Résolution de systèmes linéaires par des méthodes directes

Dimension: px
Commencer à balayer dès la page:

Download "Résolution de systèmes linéaires par des méthodes directes"

Transcription

1 Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires. définit les notions de matrice inversible et de matrice singulière. Il 1.1 Inverse d une matrice Théorème 1.1 A R n n, sont équivalents : A est inversible : il existe une matrice notée A 1, telle que AA 1 A 1 A = I), det(a) 0, rang(a) = n, le système linéaire Ax = b a une solution pour tout b, si le système linéaire Ax = b a une solution, elle est unique, Im(A) = R n, ker(a) = {0}. = I (et Preuve. rang(a) = n équivaut à Im(A) = R n et à ker(a) = {0}, ce qui équivaut aussi à Ax = b a une solution pour tout b. D après la proposition précédente, rang(a) = n équivaut aussi à si le système a une solution, elle est unique. Si rang(a) = n, soit Cb la solution unique du système Ax = b, alors ACb = b, b donc AC = I et CAx = Cb = x, x donc CA = I et A est inversible d inverse C. Réciproquement, si A est inversible alors AA 1 b = b, b donc le système Ax = b a une solution pour tout b. On admet que A inversible équivaut à det(a) 0. Définition 1.1 Une matrice carrée non inversible est dite singulière. Une matrice inversible est dite non singulière. 1

2 Proposition 1.1 Si A et B sont inversibles, alors AB est inversible et (AB) 1 = B 1 A 1. Si A est inversible, alors A T est inversible et (A T ) 1 = (A 1 ) T = A T. Preuve. (AB)(B 1 A 1 ) = A(BB 1 )A 1 = AIA 1 = I donc AB est inversible d inverse B 1 A 1. A T (A 1 ) T = (A 1 A) T = I. 1.2 Matrices particulières Proposition 1.2 Si Q est orthogonale, alors Q est inversible et Q 1 = Q T. Une matrice diagonale D = diag(d i ) est inversible si et seulement si d i 0 et l inverse de D est la matrice diagonale D 1 = diag(1/d i ). Une matrice triangulaire L est inversible si et seulement si L ii 0 et l inverse de L est triangulaire. Preuve. Si Q est orthogonale, alors Q T Q = I donc Q 1 = Q T. Si D est diagonale, Dx = b équivaut à d i x i = b i, i = 1,..., n, a une solution pour tout b si et seulement si d i 0, i = 1,..., n ; la solution vaut x i = b i /d i donc D 1 = diag(1/d i ). Si L est triangulaire inférieure, alors le système Lx = b s écrit l 11 x 1 = b 1, j<i l ijx j + l ii x i = b i, i = 2,..., n et a une solution pour tout b si et seulement si l ii 0 ; la solution vaut x 1 = b 1 /l 11, x i = (b i j<i l ijx j )/l ii, i = 2,..., n donc x i ne dépend que de b j, j i et L 1 est triangulaire inférieure. Proposition 1.3 Calculer l inverse d une matrice diagonale d ordre n est de type BLAS1, avec n opérations. Résoudre un système triangulaire d ordre n est de type BLAS2, avec n 2 opérations. Résoudre k systèmes triangulaires d ordre n est de type BLAS3, avec kn 2 opérations. 1.3 Résolution d un système linéaire On considère un système linéaire de n équations à n inconnues, qui a une solution unique, autrement dit le système Ax = b, avec A inversible. La méthode de résolution de Cramer, basée sur les déterminants, est à proscrire, pour deux raisons : la complexité est élevée, en O(n!), ce qui explose très vite. les phénomènes de cancellation dans les calculs de déterminants amplifient les erreurs d arrondi et l algorithme est numériquement instable. Même avec un système d ordre 2, le résultat peut être complètement faux. 2

3 Si la matrice est diagonalisable, on peut en théorie exprimer le système dans la base des vecteurs propres et résoudre le système diagonal : A = V DV 1, Ax = b D(V 1 x) = V 1 b. Mais diagonaliser une matrice est très coûteux. Ensuite, il faudrait faire les calculs avec des nombres complexes, ce qui est nettement plus coûteux. De plus, toutes les matrices ne sont pas diagonalisables. Les méthodes basées sur l élimination d inconnues, avec combinaisons linéaires des lignes, sont les méthodes directes de référence. Lorsqu on élimine les inconnues, on aboutit finalement à un système triangulaire supérieur, que l on remonte pour calculer les coordonnées de la solution. Le processus d élimination est en fait la résolution d un système triangulaire inférieur. L algorithme s appelle la factorisation LU. Pour garantir la stabilité numérique, il est nécessaire de modifier l ordre d élimination, en appliquant ce qu on appelle une stratégie de pivot. 2 Factorisation de Cholesky On considère la décomposition de matrices symétriques et définies positives c est-à-dire telles que : x 0, x T Ax > 0 Ces matrices sont inversibles et leurs valeurs propres sont strictement positives. 2.1 Algorithme de factorisation Théorème 2.1 Factorisation de Cholesky Soit A R n n une matrice symétrique et définie positive. Alors il existe une unique matrice triangulaire inférieure L qui vérifie : A = LL T et diag(l) > 0 Preuve. On démontre le théorème par récurrence sur la dimension n de la matrice. n = 1 : le résultat est évident car alors le nombre qui représente la matrice est positif et le facteur de Cholesky est sa racine carrée. On suppose la proposition vraie pour toute matrice d ordre n 1. Soit A une matrice d ordre n que l on partitionne en blocs de la manière suivante où A R (n 1) (n 1), a R n 1, et α R : ( ) A a A = a T. α On recherche le facteur de Cholesky L partitionné de la même manière : ( ) L 0 L = l T λ 3

4 qui vérifie LL T = A ou encore L L T = A (1) L l = a (2) l 2 + λ 2 = α. (3) La matrice A étant une matrice principale de la matrice A est définie positive. On peut donc lui appliquer l hypothèse de récurrence, ce qui détermine le facteur L vérifiant l équation (1) et à diagonale positive. L équation (2) permet alors de calculer l = L 1 a. En remplaçant dans la dernière équation les quantités déjà trouvées, il reste à résoudre : λ 2 = α a T A 1 a. Il faut prouver que le terme de droite de l égalité est positif ce qui pemet de conclure que λ = α a T A 1 a. On suppose que a 0 car sinon le résultat est évident. Pour cela on étudie, pour tout vecteur u R n non nul et tout réel ρ, la quantité : ( ) ( ) τ = (u T A a u ρ) a T = αρ 2 + 2ρu T a + u T Au α ρ qui est strictement positive pour tout ρ. Le discriminant du trinôme est donc négatif : (u T a) 2 α(u T Au) < 0. Le résultat est obtenu en choisissant u = A 1 a et en remarquant que a T A 1 a > 0. L unicité et l existence de la décomposition sont donc prouvées. Proposition 2.1 L algorithme de Cholesky a une complexité en n 3 /3 + O(n 2 ). Preuve. Soit C(n) le nombre d opérations pour calculer le facteur de Cholesky d une matrice d ordre n. On obtient donc la relation de récurrence C(n + 1) = C(n) + n 2 + O(n) car la résolution du système triangulaire qui calcule l est de complexité n 2 +O(n). On en déduit que C(n) = 1/3 n 3 + O(n 2 ). Cette décomposition en blocs introduite dans la démonstration aboutit à une version par lignes, qui récursivement construit le facteur de Cholesky de dimension n à partir de celui de la matrice principale d ordre n 1. Nous décrivons maintenant deux versions par colonnes, obtenues à partir de la décomposition suivante : A = ( α a T a A ). 4

5 On recherche le facteur de Cholesky L partitionné de la même manière : ( ) λ 0 L = l L qui vérifie LL T = A ou encore λ 2 = α (4) λl = a (5) l l T + L L T = A. (6) Soit B = A l l T. Puisqu on a déjà prouvé l existence de la factorisation de Cholesky pour A, cela entraîne que l équation (6) a une solution, donc que B admet une factorisation de Cholesky. On peut aussi prouver que B est symétrique définie positive, puis par récurrence que B admet une factorisation de Cholesky, donc A aussi. Ces équations se résolvent en λ = α l = (1/λ)a B = A l l T (7) Factorisation de Cholesky de B On peut dérouler la récurrence suivant l algorithme suivant : Algorithm 1: Cholesky (Right Looking) L := triangle inférieur(a) do j = 1, n L(j, j) = L(j, j) do i = j + 1, n L(i, j) = L(i, j)/l(j, j) do k = j + 1, n do i = k, n L(i, k) = L(i, k) L(k, j) L(i, j) Cet algorithme est appelé Right Looking (ou Fan Out), car dès qu une colonne de L est prête, elle corrige toutes les colonnes suivantes. On peut aussi imaginer d organiser autrement les calculs : on retarde chaque mise à jour d une colonne au plus tard possible; ainsi une colonne de la matrice A n est considérée que lorsque toutes les précédentes de L sont construites. Cela revient à inverser dans 5

6 l algorithme 1 les boucles indicées par j et k. On obtient alors l algorithme 2 appelé Left Looking (ou Fan In). Algorithm 2: Cholesky (Left Looking) L := triangle inférieur(a) do k = 1, n do j = 1, k 1 do i = k, n L(i, k) = L(i, k) L(k, j) L(i, j) L(k, k) = L(k, k) do i = k + 1, n L(i, k) = (1/L(k, k)) L(i, k) Puisque l algorithme est composé de trois boucles emboîtées, il existe six manières de les ordonner: deux versions par lignes, deux versions par colonnes, et deux versions mixtes. Pour plus de précision, on peut consulter [4, 5]. La factorisation de Cholesky est un algorithme de la bibliothèque Lapack. Il existe une version par blocs, qui exploite des procédures de la bibliothèque BLAS3, pour augmenter l efficacité. 2.2 Résolution d un système symétrique défini positif L algorithme de résolution d un système symétrique défini positif comporte les étapes décrites ci-dessous: Factorisation de Cholesky A = LL T, Résolution du système triangulaire Ly = b (descente), Résolution du système triangulaire L T x = y (remontée). La bibliothèque utilisée et la complexité des étapes sont données ci-dessous: Factorisation de Gauss avec pivot partiel étape bibliothèque nombre d opérations factoriser A = LL T LAPACK (utilise BLAS3) n 3 /3 + O(n 2 ) résoudre Ly = b BLAS2 O(n 2 ) résoudre L T x = y BLAS2 O(n 2 ) 6

7 L algorithme a ainsi une complexité polynomiale cubique, ce qui permet de résoudre des systèmes avec plusieurs milliers d inconnues. De plus, si on résout plusieurs systèmes avec la même matrice et des seconds membres différents, on n effectue la factorisation qu une fois. On a donc une complexité cubique pour le premier système puis quadratique pour les systèmes suivants. 2.3 Stabilité numérique de Cholesky Un algorithme est stable numériquement si les erreurs d arrondi n explosent pas. On admet ici que l algorithme de Cholesky est stable. 3 Factorisation LU Dans le cas général où la matrice n est pas symétrique définie positive, l algorithme est plus compliqué. Il faut permuter les lignes ou les colonnes pour garantir l existence de la factorisation et pour assurer la stabilité numérique. Théorème 3.1 Soit A R n n une matrice inversible. Alors il existe une matrice de permutation P, une matrice L triangulaire inférieure avec L ii = 1 et une matrice triangulaire supérieure U inversible telles que P A = LU (8) L égalité (8) est appelée la factorisation de Gauss de A avec pivot partiel. Preuve. admis. Le choix de la matrice de permutation P n est pas unique; il existe plusieurs algorithmes, dits stratégies de pivot, qui sont basés sur l analyse des erreurs d arrondi. La stratégie de pivot partiel permet de garantir l existence de la factorisation et de borner les erreurs d arrondi. L idée est de choisir un pivot non nul et le plus grand possible à chaque étape du processus d élimination. 3.1 Résolution d un système linéaire L algorithme de résolution d un système linéaire, dans le cas général, comporte les étapes suivantes: Factorisation de Gauss P A = LU, Permutation c = P b, Résolution du système triangulaire Ly = c (descente), Résolution du système triangulaire U x = y (remontée). 7

8 La bibliothèque utilisée et la complexité des étapes sont données ci-dessous: Factorisation de Gauss avec pivot partiel étape bibliothèque nombre d opérations factoriser P A = LU LAPACK (utilise BLAS3) 2n 3 /3 + O(n 2 ) résoudre Ly = c BLAS2 O(n 2 ) résoudre Ux = y BLAS2 O(n 2 ) Le nombre d opérations de Gauss est environ le double de celui de Cholesky. Il faut noter que la matrice doit être non seulement symétrique, mais aussi définie positive, pour appliquer Cholesky. 3.2 Stabilité numérique de Gauss avec pivot On admet ici que l algorithme de Gauss avec pivot partiel est stable numériquement. 3.3 Factorisation par blocs La bibliothèque LAPACK utilise une partition par blocs pour la factorisation LU, afin d utiliser BLAS3. Nous décrivons ici un algorithme sans pivot, mais LAPACK inclut des stratégies de pivot. Supposons que la matrice A soit d ordre n, qu elle soit à diagonale dominante (donc l algorithme de Gauss sans pivot est possible) et qu elle soit partagée en quatre blocs: ( ) A11 A A = 12 A 21 A 22 où les blocs A 11 et A 22 sont carrés d ordres respectifs m et n m. La quantité m n représente la taille de bloc. Les m étapes de l algorithme de Gauss sont condensées en équations matricielles avec les blocs. On décompose les matrices L et U de la même manière que A: L = ( ) L11 0 L 21 L 22 et U = On écrit ensuite avec les blocs que A = LU: ( ) U11 U U 22 A 11 = L 11 U 11 (9) A 21 = L 21 U 11 (10) A 12 = L 11 U 12 (11) B = A 22 L 21 U 12 (12) B = L 22 U 22 (13) On peut alors écrire l algorithme par blocs sous forme récursive: 8

9 Algorithm 3: BlockLU(A) if dim(a) m then {On est arrivé au dernier bloc} factorisation LU de A else {On mène une étape de factorisation par bloc} définition des matrices A 11, A 12, A 21, A 22 factorisation LU de A 11 pour obtenir L 11 et U 11 résolution de n m systèmes triangulaires pour obtenir L 21 (10) résolution de n m systèmes triangulaires pour obtenir U 12 (11) mise à jour du bloc restant pour obtenir B (12) BlockLU(B) (13) endif On peut ensuite dérouler l algorithme pour en supprimer la récursivité, sans modifier le nombre d opérations. On obtient un algorithme avec trois boucles imbriquées, comme pour Cholesky. Il existe aussi six versions de l algorithme, suivant l ordre des boucles. 4 Conditionnement d un système linéaire Nous étudions la sensibilité d un système linéaire aux variations sur les données (conditionnement). Beaucoup d ouvrages traitent de ce sujet, notamment [3, 8, 7, 6, 1, 2]. Nous introduisons d emblée une définition qui va être justifiée par les résultats associés. Soit. une norme matricielle subordonnée. Définition 4.1 Le conditionnement d une matrice A pour les systèmes linéaires est donné par κ(a) = A A 1. Le conditionnement spectral de A est donné par κ 2 (A) = A 2 A 1 2 = σ 1 σ n, où σ i, i = 1,..., n sont les valeurs singulières non nulles de A. La bibliothèqe LAPACK fournit des procédures pour estimer le conditionnement d une matrice. Théorème 4.1 Soit A une matrice inversible et x la solution de Ax = b. Soit A, b tels que A α A, b β b, α κ(a) < 1. 9

10 Alors A + A est inversible. Soit x + x la solution du système alors (A + A)(x + x) = b + b, x x κ(a) (α + β). 1 ακ(a) Ce théorème correspond à la définition générale, où les données sont soit A et b (si seulement A est la donnée, alors β = 0). La preuve du théorème nécessite le lemme suivant : Lemme 4.1 Si F < 1 alors (I + F ) est inversible et (I + F ) F. Preuve. A + A = A(I + A 1 A), A 1 A κ(a)α < 1, donc d après le lemme, I + A 1 A est inversible et (I + A 1 A) ακ(a). Soit y = x + x, on a (A + A)y = b + b, Ax = b donc A(y x) = b Ay et y x A 1 ( b + A y ). or b β b β A x, d où x κ(a)(β x + α y ). Il reste à majorer y. On a A(I + A 1 A)y = A(x + A 1 b), y (I + A 1 A) 1 ( x + A 1 b ), 1 y 1 ακ(a) (1 + βκ(a)) x. 1 Par conséquent, β x + α y 1 ακ(a) (α + β) x. On en déduit que x κ(a) 1 ακ(a) (α + β) x. 4.1 Lien avec le résidu Comme pour le cas général, il est possible de faire le lien avec le résidu. Soit x la solution du système linéaire Ax = b. Nous supposons qu un algorithme de résolution calcule le vecteur y, avec un résidu r = b Ay. Corollaire 4.1 x y x κ(a) b Ay. (14) b 10

11 Il est possible d avoir un résultat plus fin en introduisant une perturbation de la matrice. Si b Ay est assez petit, alors y est solution d un système linéaire perturbé et nous déterminons la plus petite perturbation possible. Théorème 4.2 Soit Ax = b un système linéaire d ordre n et soit y R n. Soit S = {α, il existe A, b, A α A, b α b, (A+ A)y = b+ b} Soit η = Si ηκ(a) < 1 alors min α S = η. b Ay A y + b. (15) Preuve. Soit r = b Ay et soit α S. Alors (A + A)y = b + b, r = Ay b, r α( A y + b ), donc η α. Réciproquement, soit A A = η r y ryt, b = η b r r. Alors A = η A, b = η b. On a (A + A)y = b r + Ay = b r + η A y b (A + A)y = b A y + b r = b + b, donc η S. r r, Donc η est le minimum de S. En combinant les deux théorèmes sur le conditionnement et l analyse inverse, on obtient une estimation d erreur pour la solution calculée y. Corollaire 4.2 Soit x la solution du système linéaire Ax = b et soit y une solution calculée telle que ηκ(a) < 1, où η est défini par (15). Alors x y x κ(a) 2 1 ηκ(a) η (16) Le calcul de r puis η et une estimation du conditionnement κ(a) permettent donc d estimer une borne de l erreur sur la solution. 4.2 Résidu itératif References [1] F. Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM,

12 [2] J. Erhel. Vitesse et précision en calcul scientifique. habilitation à diriger des recherches, Université de Rennes 1, Juin [3] G.H Golub and C.F Van Loan. Matrix Computations. third edition. John Hopkins, [4] M. Hahad, J. Erhel, and T. Priol. Factorisation parallèle de Cholesky pour matrices creuses sur une mémoirevirtuelle partagée. Rapport de recherche 1988, INRIA, [5] M. Hahad, J. Erhel, and T. Priol. Scheduling strategies for sparse cholesky factorization on a shared virtual memory parallel computer. In International Conference on Parallel Processing (3), pages , [6] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, [7] P. Lascaux and R. Theodor. Analyse numérique matricielle appliquée à l art de l ingénieur, Tomes 1et 2. Masson, [8] G. W. Stewart and Ji-guang Sun. Matrix perturbation theory. Academic Press,

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques : MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Les codes linéaires - Chapitre 6 - Principe Définition d un code linéaire Soient p un nombre premier et s est un entier positif. Il existe un unique corps de taille q

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Sommaire. Mathématiques assistées par ordinateur

Sommaire. Mathématiques assistées par ordinateur Sommaire Mathématiques assistées par ordinateur Chapitre 9 : Calcul matriciel et algèbre linéaire Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourierujf-grenoblefr/ eiserm/cours # mao Document

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Séquence 1. Matrices - Applications

Séquence 1. Matrices - Applications Séquence 1 Matrices - Applications Sommaire 1. Pré-requis 2. Notion de matrice Addition-Multiplication par un réel 3. Multiplication de matrices 4. Applications 5. Synthèse de la séquence 6. Exercices

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

XI- Division euclidienne, pgcd et algorithme d Euclide

XI- Division euclidienne, pgcd et algorithme d Euclide XI- Division euclidienne, pgcd et algorithme d Euclide L arithmétique consiste à travailler exclusivement avec des nombres entiers. Quand on additionne deux nombres entiers, on obtient un nombre entier,

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER 1. Euclide, relation de Bézout, gcd Exercice 1. [DKM94,.14] Montrer que 6 n 3 n our tout entier n ositif. Exercice 2. [DKM94,.15]

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Calculer avec Sage. Revision : 417 du 1 er juillet 2010

Calculer avec Sage. Revision : 417 du 1 er juillet 2010 Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Manipulateurs Pleinement Parallèles

Manipulateurs Pleinement Parallèles Séparation des Solutions aux Modèles Géométriques Direct et Inverse pour les Manipulateurs Pleinement Parallèles Chablat Damien, Wenger Philippe Institut de Recherche en Communications et Cybernétique

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe des n n groupes quantiques compacts qui ont la théorie

Plus en détail