serveurs sont nécessaires? m max i (c i + k) mp i (c i + k) m 1 = max(max i c i + k, 1 p ( i c i + kn) ) Allocation: On considère les pm 1 emplacements, d abord les premiers emplacements de chaque serveur, puis les seconds, etc. On alloue les VMs d un même service sur des emplacements contigüs. Exemple avec k = 1, p = 3, (c 1, c 2, c 3 ) = (3, 1, 1)

13 13 / 23 Deuxième approche Si on relâche la contrainte que toutes les VMs d un service doivent s exécuter sur des serveurs différents Il est possible d avoir besoin de plus de k réplicats De combien de réplicats a-t-on besoin pour un service avec c i?

14 14 / 23 Deuxième approche Supposons qu on a m serveurs, et regardons l allocation sur m k serveurs restants Il en faut c i en tout, donc ci m k sur une partie et ci m k sur l autre Si k serveurs avec ci m k sont en panne Il faut avoir c i + k Et c est suffisant ci m k

15 15 / 23 Deuxième approche Supposons qu on a m serveurs, et regardons l allocation sur m k serveurs restants Il en faut c i en tout, donc ci m k sur une partie et ci m k sur l autre Si k serveurs avec ci m k sont en panne Il faut avoir c i + k ci m k Et c est suffisant Si c i m k, alors c i = c i + k m, donc pas plus que k réplicats en panne Si (α 1)(m k) c i < α(m k), alors c i = c i +αk, et c i < αm Donc pas plus que αk réplicats en pannes

16 16 / 23 Deuxième approche: calculer m Condition nécessaire 1 m p i c i + k On peut le retrouver en écrivant c i c i + c i D où i c i m m k i c i Condition suffisante m = 1 p ( i c i + kn)+k m k k

17 17 / 23 Placement de service dynamique [WEA 2005, WWW 2007] Considérer des services entiers plutôt que des VMs individuelles permet de résoudre des problèmes de plus grandes tailles Étudié dans des articles appliqués [WEA 2005] [WWW 2007] Contexte sans considérations de fiabilité Problème d allocation: m serveurs, vitesses V j et capacité mémoire M j n applications, demande d i, besoins mémoire m i on cherche une répartition de la charge, L ij i, j L ij = d i j, i L ij V j j, i,l ij >0 m i M i Objectifs: minimiser le nombre de modifications d une solution à une autre

18 18 / 23 Placement de service dynamique Maximum flot dans un graphe biparti Si l allocation est choisie (couples (i, j) tq L i,j > 0) Graphe (A, S, E) Applications, Serveurs, arêtes correspondant à l allocation S il existe un flot de valeur i d i, allocation valide Trouver une allocation Algorithme glouton Trier les serveurs par v j /M j, et les applis par d i /m i On alloue la première application sur le premier serveur, autant que possible Modifier une allocation Calculer le flot maximum S il n est pas suffisant, appliquer le glouton Si ça ne suffit pas, enlever l arête qui minimise L ij /m i

19 Placement de services dynamique Amélioration du flot calculé Trier les serveurs par mémoire restante M j croissante Rajout d un coût sur les arêtes égal à l ordre dans la liste Conséquence: chaque application i a au plus une instance sur un serveur non saturé u. De plus i a des instances sur des machines saturées dont la mémoire restante est plus petite Et les instances vides de i sont sur des machines dont la mémoire restante est plus grande Preuve : dessin au tableau Modifications de l allocation Il y a des applications incomplètes, et des serveurs avec capacité résiduelle Pour chaque serveur non plein Essayer d enlever x applications en cours (min L ij /m i ) Placer gloutonnement les applications avec la plus grande demande résiduelle Garder le choix de x qui donne la meilleure utilisation du serveur Ensuite, calculer le max-flot 19 / 23

20 Placement de services avec fiabilité [HIPC 2014] 20 / 23

21 21 / 23 Aujourd hui Problèmes de fiabilité Placement de VMs en programmation par contraintes [ICDCS 2011] Très général Avec contraintes de fiabilité en plus Ok pour des petits problèmes Placement de services constitués de plusieurs VMs Avec fiabilité, non découpable [NOMS 2010] modèle très simple Sans fiabilité, découpable, réaction dynamique à des modifications [WEA 2005, WWW 2007] modèle plus général (hétérogène), heuristique Avec fiabilité, découpable [HIPC 2014] Homogène, problèmes relativement gros

22 22 / 23 Biblio: service placement Dynamic Application Placement Under Service and Memory Constraints T. Kimbrel, M. Steinder, M. Sviridenko A. Tantawi, WEA 2005 A Scalable Application Placement Controller for Enterprise Data Centers C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, WWW 2007

23 23 / 23 Biblio: Reliability in Clouds Web-scale Job Scheduling W. Cirne, E. Frachtenberg, JSSPP 2012 Guaranteeing High Availability Goals for Virtual Machine Placement E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, D. H. Lorenz, ICDCS 2011 Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters F. Machida, M. Kawato, Y. Maeno, NOMS 2010 Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints O. Beaumont, L. Eyraud-Dubois, J-A. Lorenzo, P. Renaud-Goud, HiPC 2014

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 31 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 31 Le Cloud, qu est-ce que c est? C est récent Amazon qui commence (2006) avec AWS Dropbox, Google App Engine

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 24 novembre 2004

TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 24 novembre 2004 TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 4 novembre 004 Internet peut-être vu comme un réseau de sous-réseaux hétérogènes. Le ciment

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

GIF-1001 Ordinateurs: Structure et Applications Solutions : La gestion de la mémoire

GIF-1001 Ordinateurs: Structure et Applications Solutions : La gestion de la mémoire GIF-1001 Ordinateurs: Structure et Applications Solutions : La gestion de la mémoire 1. Décrivez, pour l allocation contiguë de mémoire avec partitions à taille variables pour placer des processus en mémoire,

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Analyse de performance, monitoring

Analyse de performance, monitoring Analyse de performance, monitoring Plan Principes de profilage Projet TPTP dans Eclipse Utilisation des profiling tools de TPTP Philippe Collet Master 1 Informatique 2009-2010 http://deptinfo.unice.fr/twiki/bin/view/minfo/gl

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

La Continuité d Activité

La Continuité d Activité La virtualisation VMware vsphere au service de La Continuité d Activité La virtualisation VMware vsphere La virtualisation et la Continuité d Activité La virtualisation et le Plan de Secours Informatique

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

CA ARCserve D2D. Une récupération après sinistre ultra-rapide vous permet d'éviter une interruption de service. DOSSIER SOLUTION : CA ARCserve D2D r16

CA ARCserve D2D. Une récupération après sinistre ultra-rapide vous permet d'éviter une interruption de service. DOSSIER SOLUTION : CA ARCserve D2D r16 CA ARCserve D2D CA ARCserve D2D est un produit de récupération sur disque conçu pour offrir la combinaison idéale de protection et de récupération rapides, simples et fiables de vos données professionnelles.

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

IBM Rapid Recovery Services Vers le Cloud Recovery Recovering technology and infrastructure more quickly to meet your business needs

IBM Rapid Recovery Services Vers le Cloud Recovery Recovering technology and infrastructure more quickly to meet your business needs IBM Rapid Recovery Services Vers le Cloud Recovery Recovering technology and infrastructure more quickly to meet your business needs Jacques Bogo, Alain Maury, Pascal Hervé. IBM BCRS IT Architectes Le

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing

Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Enseignant: Lamouchi Bassem Cours : Système à large échelle et Cloud Computing Les Clusters Les Mainframes Les Terminal Services Server La virtualisation De point de vue naturelle, c est le fait de regrouper

Plus en détail

PRESENTATION DE LA VIRTUALISATION DE SERVEURS

PRESENTATION DE LA VIRTUALISATION DE SERVEURS PRESENTATION DE LA VIRTUALISATION DE SERVEURS SOMMAIRE QU EST-CE QUE LA VIRTUALISATION? POURQUOI VIRTUALISER? LES AVANTAGES DE LA VIRTUALISATION NOTION DE CONSOLIDATION, RATIONALISATION ET CONCENTRATION

Plus en détail

Les graphes d intervalles

Les graphes d intervalles Les graphes d intervalles Complément au chapitre 3 «Vol aux archives cantonales» Considérons un ensemble de tâches ayant chacune une heure de début et une heure de fin bien précises. Supposons qu on demande

Plus en détail

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters AVANTAGES

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters AVANTAGES FAMILLE EMC VPLEX Disponibilité continue et mobilité des données dans et entre les datacenters DISPONIBLITÉ CONTINUE ET MOBILITÉ DES DONNÉES DES APPLICATIONS CRITIQUES L infrastructure de stockage évolue

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

HAUTE PERFORMANCE DE CALCUL

HAUTE PERFORMANCE DE CALCUL Journées d études 2010 Modélisation actif-passif & HAUTE PERFORMANCE DE CALCUL FRACTALES 0 Journées d études 2010 Sommaire Projet SIGMA 1 ère partie 1.! Le printemps des modèles Applications Haute Performance

Plus en détail

TP MongoDB. -d : définit le nom de la base où l'on souhaite importer les données

TP MongoDB. -d : définit le nom de la base où l'on souhaite importer les données TP MongoDB MongoDB est l une des base de données composant le mouvement NoSQL (Not Only SQL). L intérêt de ce genre de bases de données se ressent dans la manipulation de très grosses bases de données

Plus en détail

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters FAMILLE EMC VPLEX Disponibilité continue et mobilité des données dans et entre les datacenters DISPONIBILITE CONTINUE ET MOBILITE DES DONNEES DES APPLICATIONS CRITIQUES L infrastructure de stockage évolue

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

VMware Infrastructure The New Computing Platform. Stéphane CROIX Systems Engineer

VMware Infrastructure The New Computing Platform. Stéphane CROIX Systems Engineer VMware Infrastructure The New Computing Platform Stéphane CROIX Systems Engineer La nouvelle plateforme informatique Une seule plateforme pour résoudre les différents «challenges» de l entreprise d aujourd

Plus en détail

System Center 2012 R2 Licensing Fiche Produit

System Center 2012 R2 Licensing Fiche Produit Licensing Fiche Produit Aperçu du produit Microsoft offre des solutions pour administrer des ressources de datacenters, des clouds privés et des appareils clients. Gestion de Cloud privé/datacenter aide

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Suite VMware vcenter. VMware vsphere 4. vshield Zones VMsafe. VMotion Storage VMotion HA Fault Tolerance Data Recovery. VMware ESX VMware ESXi

Suite VMware vcenter. VMware vsphere 4. vshield Zones VMsafe. VMotion Storage VMotion HA Fault Tolerance Data Recovery. VMware ESX VMware ESXi CS VMware vsphere 4 AIDE-MÉMOIRE Qu est-ce que VMware vsphere 4? Premier système d exploitation pour le Cloud Computing, VMware vsphere 4 utilise la puissance de la virtualisation pour transformer les

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Routage de camions dans le secteur du BTP

Routage de camions dans le secteur du BTP Routage de camions dans le secteur du BTP 1 / 25 Routage de camions dans le secteur du BTP Projet Orlogès Sylvain Rosembly 1 Nathalie Bostel 2 Pierre Dejax 3 1 Master ORO - Ecole des Mines de Nantes 2

Plus en détail

VMware. Pourquoi Virtualiser? Une partie de l offre VMware Fonctionnalités. Virtual Infrastructure 3.0 (déclinaisons) VMware : Prix

VMware. Pourquoi Virtualiser? Une partie de l offre VMware Fonctionnalités. Virtual Infrastructure 3.0 (déclinaisons) VMware : Prix VMware Pourquoi Virtualiser? Une partie de l offre VMware Fonctionnalités Clusters, pools de ressources, Vmotion ; DRS ; HA Virtual Infrastructure 3.0 (déclinaisons) VMware : Prix Pourquoi Virtualiser?

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Parallélisme et Répartition

Parallélisme et Répartition Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Cinq principes fondamentaux

Cinq principes fondamentaux Cinq principes fondamentaux de la protection moderne des données David Davis vexpert Veeam Backup & Replication 6.5 Encore plus IMPRESSIONNANT! Veeam permet une protection des données puissante, facile

Plus en détail

Introduction aux systèmes répartis

Introduction aux systèmes répartis Introduction aux systèmes répartis Grappes de stations Applications réparties à grande échelle Systèmes multicalculateurs (1) Recherche de puissance par assemblage de calculateurs standard Liaison par

Plus en détail

au Centre Inter-établissement pour les Services Réseaux Cédric GALLO

au Centre Inter-établissement pour les Services Réseaux Cédric GALLO au Centre Inter-établissement pour les Services Réseaux Cédric GALLO En théorie Introduction Présentation de l ESXi VMFS Virtual Center Vsphere Client Converter Vmotion High Availability/DRS/DPM Gestion

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz

INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement. Bernard Fortz INFO-F-425 Modèles mathématiques et algorithmes pour l ordonnancement Bernard Fortz 2008-2009 Table des matières 1 Définition et classification des problèmes d ordonnancement 2 1.1 Introduction....................................

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

Deuxième partie II ALGORITHMES DANS LES GRAPHES

Deuxième partie II ALGORITHMES DANS LES GRAPHES Deuxième partie II ALGORITHMES DANS LES GRAPHES Représentation des graphes Représentation en mémoire : matrice d incidence / Matrice d incidence Soit G = (, E) graphe simple non orienté avec n = et m =

Plus en détail

Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain?

Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain? DOSSIER SOLUTION Solution CA Virtual Placement and Balancing Comment optimiser l utilisation des ressources Cloud et de virtualisation, aujourd hui et demain? agility made possible La solution automatisée

Plus en détail

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE Sylvain SIOU VMware Laurent DELAISSE Hitachi Data Systems 1 Hitachi Data Systems Corporation 2012. All Rights Reserved

Plus en détail

Virtualisation des ressources serveur. Exemple : Systèmes partitionnés sous HP-UX et Oracle

Virtualisation des ressources serveur. Exemple : Systèmes partitionnés sous HP-UX et Oracle Virtualisation des ressources serveur Exemple : Systèmes partitionnés sous HP-UX et Oracle Sommaire 1 PRINCIPES DE LA VIRTUALISATION DES SERVEURS 3 2 PRINCIPES DE LA VIRTUALISATION DES SERVEURS PARTITIONNES

Plus en détail

HPC-Desk. HPC et SaaS scientifique : l évolution. nécessaire des outils SaaS. Jérémie Bellec Structure Computation

HPC-Desk. HPC et SaaS scientifique : l évolution. nécessaire des outils SaaS. Jérémie Bellec Structure Computation HPC-Desk HPC et SaaS scientifique : l évolution nécessaire des outils SaaS. Jérémie Bellec Structure Computation Structure Computation Plate-forme is-sim (www.is-sim.com) 2 Structure Computation Missions

Plus en détail

Cours 8: Algorithmes online

Cours 8: Algorithmes online Cours 8: Algorithmes online Offline / Online, compétitivité Bin packing, lien avec algo d approx Cache paging, adversaire, borne inférieure Accès de liste, méthode du potentiel Les k serveurs, adversaires

Plus en détail

CA Server Automation. Vue d ensemble. Avantages. agility made possible

CA Server Automation. Vue d ensemble. Avantages. agility made possible FICHE PRODUIT : CA Server Automation CA Server Automation agility made possible La solution intégrée CA Server Automation permet d automatiser le provisioning, la correction et la configuration des composants

Plus en détail

Routage, Allocations de Ressources et Équilibres.

Routage, Allocations de Ressources et Équilibres. Routage, Allocations de Ressources et Équilibres. Johanne Cohen Johanne.Cohen@loria.fr CNRS, Laboratoire LORIA, Nancy. Routage, Allocations de Ressources et Équilibres. p.1/23 Jeu Ciseaux/Papier/Caillou.

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Création d une VM W2K8R2

Création d une VM W2K8R2 Création d une VM W2K8R2 AURELIEN JAULENT 1 TABLE DES MATIERES Introduction :... 3 Créer une machine virtuelle KVM pour Windows 2008 R2 :... 3 Vous obtenez la fenêtre "Créer: Machine Virtuelle" :... 3

Plus en détail

Configuration du serveur ESX

Configuration du serveur ESX Configuration du serveur ESX 1. La licence vsphere Le serveur ESX a besoin d une licence. Cliquez sur votre serveur ESX. Puis allez dans l onglet Configuration. Rubrique Software ; Licence Features. Cliquez

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 14/9/215 1 Profil Profil Parcours : Laboratoires LAAS et IRIT à Toulouse

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

A Les différentes générations VMware

A Les différentes générations VMware Architecture de VMware vsphere 4 A Les différentes générations VMware VMware est né en 1998 avec l'invention du premier hyperviseur en environnement x86 et il en est aujourd'hui à la 4ème génération. Voyons

Plus en détail

Allocation de tâches et théorie des jeux. p. Allocation des tâches. 1) Allocation de tâches.

Allocation de tâches et théorie des jeux. p. Allocation des tâches. 1) Allocation de tâches. Allocation de tâches et théorie des jeux. Johanne ohen Johanne.ohen@loria.fr 1) Allocation de tâches. 1. Définition sous forme d un jeu. 2. Existence d un équilibre de Nash Allocation des tâches. m machines

Plus en détail

GRID : Overview ANR-05-CIGC «GCPMF» 8 juin 2006 Stéphane Vialle

GRID : Overview ANR-05-CIGC «GCPMF» 8 juin 2006 Stéphane Vialle GRID : Overview ANR-05-CIGC «GCPMF» 8 juin 2006 Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Grid : Overview 1. Définition et composition 2. Exemple de Middleware 3. Interconnexion

Plus en détail

Proposition d une architecture pour ebay, en mettant l accent sur les notions de scalabilité, de résilience, et de tolérance aux pannes.

Proposition d une architecture pour ebay, en mettant l accent sur les notions de scalabilité, de résilience, et de tolérance aux pannes. PROJET «EBAY» V1 MANUEL ROLLAND, SCIA 2009, REMIS LE 7 MARS 2008 1. Rappels sur le projet : Proposition d une architecture pour ebay, en mettant l accent sur les notions de scalabilité, de résilience,

Plus en détail

Prix et prestations Dynamic Computing Services

Prix et prestations Dynamic Computing Services Prix et prestations Dynamic Computing Services Tous les prix sont en CHF, hors TVA, pour une durée de 30 jours. La facturation est calculée sur une base horaire. Pour la compréhensibilité de la facture,

Plus en détail

System Center Data Protection Manager 2010 (DPM2010) Mettre en œuvre un réseau de backup

System Center Data Protection Manager 2010 (DPM2010) Mettre en œuvre un réseau de backup System Center Data Protection Manager 2010 (DPM2010) Mettre en œuvre un réseau de backup Article par Cédric Bravo (MVP Virtualisation) Cédric Bravo est actuellement consultant, architecte infrastructure

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

agility made possible

agility made possible DOSSIER SOLUTION CA VM:Manager Suite for Linux on System Z Comment réduire le coût et la complexité de la gestion et de la sécurisation des environnements z/vm et Linux on System z? agility made possible

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Présentation OPT-NC. Stockage et virtualisation de serveurs. Club DSI Réunion du 05/12/2007 Version 1.0

Présentation OPT-NC. Stockage et virtualisation de serveurs. Club DSI Réunion du 05/12/2007 Version 1.0 Présentation OPT-NC Stockage et virtualisation de serveurs Club DSI Réunion du 05/12/2007 Version 1.0 1 Agenda Historique Infrastructure actuelle Pourquoi une virtualisation de serveurs? Solution technique

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Thierry Benoist Frédéric Gardi Antoine Jeanjean Bouygues e-lab, Paris { tbenoist, fgardi, ajeanjean }@bouygues.com

Plus en détail

Le Cloud Open-Mind! Emilien Macchi

Le Cloud Open-Mind! Emilien Macchi Le Cloud Open-Mind! 1 Sommaire Introduction Comprendre Swift Comprendre Glance Comprendre Nova Déploiement Divers 2 OpenStack Introduction 3 Qu est-ce-qu OpenStack? Projet OpenSource ambitieux Catégorie

Plus en détail

Virtualisation & Sécurité

Virtualisation & Sécurité Virtualisation & Sécurité Comment aborder la sécurité d une architecture virtualisée? Quels sont les principaux risques liés à la virtualisation? Peut-on réutiliser l expérience du monde physique? Quelles

Plus en détail

MiniCLOUD http://www.virtual-sr.com/

MiniCLOUD http://www.virtual-sr.com/ MiniCLOUD http://www.virtual-sr.com/ SANTE RESEAU développe en 2012, une filiale, VIRTUAL SR, spécialisée dans l'hébergement PRIVÉ de Machines Virtuelles. Spécialisée dans Les Architectures Virtuelles

Plus en détail

1.1 Remote Procedure Call (RPC)

1.1 Remote Procedure Call (RPC) 1.1 Remote Procedure Call (RPC) Le modèle Client-Serveur est un modèle simple à utiliser pour la structuration des systèmes répartis. Mais ce modèle s appuie sur des communications de type entrée/sortie

Plus en détail

Ordonnancement sous contraintes de Qualité de Service dans les Clouds

Ordonnancement sous contraintes de Qualité de Service dans les Clouds Ordonnancement sous contraintes de Qualité de Service dans les Clouds GUÉROUT Tom DA COSTA Georges (SEPIA) MONTEIL Thierry (SARA) 05/12/2014 1 Contexte CLOUD COMPUTING Contexte : Environnement de Cloud

Plus en détail

Module 177 Assurer la gestion des dysfonctionnements

Module 177 Assurer la gestion des dysfonctionnements Module 177 Assurer la gestion des dysfonctionnements Copyright IDEC 2003-2009. Reproduction interdite. Sommaire Introduction : quelques bases sur l ITIL...3 Le domaine de l ITIL...3 Le berceau de l ITIL...3

Plus en détail

CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle

CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle CONSOTEL : Leader de l édition TEM grâce aux performances des solutions Oracle Interview «CONSOTEL» du 11 Octobre 2011, postée sur : http://www.itplace.tv Christian COR, Directeur Associé Brice Miramont,

Plus en détail

Programmation avancée

Programmation avancée Programmation avancée Chapitre 1 : Complexité et les ABR (arbres binaires de recherche) 1 1 IFSIC Université de Rennes-1 M2Crypto, octobre 2011 Plan du cours 1 2 3 4 5 6 7 8 9 10 Algorithmes Définition

Plus en détail

Revue d article : Dynamic Replica Placement for Scalable Content Delivery

Revue d article : Dynamic Replica Placement for Scalable Content Delivery Revue d article : Dynamic Replica Placement for Scalable Content Delivery Marc Riner - INSA Lyon - DEA DISIC Introduction Cet article [1] présente une technique innovante de placement de réplicats et de

Plus en détail

Qu est ce que le Cloud Computing?

Qu est ce que le Cloud Computing? Qu est ce que le Cloud Computing? Makhlouf Hadji Ingénieur de Recherche Qu est ce que le Cloud Computing? Agenda: Virtualisation des Ressources Introduction au Cloud Computing Caractéristiques du Cloud

Plus en détail

VIRTUALISATION : MYTHES & RÉALITÉS

VIRTUALISATION : MYTHES & RÉALITÉS VIRTUALISATION : MYTHES & RÉALITÉS Virtualisation Définition Marché & Approche Microsoft Virtualisation en PME Quel(s) besoin(s) Quelle(s) approche(s) Témoignage Client Mr Rocher, DSI CESML Questions /

Plus en détail

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma

Systèmes Répartis. Pr. Slimane Bah, ing. PhD. Ecole Mohammadia d Ingénieurs. G. Informatique. Semaine 24.2. Slimane.bah@emi.ac.ma Ecole Mohammadia d Ingénieurs Systèmes Répartis Pr. Slimane Bah, ing. PhD G. Informatique Semaine 24.2 1 Semestre 4 : Fev. 2015 Grid : exemple SETI@home 2 Semestre 4 : Fev. 2015 Grid : exemple SETI@home

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Module : Virtualisation à l aide du rôle Hyper-V

Module : Virtualisation à l aide du rôle Hyper-V Windows Server 2008 pour l'enseignement Module : Virtualisation à l aide du rôle Hyper-V Agenda du module Présentation d Hyper-V Installation d Hyper-V Configuration d Hyper-V Administration des machines

Plus en détail

Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source JShaft

Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source JShaft Augmenter la disponibilité des applications JEE grâce au clustering : Le projet open source Jérôme Petit, Serge Petit & Serli Informatique, ITMatic Jérôme Petit, Serge Petit & SERLI & ITMatic Serli : SSII

Plus en détail

Plus courts et plus longs chemins

Plus courts et plus longs chemins Plus courts et plus longs chemins Complément au chapitre 8 «Une voiture nous attend» Soit I={1,2,,n} un ensemble de tâches à ordonnancer. La durée d exécution de chaque tâche i est connue et égale à p

Plus en détail

Système d administration autonome adaptable: application au Cloud

Système d administration autonome adaptable: application au Cloud Système d administration autonome adaptable: application au Cloud Alain TCHANA - atchana@enseeiht.fr IRIT/ENSEEIHT, Equipe SEPIA Directeur de thèse : Daniel HAGIMONT et Laurent BROTO Rapporteurs : Jean-Marc

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

ROMAIN HENNION HUBERT TOURNIER ÉRIC BOURGEOIS. Cloud. computing. Décider Concevoir Piloter Améliorer. Groupe Eyrolles, 2012, ISBN : 978-2-212-13404-9

ROMAIN HENNION HUBERT TOURNIER ÉRIC BOURGEOIS. Cloud. computing. Décider Concevoir Piloter Améliorer. Groupe Eyrolles, 2012, ISBN : 978-2-212-13404-9 ROMAIN HENNION HUBERT TOURNIER ÉRIC BOURGEOIS Cloud computing Décider Concevoir Piloter Améliorer Groupe Eyrolles, 2012, ISBN : 978-2-212-13404-9 Partie III Concevoir Les différents types de contrats ITIL

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

Couplages et colorations d arêtes

Couplages et colorations d arêtes Couplages et colorations d arêtes Complément au chapitre 5 «Une employée mécontente» et au chapitre 9 «L apprentie sudokiste» Considérons n équipes de hockey qui doivent s affronter lors d un tournoi.

Plus en détail