Exercice : la frontière des portefeuilles optimaux sans actif certain

Dimension: px
Commencer à balayer dès la page:

Download "Exercice : la frontière des portefeuilles optimaux sans actif certain"

Transcription

1 Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué de trois titres risqués dont les rendements nets, les volatilités (écart-types), et les coe cients de corrélation sont les suivants : titres rend. volatilité growth value espérés (%) (%) stocks stocks bonds growth stocks 0 0:6 0: value stocks 0 6 0:6 0: bonds 6 6 0: 0:. Déterminer la matrice de covariances de l univers dé ni par ces trois autres titres.. Déterminer le portefeuille le moins risqué de cet univers. On suppose que l investisseur a comme critère d évaluation E [er p ] (er p ) Donner le programme d optimisation, ses conditions de premier ordre.. Calculer la composition des portefeuilles optimaux (ainsi que des couples volatilités - risques) pour allant de à 0 (avec un pas de ). () Pour calculer la matrice de covariances, on utilise la relation : ij = ij i j () reliant la covariance entre deux titres i et j ( ij ) à leur coe cient de corrélation ( ij ) et à leurs volatilités ( i et j ). Cette relation peut-être généralisée

2 à la matrice des covariances en introduisant la matrice diagonales des volatilités : ::: 0 ::: 0 ::: ::: ::: ::: ::: 6 0 ::: j ::: 0 7 ::: ::: ::: ::: ::: 0 ::: 0 ::: J La matrice des covariances est alors donnée par le produit quadratique : ::: 0 ::: 0 ::: 0 ::: 0 ::: ::: ::: ::: ::: = 6 0 ::: j ::: 0 7 ::: ::: ::: ::: ::: Corr ::: ::: ::: ::: ::: 6 0 ::: j ::: 0 7 ::: ::: ::: ::: ::: 0 ::: 0 ::: J 0 ::: 0 ::: J où Corr est la matrice des coe cients de corrélation. Numériquement dans notre cas, on a donc : 0: 0 0 0:6 0: = 0 0:6 0 0:6 0: 0 0 0:06 0: 0: = dont l inverse est égal à : = 0: : :06 0:0 0:09 0:00 0:09 0:0 6 0: :00 0: :00 6 0:09 9:0 9:00 9:0 6:07 :9 9:00 :9 9: () () () Le portefeuille le moins risqué de cet univers va être la solution du programme suivant : < : min x ;x ;x p sous la contrainte : x + x + x = ()

3 avec : p = x x x x x x Le lagrangien du problème peut s écrire : 0:0 0:09 0:00 0:09 0:0 6 0: :00 0: :00 6 L = p + (x + x + x ) () où est le multiplicateur de lagrange. Les conditions de premier ordre (nécessaires et su santes ici) sont : < x p + = 0 x : p + = 0 x p + = 0 ou encore : < x p = x : p = x p = ou encore comme x j p = P k x k jk : < [] x = [] x = : [] x = où [j] est le vecteur ligné constitué par la j-eme ligne de, x est le vecteur colonne des parts. Matriciellement la soution est donc : x = où est le vecteur colonne de J éléments égaux à. Le portefeuille optimal est donc : x = (7) Numériquement dans notre cas : 0:09 9:0 9:00 = 9:0 6:07 :9 9:00 :9 9: 9: 79 = : 6 0: (6)

4 Par conséquent le portefeuille optimal est en fonction de : 9: 79 x = : 6 () 0: Ici n est pas un coe cient d aversion au risque, un paramètre exogène, mais un multiplicateur de lagrange, donc une variable endogène dont la valeur est une des solutions du problème. Pour trouver, il nous faut utiliser une relation du problème non encore utilisée dans la résolution : la contrainte budgétaire : x + x + x = (9) ou encore : T x = (0) En injectant dans la contrainte budgétaire la valeur des parts, on a donc : T x = 9: 79 : 6 0: = 6: Par conséquent, la valeur de dans notre problème est : = 6: et donc on trouve le portefeuille optimal : x = 6: 9: 79 : 6 0: = : 0 0 7: 76 0 :0 0 () Ses performances (rendements espérés, volatilité, ratio de Sharpe) peuvent s écrire : Eer min var = 0: 0: 0:06 : 0 0 7: 76 0 ' 6: 0 0 () :0 0 min var = 0:0 0: :0 : 0 0 7: 76 0 :0 0 0:0 0:09 0:00 0:09 0:0 6 0: :00 0: :00 6 ()

5 min var ' : :0 0 S p = ' :96 () :7 9 0 où le ratio de Sharpe est calculée comme le rapport du rendement espéré à la volatilité en l absence d un taux d intérêt certain: () Si l on adopte comme fonction objectif le modèle espérance variance, alors le programme d optimisation s écrit : < : dont le lagrangien peut s écrire : Comme : L = Eer p max x ;x ;x Eer p p sous la contrainte : x + x + x = () p (x + x + x ) (6) Eer p = 0:x + 0:x + 0:06x (7) p = x x x 0:0 0:09 0:00 0:09 0:0 6 0: :00 0: :00 6 x x x = 0:0x + 0:0 x x 0:00 x x + 0:0 6x 0:00 9x x + 0:00 6x les conditions de premier ordre (nécessaires et su santes ici) sont : < 0: (0:0x + 0:09x 0:00x ) = 0 0: (0:09x + 0:06x 0:00096x ) = 0 : 0:06 ( 0:00x 0:00096x + 0:0006x ) = 0 ou sous forme matricielle : 0: 0:0 = 0:06 0:0 0:09 0:00 0:09 0:0 6 0: :00 0: :00 6 x x x () En mettant divisant par, puis en pré-multipliant par on trouve : 0: 0:0 0:0 0:09 0:00 x = 0:09 0:0 6 0: x (9) 0:06 0:00 0: :00 6 x

6 = 0:09 9:0 9:00 9:0 6:07 :9 9:00 :9 9: x x x 0: 0:0 0:06 0:09 9:0 9:00 9:0 6:07 :9 9:00 :9 9: (0 ( et donc comme : 0:09 9:0 9:00 9:0 6:07 :9 9:00 :9 9: on a : 0:09 9:0 9:00 9:0 6:07 :9 9:00 :9 9: x x x = : 0 : 6 9: 0: 0:0 0:06 = = 9: 79 : 6 0: : 0 : 6 9: 9: 79 : 6 0: () Le portefeuille est la somme de deux vecteurs, de deux portefeuilles. Le dernier a déjà été calculer : il s agit du portefeuille de variance minimale. Si est nul, on remarque que ce portefeuille ne contribuera pas à déterminer le portefeuille. Mais = 0 est équivalent à négliger la contrainte budgéaire puisque est la pénalité appliquée pour inciter l investisseur à respecter sa contrainte budgétaire. Ceci indique que dans la détermination du portefeuille optimal, on utilise le portefeuille de variance minimale pour équilibrer la contrainte budgétaire. Le premier portefeuille sera négligable dans le portefeuille lorsque l investisseur sera très prudent. En fait ce second portefeuille est un instrument permettant non d équilibrer la contrainte budgétaire mais d augmenter la performance. Des deux variables et, est une variable exogène, est une variable endogène, une solution du système. Donc il est nécessaire de la déterminer en fonction des paramètres du problème. Pour cela, on doit utiliser la relation non encore utilisée : la contrainte budgétaire. Comme : x + x + x = 6 x x x =

7 aversion lambda x x x volatilite Er Sharpe 0,07,0 0, 0,60,%,6% 0, 0,06 0, 0,0 0,,9% 0,7% 0,7 0,06 0, 0, 0,6 0,7% 9,% 0, 0,06 0, 0,9 0,,7%,7%,00 0,0 0, 0,7 0, 7,7%,%,09 6 0,0 0, 0, 0,60 7,0%,%,6 7 0,0 0, 0, 0,6 6,6% 7,9%,0 0,0 0, 0, 0,66 6,% 7,%, 9 0,0 0,9 0, 0,6 6,% 7,7%,6 0 0,0 0, 0, 0,70,9% 7,6%, on a donc en replaçant les parts par leurs expressions : : 0 ( : 6 9: 79 : 6 ) = 9: 0: ou encore : : 0 : 6 9: : 700 6: = 9: 79 : 6 0: ) = = 6:0 0 : 7 0 () Le tableau ci-dessous donne en fonction de la valeur du coe cient d aversion les valeurs de lambda, des parts des portefeuilles, de l espérance des rendements, de leurs volatilités et du ratio de Sharpe. On remarque dans le tableau comme dans le er graphique que l évolution des parts est monotone : lorsque l aversion est élevée, le portefeuille comprend essentiellement le titre (à plus des =) et à part égale les titres et ; puis plus l aversion diminue, plus le poids des titres les plus rentables (les titres et ) augmentent et le titre devient un actif de nancement (sa part devient négative). Sur le dernier graphique sont reportés les couples (volatilités, rendements espérés). En bleu, les portefeuilles optimaux, en rouge e portefeuille de variance minimale. Ce dernier est la base de la frontière des portefeuilles optimaux. En l absence d un actif certain, cette frontière n est pas une droite, mais une parabole inversée dont la base est le portefeuille de variance minimale. 7

8 ,0,00 0,0 0,60 0,0 0,0 0,00 0,0 0,0 0,60 0, x x x 0,6 0, 0, 0, 0,0 0,06 frontière min variance 0,0 0, ,0 0, 0, 0, 0, 0,

Exercice : covariance et gestion du risque. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine

Exercice : covariance et gestion du risque. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Exercice : covariance et gestion du risque Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Mars 2006 On considère deux actifs dont les rendements et les volatilités sont :

Plus en détail

Le théorème des deux fonds et la gestion indicielle

Le théorème des deux fonds et la gestion indicielle Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

Joël FOLENS et Fabrice RIVA. Date limite de remise : 07 janvier 2015 à 17:00

Joël FOLENS et Fabrice RIVA. Date limite de remise : 07 janvier 2015 à 17:00 M2 MATHÉMATIQUES ET FINANCE UNIVERSITÉ LILLE 1 GESTION DE PORTEFEUILLE ET MESURE DU RISQUE Joël FOLENS et Fabrice RIVA Date limite de remise : 07 janvier 2015 à 17:00 1. Présentation du projet L objectif

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

Combiner anticipations et optimisation : le modèle Black-Litterman

Combiner anticipations et optimisation : le modèle Black-Litterman Combiner anticipations et optimisation : le modèle Black-Litterman Université Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) PLAN Les raisons du modèle 1 Les raisons du modèle 2 1.

Plus en détail

Chapitre 4 : construction de portefeuille (II)

Chapitre 4 : construction de portefeuille (II) Chapitre 4 : construction de portefeuille (II) 08.11.2013 Plan du cours Espérance de rentabilité d un portefeuille Volatilité d un portefeuille Choix du portefeuille efficient Prise en compte de l actif

Plus en détail

Examen Gestion de portefeuille

Examen Gestion de portefeuille ESC Toulouse 2005 D. Herlemont Mastère BIF Examen Gestion de portefeuille Durée : 2 heures Les documents ne sont pas autorisés. Pour les questions à choix multiples, une ou plusieurs réponses peuvent être

Plus en détail

Allocation de Portefeuille Stratégies Quantitatives

Allocation de Portefeuille Stratégies Quantitatives Allocation de Portefeuille Stratégies Quantitatives DIALLO Mamadou Bhoye, MOUAFO FOKOU Collince 12 Mars 2014 DIALLO Mamadou Bhoye, MOUAFO FOKOU Collince 1 / 25 Sommaire Introduction 1 Introduction 2 3

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de orteeuille Christophe Boucher Chapitre. héorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Stratégies Quantitatives de Gestion

Stratégies Quantitatives de Gestion Stratégies Quantitatives de Gestion Thierry Roncalli 6 février 2012 Merci de rédiger entièrement vos réponses et de fournir les fichiers Excel. 1 Construction d un backtest 1. Quelle est la différence

Plus en détail

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading PROJET DE GESTION PORTEFEUILLE Evaluation d une Stratégie de Trading Encadré par M. Philippe Bernard Master 1 Economie Appliquée-Ingénierie Economique et Financière Taylan Kunal 2011-2012 Sommaire 1) Introduction

Plus en détail

Notes sur les rendements de actifs nanciers. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine

Notes sur les rendements de actifs nanciers. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Notes sur les rendements de actifs nanciers Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 2006 Table des matières 1 Correction des splits 2 2 Correction des dividendes

Plus en détail

Cours de gestion financière (M1)

Cours de gestion financière (M1) Cours de gestion financière (M1) Séance du 2 octobre 2015 Beta et risque de marché, MEDAF S&P500 vs high beta stocks 1 Séance du 2 octobre 2015 Beta et risque de marché, MEDAF 2 Partie 2 : Médaf, relation

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

Chapitre 5 : Théorie et Gestion de Portefeuille

Chapitre 5 : Théorie et Gestion de Portefeuille Chapitre 5 : Théorie et Gestion de Portefeuille I. otions de rentabilité et de risque II. Diversification de portefeuille III. Optimisation de Markowitz III.. Portefeuilles composés d actifs risqués III..

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER

CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER OBJECTIF Décision d'investissement? Comment un individu décide-t-il d'allouer sa richesse entre différents actifs (maison, actions, obligations,

Plus en détail

Cycle de vie, Portefeuille et Simulations. Ph. Bernard & N. El Mekkaoui de Freitas

Cycle de vie, Portefeuille et Simulations. Ph. Bernard & N. El Mekkaoui de Freitas Cycle de vie, Portefeuille et Simulations Ph. Bernard & N. El Mekkaoui de Freitas http://www.master272.com/vba/vba_cycledevie.html Les procédures ont été réalisées pour le cours cycle de vie et gestion

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

13! Think Tank. Praticiens et Académiciens: Joignons nos forces. Gabriele Farei - Synopsis Asset Management SA

13! Think Tank. Praticiens et Académiciens: Joignons nos forces. Gabriele Farei - Synopsis Asset Management SA 13! Think Tank Praticiens et Académiciens: Joignons nos forces Agenda 1 Vue synoptique 2 Profil de risque: éléments à retenir 3 L outil de pilotage 1. Analyse par scénario de l actif 2. Modèle de congruence

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 4 Approche Intertemporelle du Compte Courant

ECO434, Ecole polytechnique, 2e année PC 4 Approche Intertemporelle du Compte Courant ECO434, Ecole polytechnique, e année PC 4 Approche Intertemporelle du Compte Courant Exercice : Choix intertemporel et Taux de Change Réel (TCR) On considère une petite économie ouverte dans laquelle deux

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

ESSEC. Cours FIN 260 Gestion de portefeuille. Séance 8 Mesures de performance

ESSEC. Cours FIN 260 Gestion de portefeuille. Séance 8 Mesures de performance ESSEC Cours FIN 260 Gestion de portefeuille Séance 8 Mesures de performance François Longin Plan Introduction Mesures de performance des fonds: développements académiques Premier niveau: la rentabilité

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Gestion obligataire passive

Gestion obligataire passive Finance 1 Université d Evry Séance 7 Gestion obligataire passive Philippe Priaulet L efficience des marchés Stratégies passives Qu est-ce qu un bon benchmark? Réplication simple Réplication par échantillonnage

Plus en détail

Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille

Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille I. Concept d'efficience des marchés et stratégies de gestion - Efficience opérationnelle des marchés

Plus en détail

Les méthodes de contrôle des risques de portefeuilles

Les méthodes de contrôle des risques de portefeuilles Les méthodes de contrôle des risques de portefeuilles LE CERCLE INVESCO 006 Eric Tazé-Bernard Directeur de la Gestion INVESCO Asset Management Section 01 Section 0 Section 03 Les principaux indicateurs

Plus en détail

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître

Plus en détail

Analyse de la rentabilité et du risque des portefeuilles actions

Analyse de la rentabilité et du risque des portefeuilles actions Chapitre 1 chapitre 1 Analyse de la rentabilité et du risque des portefeuilles actions Ce chapitre traite des concepts fondamentaux de la gestion de portefeuille «actions». Il complète les thématiques

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Calcul garanti des contraintes pour la planification sécurisée de trajectoire

Calcul garanti des contraintes pour la planification sécurisée de trajectoire Calcul garanti des contraintes pour la planification sécurisée de trajectoire Application à la génération de trajectoire articulaire pour un patient paraplégique sous Stimulation Électrique Fonctionnelle

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2011-2012 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme

Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme Trading system : Trend following Breakout Janvier 1996 - Janvier 2009 Etude de la performance du système Le

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Sélection du portefeuille de projets d exploration production en utilisant la méthode de Markowitz

Sélection du portefeuille de projets d exploration production en utilisant la méthode de Markowitz Sélection du portefeuille de projets d exploration production en utilisant la méthode de Markowitz Fateh BELAID and Daniel DE WOLF Instiut des Mers du Nord, Université du Littoral, 21 quai de la citadelle,

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech

Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech Méthodes de placement multidimensionnelles Fabrice Rossi Télécom ParisTech Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 2 / 27 F. Rossi Plan Introduction

Plus en détail

Le MEDAF Modèle d'évaluation des actifs financiers

Le MEDAF Modèle d'évaluation des actifs financiers Le MEDAF Modèle d'évaluation des actifs financiers Comment le risque affecte-t-il la rentabilité espérée d'un investissement? Le MEDAF (CAPM = Capital Asset Pricing Model) donne une réponse cohérente.

Plus en détail

La Nouvelle Finance et la Gestion des Portefeuilles

La Nouvelle Finance et la Gestion des Portefeuilles La Nouvelle Finance et la Gestion des Portefeuilles TABLE DES MATIERES Introduction 7 Chapitre 1. - Les rentabilités des actifs financiers 11 1. Définitions 11 2. Les moyennes des rentabilités 14 3. Les

Plus en détail

Méthodologies et Glossaire

Méthodologies et Glossaire Caractéristiques Précisions Calculs de performance 1.Performance 2.Performance relative 1.Volatilité 2.Tracking error 3.Ratio d'information 4.Bêta 5.Alpha 6.Ratio de Sharpe 7.Sensibilité Indicateurs de

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Quelques notions essentielles pour mieux comprendre et mieux exploiter les indicateurs économiques.

Quelques notions essentielles pour mieux comprendre et mieux exploiter les indicateurs économiques. Quelques notions essentielles pour mieux comprendre et mieux exploiter les. Contenu Quelques notions essentielles pour mieux comprendre et mieux exploiter les indicateurs économiques.... 1 Actualisation

Plus en détail

NOUVELLES MESURES DE DÉPENDANCE POUR

NOUVELLES MESURES DE DÉPENDANCE POUR NOUVELLES MESURES DE DÉPENDANCE POUR UNE MODÉLISATION ALPHA-STABLE. Bernard GAREL & Bernédy KODIA Institut de Mathématiques de Toulouse et INPT-ENSEEIHT Xèmmes Journées de Méthodologie Statistique de l

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

Frontière Efficiente en Excel

Frontière Efficiente en Excel Frontière Efficiente en Excel aniel Herlemont 14 décembre 2010 Table des matières 1 Objectifs 1 2 Frontière Efficiente avec Excel 2 2.1 eux actifs.................................... 2 2.2 Quatre actifs

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

Simulations et Méthodes de Monte Carlo

Simulations et Méthodes de Monte Carlo Simulations et Méthodes de Monte Carlo Kam Yuen CHU Ezzoubir KODAD Responsable : Thierry RONCALLI 1 EXO 1 : Risque de marché library pgraph; @Exo1: Risque de marché@ let So=100 150 ; let theta = 1 1; let

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

1.1.1 Composantes contravariantes, covariantes d un vecteur

1.1.1 Composantes contravariantes, covariantes d un vecteur Chapitre 1 Prérequis Ce chapitre regroupe les définitions et les résultats sur les tenseurs qui sont utilisés dans la théorie des coques et des membranes. Il comprend deux parties : 1. L algèbre tensorielle,

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Théorie du Portefeuille: Diversication et réduction du risque

Théorie du Portefeuille: Diversication et réduction du risque : Diversication et réduction du risque septembre 2013 Introduction Point de départ : étude du comportement d'un investisseur face à plusieurs projets risqués ayant des degrés de risque diérents et représentés

Plus en détail

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts.

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts. Mathématique pour l informatique Examen durée : 3 heures. Université de Provence Licence Informatique Année 2001-2002 Exercice 1 (Simplexe : 10 points) On donne le problème de programmation linéaire (P)

Plus en détail

Université Pierre et Marie Curie - Licence Informatique 2014-2015 Cours LI 352 - Industrie Informatique et son Environnement Économique

Université Pierre et Marie Curie - Licence Informatique 2014-2015 Cours LI 352 - Industrie Informatique et son Environnement Économique Université Pierre et Marie Curie - Licence Informatiue 2014-2015 Cours LI 352 - Industrie Informatiue et son Environnement Économiue TD 5 : CORRIGE 1 Offre à court terme (en CPP) 1.1 La condition de maximisation

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

I La théorie de l arbitrage fiscal de la dette (8 points)

I La théorie de l arbitrage fiscal de la dette (8 points) E : «Théories de la finance d entreprise» Master M1 Université Paris-Dauphine Thierry Granger Année Universitaire 2013/2014 Session 1 Aucun document, calculette autorisée Durée 1h30 Respecter la numérotation

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I.

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. 1. Modèle de voiture MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. Un modèle simpli é de voiture peut être obtenu en supposant le véhicule soumis uniquement à la force de traction u dûe au moteur

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Simulations des Grecques : Malliavin vs Différences finies

Simulations des Grecques : Malliavin vs Différences finies 0.1. LES GRECQUES 1 Simulations des Grecques : iavin vs Différences finies Christophe Chorro Ce petit document vise à illustrer de manière numérique les techniques présentées lors du mini cours sur le

Plus en détail

Les marchés financiers : Introduction à la finance d entreprise. Entreprise et financement de l entreprise. «Corporate finance»

Les marchés financiers : Introduction à la finance d entreprise. Entreprise et financement de l entreprise. «Corporate finance» Les marchés financiers : Introduction à la finance d entreprise Entreprise et financement de l entreprise. «Corporate finance» Le point : Où en sommes nous?. L échange de risques. l équilibre général,

Plus en détail

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation THEME 7 Choix en situations de risque et d incertitude. Choix inter-temporels de consommation Concepts et définitions essentiels Risque et incertitude Théorie de l utilité espérée Aversion au risque Loterie

Plus en détail

COURS GESTION FINANCIERE SEANCE 6 DECISIONS D INVESTISSEMENT

COURS GESTION FINANCIERE SEANCE 6 DECISIONS D INVESTISSEMENT COURS GESTION FINANCIERE SEANCE 6 DECISIONS D INVESTISSEMENT SEANCE 6 DECISIONS D INVESTISSEMENT EFFET DE LEVIER La séance 6 (première partie) traite des décisions d investissement. Il s agit d optimiser

Plus en détail

ALLOCATION D ACTIFS PROCESS DE GESTION

ALLOCATION D ACTIFS PROCESS DE GESTION ALLOCATION D ACTIFS ALLOCATION D ACTIFS PROCESS DE GESTION L'allocation d'actifs représente la stratégie de répartition des actifs financiers au sein d'un portefeuille. Le montant investi est divisé entre

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

Valeur acquise, taux d intérêt et capital placé à intérêts simples

Valeur acquise, taux d intérêt et capital placé à intérêts simples Les intérêts simples et les intérêts composés THÈME 1 Exercice 1 Valeur acquise, taux d intérêt et capital placé à intérêts simples 1. Un capital (C) de 10 000 est placé du 13/03/N au 15/05/N au taux d

Plus en détail

Quelques éléments d algèbre pour l analyse de

Quelques éléments d algèbre pour l analyse de Fiche TD avec le logiciel : tdr80 Quelques éléments d algèbre pour l analyse de données A.B. Dufour, D. Chessel et M. Royer L algèbre matricielle est fondamentale dans la compréhension de la théorie liée

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Séance 12: Algorithmes de Support Vector Machines

Séance 12: Algorithmes de Support Vector Machines Séance 12: Algorithmes de Support Vector Machines Laboratoire de Statistique et Probabilités UMR 5583 CNRS-UPS www.lsp.ups-tlse.fr/gadat Douzième partie XII Algorithmes de Support Vector Machines Principe

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail