Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Dimension: px
Commencer à balayer dès la page:

Download "Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument"

Transcription

1 Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i = + i 3. Pour mettre sous forme trigonométrique, on met le module en facteur : Z = + 3 =, d où Z = 3 + = e iπ/3. Pour calculer Z 3, on utilise cette dernière forme et il vient Z 3 = 3 e 3iπ/3 = 8. Exercice - - L/Math Sup - On a, en factorisant par l angle moitié et en utilisant les formules d Euler, + e iθ = cosθ/e iθ/. On en déduit que + z = cosθ/ > 0 car θ/ ]0, π/[, puis qu un argument de + z est θ/. Pour l autre complexe, on commence par transformer son écriture en remarquant qu il s agit du début d une somme géométrique. Puisque e iθ, on a + z + z = z3 z = e3iθ e iθ. En raisonnant comme précédemment, on trouve + z + z = e3iθ/ i sin3θ/ e iθ/ i sinθ/ = sin3θ/ sinθ/ eiθ. Il faut maintenant faire attention aux signes! Si θ ]0, π/3[, alors sin3θ// sinθ/ > 0, et donc le module de + z + z est bien, son argument est θ. sin3θ/ sinθ/ Si θ = π/3, + z + z = 0, de module nul et d argument non défini. Si θ ]π/3, π[, alors sin3θ// sinθ/ < 0, et donc on doit écrire + z + z = sin3θ/ sinθ/ eiθ = sin3θ/ sinθ/ eiθ+π. Le module dans ce cas est donc sin3θ/ sinθ/, et l argument, modulo π, est θ + π.

2 Exercice L/Math Sup - On commence par passer par la forme trigonométrique : + i 3 = + i 3 i On en déduit que + i 3 i i = eiπ/3 e iπ/4 = e i7π/. 0 = 0 e i 40π = 0 e i 70π 6 = 0 e i 5π 3 = 9 i 3. Exercice L/Math Sup - On commence par écrire + i 3 sous forme trigonométrique : En prenant la puissance n-ième, on trouve + i 3 = e iπ/3. + i 3 n = n e inπ/3. Ceci est un réel positif si et seulement si sinnπ/3 = 0 et cosnπ/3 0. Or, sinnπ/3 = 0 si et seulement si n = 3k, k Z. Mais, pour ces valeurs de n, on a cosnπ/3 = coskπ, et ceci est positif si et seulement si k est pair. Ainsi, les entiers qui conviennent sont les multiples de 6. Exercice L/Math Sup - On écrit z = e iθ, z = e iθ et on utilise les formules d Euler en mettant en facteur e i θ+θ en facteur au numérateur et au dénominateur. Il vient z + z + zz = eiθ + e iθ + e iθ+θ On obtient bien un nombre réel, de module θ θ ei + e = e i θ+θ + e = cos θ θ. cos cos θ+θ θ θ cos θ+θ. θ θ i θ+θ i Exercice L/Math Sup - On peut faire un raisonnement algébrique, en posant z = x+iy et en calculant effectivement les deux modules. Voici un raisonnement plus géométrique. Soit A le point d affixe i, B le point d affixe i, et M le point d affixe z. Alors z i est la longueur AM, z + i est la longueur BM, et la condition recherchée est AM = BM, c est-à-dire M est sur la médiatrice de [AB], soit encore M sur l axe réel, soit z réel.

3 Exercice L/Math Sup - De z = z, on tire que z =, donc que z =, c est-à-dire que z = e iθ, où θ [0, π[. Calculons maintenant le module de z. On écrit z = e iθ = e iθ/ e iθ/ e iθ/ = i sinθ/e iθ/. Le module de z vaut donc si et seulement si sinθ/ = /. L équation sinθ/ = /, avec θ [0, π[ donne θ = π/3 ou θ = 5π/3. L équation sinθ/ = / avec θ [0, π[ n a pas de solutions. L ensemble des solutions est donc {e iπ/3, e iπ/3 }. Exercice 8 - Automorphisme du disque - L/Math Sup -. Il suffit de développer les modules au carré. Précisément, on a : z a āz = āz z a āz = āz a z a z z a + āz + a z āz = a z z a āz = a z āz.. On commence par remarquer que : z a āz z a āz. Ensuite, on a d après la question précédente z a āz = a z āz. Ainsi, on a l équivalence : z a āz a z āz 0. Or, a 0 et āz 0. On a donc la propriété voulue si et seulement si z 0 z. Exercice 9 - Homographie - L/Math Sup - Supposons d abord que z =. Alors z s écrit z = e iθ, avec θ R\πZ. On peut alors écrire : + z z = + eiθ e iθ = eiθ/ e iθ/ + e iθ/ e iθ/ e iθ/ e iθ/ = cosθ/ i sinθ/ = icosθ/ sinθ/ qui est bien un élément de ir. Remarquons que l on a le droit d effectuer ce calcul car sinθ/ ne s annule pas. 3

4 Réciproquement, supposons que +z z = ia, avec a un réel. On va exprimer z en fonction de a, puis calculer son module. Il vient : + z z On en déduit que = ia + z = ia z z + ia = + ia z = + ia + ia. ce qui prouve la réciproque. + ia + a + ia = =, + a Exercice 0 - Somme et différence - L/Math Sup - L idée est de passer au carré, et de développer. z + z = z z z + z = z z z + z + Rezz = z + z Rezz. En simplifiant par les termes égaux, ceci est donc équivalent à Rezz = 0. Or, zz = ρρ e iθ θ. Ceci a une partie réelle nulle si et seulement si cosθ θ = 0, c est-à-dire si et seulement si θ = θ + π [π]. Exercice - Égalité dans l inégalité triangulaire - L/Math Sup - On va prouver que la propriété est vraie si et seulement s il existe des réels positifs λ i tels que z i = λ i z. Un sens est facile. En effet, si z i = λ i z, alors z + + z n = z + λ + + λ n = z + λ z + + λ n z = z + + z n. Réciproquement, on va prouver par récurrence sur n que si z + + z n = z + + z n, alors il existe des réels positifs λ i, i n tels que z i = λ i z. On commence par traiter le cas n =, et on suppose que z + z = z + z. Notons u = z /z. Alors on a + u = + u, et en écrivant u = x + iy, on obtient + u = + x + y = + u + x et + u = + u + u. On a donc x = u, ce qui entraine que y = 0 et que u est un réel positif. Le cas n = est donc prouvé. Supposons maintenant la propriété prouvée au rang n et prouvons-la au rang n. On commence par remarquer que z + + z n = z + + z n. En effet, si on avait z + + z n < z + + z n, on aurait aussi z + + z n z + + z n + z n < z + + z n + z n, ce qui contredit l hypothèse initiale. Par hypothèse de récurrence, on sait que pour i {,..., n }, il existe λ i > 0 tel que z i = λ i z. Mais alors il vient z + + z n = + + λ n z + z n = + + λ n z + z n. On applique alors le cas n =, et on trouve que z n = µ n + + λ n z avec µ n > 0. On a le résultat voulu, quitte à poser λ n = µ n + + λ n. 4

5 Equations et racines n-ièmes Exercice - Exponentielle - L/Math Sup - Posons z = a + ib, a, b R. Alors e z = e a e ib. Ceci nous incite à mettre 3 3 3i sous forme trigonométrique. On obtient 3 3 3i = = 6. Il vient 3 3 3i = 6 3 i = 6e iπ/6. On obtient alors exp a = 6 et b = iπ/6 + kπ, k Z. Les solutions de l équation sont donc les nombres complexes ln6 + i π 6 + kπ, k Z. Exercice 3 - Racine carrée d un nombre complexe - L/Math Sup - La méthode est toujours la même. On pose z = a + ib, de sorte que z = a b + iab. L équation z = 3 + 4i est donc équivalente à { a b = 3 ab = 4 On peut ajouter une troisième équation en remarquant que z = 3 + 4i a + b = = 5. On trouve alors a = 8, soit a = ± et b =, soit b = ±. L équation ab = 4 oblige a et b à avoir même signe, et donc les deux solutions sont + i et i. Pour l équation z = 8 6i, on peut suivre une méthode exactement identique, et les solutions sont cette fois 3 i et 3 + i. Exercice 4 - Racine carré de deux façons - L/Math Sup - Soit w = a + ib tel que w = Z. On obtient le système Il vient a = a b = 3 ab = a + b = 3 + i[=. 3+ et b = 3. Puisque a et b ont le même signe, les solutions sont donc w = + i 3 et w = Pour la résolution sous forme trigonométrique, on remarque que 3 Z = + i = e iπ/6. Les racines carrées de Z sont donc w = e iπ/ et w = e iπ/. i 3. 5

6 Comme les deux calculs donnent le même résultat, en identifiant les parties réelles, on trouve : 3 π + cos =, d où on tire : 3 π cos = =. 4 Exercice 5 - Équations du second degré - L/Math Sup -. Le discriminant de cette équation du second degré vaut : = i 4 + i = 8i. Une racine carré de est donnée par δ = i e iπ/4 = + i. En appliquant les formules du cours, on trouve que les racines sont : i + i = + i et i + i =.. Le discriminant de cette équation du second degré est : = 4i 3 4ii 5 = 4i 3. On en cherche une racine carrée sous la forme δ = a + ib. Calculant δ, et utilisant aussi la relation δ = 4i 3 = 5, on trouve le système : a b = 3 ab = 4 a + b = 5 On en déduit que δ = i est solution de δ = l autre solution est + i. Utilisant les formules du cours, les racines de l équation initiale sont donc : 4i i i = 3 i et 4i i i = i. 3. Le discriminant de cette équation vaut 7 + i 4 + 3i = i. Une racine carré de ce discriminant est + i. Les racines de l équation sont donc : 7 + i i = 3 et 7 + i + + i = 4 + i. Exercice 6 - Racines n-ièmes - L/Math Sup - C est du cours! 6

7 . On a i = e iπ/, et donc z 5 = i = e iπ/ on obtient 5 racines distinctes pour k = 0,..., 4.. On a On en déduit que Finalement, 3. On a z 6 = z = e ikπ 5 iπ 0, k Z; + i 3 3 = + i = e iπ/ i 3 = e iπ/3 = e iπ/ i 3 z = /6 e ikπ 3 + π 9, k Z. + i i = 4 L équation qu on doit résoudre est donc : z 5 = 3 e i 5π i 3 + i π 3 4 = 3 ei e i π 4. z 5 =. 3/5 e iπ/6 On en déduit que les solutions sont les complexes de la forme z = 3/5 e i π 6 + ikπ 5, k Z. Exercice 7 - Qui se ramènent aux puissances... - L/Math Sup -. n est pas solution, et l équation est donc équivalente à z + 5 =. z Posons w = z+ w+ z, c est-à-dire z = w. On a w5 = si et seulement s il existe k {0,..., 4} tel que w = e ikπ/5. On a donc z = eikπ/5 + e ikπ/5. On peut encore simplifier en utilisant les formules d Euler : De même, on trouve exp ikπ 5 + = exp ikπ 5 + exp 0 = exp ikπ 5 exp ikπ 5 = exp ikπ 5 coskπ/5. kπ exp 5 = i exp + exp ikπ 5 ikπ sinkπ/5. 5 L ensemble des solutions est donc { icotankπ/5; k = 0,..., 4}. 7

8 . Puisque z = z, on a z n = et donc z =. On peut donc poser z = e iθ et l équation devient e inθ = e iθ e in+θ = θ = ikπ/n +, k {0,..., n }. 3. Posons w = z+ z. L équation devient w3 + w 3 e iπ/6+kπ/3, k = 0,..., 5. = 0, soit w 6 = = e iπ. Ses racines sont On retrouve alors z car z = w+ w. Pour k = ou k = 4, on trouve z = ±i. Pour les autres valeurs de k, on trouve z = ±i ± Remarquons que z = n est pas racine de l équation. On reconnait alors le début de la somme géométrique de raison z. L équation est donc équivalente à z 5 + z = 0 z 5 = = e iπ. Les solutions sont donc les complexes de la forme e i +kπ 5, k = 0,..., On commence par écrire : + z + + z n + z n = + z + + z n + z + + z n. On reconnait deux sommes géométriques de raison z. Comme z = n est pas solution de l équation, celle-ci est équivalente à z n z + z zn+ z = 0 z n + z z n+ = 0 + z z n = 0. Les solutions sont donc z = et les racines n-ièmes de l unité, excepté. Autrement dit, et e ikπ/n, k =,..., n. 6. Remarquons d abord que z = i n est pas solution de l équation. Ainsi, l équation est équivalente à z + i n =. z i Ceci est équivalent à dire qu il existe k {0,..., n } tel que z + i z i = ω k, en notant ω k = e ikπ/n. Pour k = 0, ω k = et l équation z+i z i Sinon, pour k =,..., n, on obtient les solutions = n a pas de solutions. z k = i ω k + ω k. Exercice 8 - Degré plus grand! - L/Math Sup - 8

9 . On commence par poser u = z 4, et l équation devient iu +iu++i = 0. Son discriminant est = 4i + i = 3 4i. On cherche une racine carrée δ de en posant δ = a + ib, en utilisant δ = et δ = = 5, et on trouve qu une des deux racines est δ = i. Les racines de l équation iu + iu + = 0 sont donc les complexes u = i + i i = i et u = i + i i = i. Reste à résoudre les équations z 4 = u et z 4 = u. Pour cela, on pose z = re iθ et on remarque que u = e iπ/ et que u = e i5π/4. On en déduit z 4 = e iπ/ z = e iπ/8+kπ/, k = 0,..., 3; z 4 = e i5π/4 z = /8 e i5π/6+kπ/, k = 0,..., 3.. Soit x une racine réelle, ie 4ix 3 ++3ix 5+4ix+3 7i = 0. Partie réelle et partie imaginaire du membre de gauche doivent être nulles, on obtient donc après identification : { x 5x + 3 = 0 4x 3 + 6x 4x = 0. Il est facile de résoudre la première équation et de vérifier si on obtient une racine de l autre équation. On trouve que 3/ est racine. On factorise alors le polynôme par z 3/, et on trouve par exemple en procédant par identification : 4iz iz 5 + 4iz + 3 7i = z 3/ 4iz + + 6iz + + 7i. Reste à résoudre ensuite l équation : dont les solutions sont + 3 i et i. 4iz + + 6iz + + 7i = 0 Exercice 9 - Somme et puissances de racines n-iemes - L/Math Sup -. Les racines n-ièmes de l unité sont les complexes ω k, avec k = 0,..., n. Leur produit vaut donc : n ω k n = ω k = ω nn / = e iπn = n résultat qu on vérifie facilement pour n =,, 3, 4.. On a ici une somme géométrique de raison ω p. Si p est un multiple de n, la raison est donc égale à, et la somme fait n. Sinon, on a puisque ω n =. n ω kp = ωnp ω = 0 9

10 3. On développe la puissance à l intérieur de la somme en utilisant la formule du binôme de Newton, et on trouve : n + ω k n = = n n n ω kj p p=0 n n On utilise le résultat de la question précédente, qui nous dit que la somme n ωkp sera non-nulle si et seulement si p = 0 ou n, auquel la cas la somme fait n. Puisque n+n = n, on obtient le résultat attendu. Application au calcul de sommes et à la trigonométrie p=0 n p ω kp. Exercice 0 - Linéariser - L/Math Sup - On écrit : e cos 5 ix + e ix 5 x = = e 5ix + 5e i3x + 0e ix + 0e ix + 5e i3x + e i5x 3 Le même raisonnement donne = 6 cos5x + 5 cos3x + 0 cos x. Pour la dernière expression, on procède ainsi : cos x sin 3 x = sin 5 x = 6 sin5x 5 sin3x + 0 sinx. e ix + e ix e ix e ix i 3 = eix + + e ix e3ix 3e ix + 3e ix e 3ix 4 8i = e5ix e 3ix e ix + e ix + e 3ix e 5ix = 3i i sin5x i sin3x 4i sinx 3i = 6 sin5x + 6 sin3x + 8 sinx. Exercice - Sommes trigonométriques - L/Math Sup - 0

11 . On a : n n n n cosx + ky = R e ix e iky k k n = R e ix n e iy k n k k = R e ix + e iy n = R e ix e iny/ e iy/ + e iy/ n = R e ix+ny/ cosy/ n = n cosx + ny/ cos n y/.. On utilise S + it qui se calcule comme une somme géométrique : On distingue deux cas : Si x = 0 [π], alors eix Si x 0 [π], alors cos x S + it = n e ikx n cos x k = e ix cos x k. =, et S + it = n +. On en déduit S = n + et T = 0. n+ S + it = eix cos x eix cos x = cos x n cos xn+ e ixn+ cos x e ix = cos x n cosn+ x cos n + x i sin n + x i sinx = sin n + x icosn+ cos n x sinx + x cos n + x cos n. x sin x On en déduit S = sin n + x cos n x sinx et T = cosn+ x cos n + x cos n. x sin x 3. D n est une somme géométrique, de premier terme e inx et de raison e ix. On obtient donc D n = e inx + e in+x/ e ix = eix/ e ix/ e in+/x e in+/x e ix/ e ix/. On en déduit que D n = sin n + x. sinx/ Pour calculer K n, une méthode légèrement différente de celle de la question précédente est d écrire que sin n + x = Im e in+/x, puis d utiliser une somme géométrique.

12 On a en effet : K n = = = = n sinx/ Im e ik+/x n sinx/ Im e ix/ e ikx sinx/ Im sinx/ Im = sin n + x/ sin. x/ ix/ ein+x/ e e ix e ix/ ein+x/ sinn + x/ e ix/ sinx/ Exercice - Somme de modules - L/Math Sup - Soit k {0, n } et soit ω k = e ikπ/n. Alors ω k = e ikπ/n e i0 = sinkπ/n en factorisant par l angle moitié. De plus, pour k {0,..., n }, kπ/n [0, π] et le sinus est positif. On en déduit z U n z = n = Im sinkπ/n n e ikπ/n = 4Im e iπ/n = 4Im i sinπ/ne iπ/n ie iπ/n = Im sinπ/n = cosπ/n sinπ/n. Exercice 3 - Calcul d un cosinus - L/Math Sup - La somme des racines 5 ièmes de l unité est nulle. On a donc Or, + e iπ/5 + e i4π/5 + e i6π/5 + e i8π/5 = 0. e i8π/5 = e iπ/5 et e 4iπ/5 = e 6iπ/5. Utilisant les formules d Euler, on en déduit que + cosπ/5 + cos4π/5 = 0.

13 Or, ce qui donne cos4π/5 = cos π/5, 4 cos π/5 + cosπ/5 = 0. cosπ/5 est donc une racine de l équation 4X + X = 0. Le discriminant de ce polynôme du second degré est = 0, et ses racines sont x = 5 4 Puisque cosπ/5 > 0, on en déduit que et x = cosπ/5 = Exercice 4 - Un calcul d intégrale - L/Math Sup - On linéarise les fonctions trigonométriques à l aide des nombres complexes : e cos 4 t sin it + e it 4 e it e it t = i = 6 e i4t + 4e it e it + e i4t e it + e it On en déduit : π/ 0 = 6 e i6t + e i4t + e it 4 + e it + e i4t + e i6t = cos6t + cos4t + cost. 5 cos 4 t sin t = 5 = π 3. π 0 cos 6t + cos 4t + cos t dt Nombres complexes et géométrie Exercice 5 - Similitude - L/Math Sup - L application de la forme z az +b est une similitude directe. Cherchons son centre qui est le point invariant, c est-à-dire le point vérifiant z = + i 3z + 3 i. On trouve z = + i, le centre de la similitude est donc le point A,. On a de plus + i 3 3 = + i = e iπ/3. Le rapport de la similitude est donc égal à, et l angle à π/3. Exercice 6 - Lieux géométriques - L/Math Sup - 3

14 . Factorisons par + i dans le module. On trouve : + i z i + i =. Puisque + i = et i +i = + i, ceci est équivalent à z + i =. Ainsi, l ensemble des points M correspondants est le cercle de centre le point A, et de rayon.. On sait que les points I, M et M sont alignés si et seulement si IM, IM = 0[π] ou M = I ou M = I. En termes de nombres complexes, ceci se traduit par iz i arg = 0 [π] ou z = i ou iz = i. z i Introduisons le point A d affixe. Alors, ceci devient π z + arg = 0 [π] ou M = I ou M = A z i IM, AM = π [π] ou M = I ou M = A IM AM ou M = I ou M = A. Les points M solutions sont donc les points du cercle de diamètre [AI]. Puisque M est image de M par rotation de centre O et d angle π/, les points M correspondants sont sur l image de ce cercle par cette rotation. 3. Notons A d affixe et I d affixe i. La question s écrit encore z z i = ia, avec a R, c est-à-dire que les vecteurs AM et IM sont orthogonaux. Autrement dit, la condition est vérifiée si et seulement si M appartient au cercle de diamètre [AI], excepté I on doit avoir z i pour définir le quotient. 4. On va d abord supposer que z 0,, pour que les trois points M, P, Q soient distincts et qu on soit sûr d avoir affaire à un vrai triangle. On va utiliser la condition suivante : soit Aa, Bb et Cc. Les droites AB et AC sont perpendiculaires si et seulement si m R, On distingue alors trois cas : c a c a b a = mi Re = 0. b a 4

15 a le triangle est rectangle en M. Ceci est équivalent à z 3 z Re z = 0 Rez + = 0 Rez =. z Les points M solutions sont alors ceux de la droite d équation x =. b le triangle est rectangle en P. Ceci est équivalent à z 3 z Re z z = 0 Rez = 0. Les points M solutions sont alors ceux de la droite d équation x = 0. c le triangle est rectangle en Q. Ceci est équivalent à z z 3 z + Re z z 3 = 0 Re = 0. z Notons D d affixe - et O d affixe 0. On obtient que les droites DM et OM sont orthogonales, c est-à-dire que M décrit le cercle de diamètre [OD]. Exercice 7 - Points à coordonnées entières - L/Math Sup - On note a = x + iy et b = x + iy les affixes respectives de A et B. Par hypothèse, x, x, y et y sont des entiers. Puisque ABCD est un carré, D est l image de B par la rotation de centre A et d angle π/. Traduit en termes de nombres complexes, si d est l affixe de D, ceci signifie que d a = ib a = d = a + ib a = x + iy + i x x + iy y = x + y y + iy + x x. Ainsi, les coordonnées de D sont bien des entiers. Pour prouver que les coordonnées de C sont des entiers, on procède de la même façon, en utilisant cette fois le fait que C est l image de A dans la rotation de centre D et d angle π/. Imaginons maintenant que ABC soit un triangle équilatéral dont les trois sommets sont à coordonnées entières, et gardons les notations précédentes. Alors, C, d affixe c = x + iy est l image de B par la rotation de centre A et d angle π/3. Autrement dit, 3 x c a = e iπ/3 b a = c = x + iy + + i x + iy y. On développe, et après calcul, on trouve que c = x + x x 3y y + i y + y y 3x x +. Pour que la partie réelle de c soit un entier, il est nécessaire que y = y et pour que la partie imaginaire de c soit nulle, il est nécessaire que x = x. Finalement, ceci entraine A = B, c est-à-dire que le triangle est réduit à un point! Exercice 8 - Triangle équilatéral - L/Math Sup - 5

16 . C est l image de B par la rotation de centre A et d angle π/3. On a donc c a b a = eiπ/3 = j c a + j b j a = 0. Or, + j = j et en multipliant par j, on obtient le résultat voulu.. Quitte à échanger les rôles de B et C, on peut toujours supposer que le triangle est direct, c est-à-dire que l angle AB, AC est dans ]0, π[. Notons AC B, BA C et CB A les triangles équilatéraux directs obtenus. Soient aussi a, b, c les affixes respectives de A, B et C. Alors, par la question précédente, on a les 3 équations : a + jc + j b = 0 b + ja + j c = 0 c + jb + j a = 0. Soit E, F, G les centres de gravité respectifs de AC B, BAC et CB A, d affixe respectives e = 3 a + c + b, f = 3 b + a + c et g = 3 c + b + a. D après la question précédente, il suffit de prouver que e + jf + j g = 0. Or, 3e + jf + j g = a + c + b + jb + ja + jc + j c + j b + j a. Or, c = j a b, ja = b j c et j b = jc a, ce qui prouve bien que e+jf +j g = 0. Le triangle EF G est équilatéral direct. Exercice 9 - Triangle équilatéral - L/Math Sup - Le triangle est équilatéral si et seulement si c est-à-dire si et seulement si z 3 z = e iπ/3 z z ou z 3 z = e iπ/3 z z, z 3 + e iπ/3 z e iπ/3 = 0 ou z 3 + e iπ/3 z e iπ/3 = 0. Ceci est encore équivalent à dire que le produit de ces deux quantités est nul, c est-à-dire à z 3 + e iπ/3 z e iπ/3 z z 3 + e iπ/3 z e iπ/3 z = 0. En développant ce produit, on trouve exactement la condition demandée. Exercice 30 - A partir des racines n-ièmes - L/Math Sup - Posons a = e iθ. Alors les racines de z n = sont données par z k = e ikπ+θ/n, k = 0,..., n. Factorisant par l angle moitié et utilisant les formules d Euler, on a kπ + θ + z k = cos e ikπ+θ/n n soit kπ + θ kπ + θ + z k n = n cos n e ikπ+θ/ = n cos n e ikπ+θ/. n n Tous les points d affixe + z k n sont donc situés sur la droite qui fait un angle θ/ avec l axe des abscisses. 6

17 Exercice 3 - Alignement de puissances - L/Math Sup - On commence par étudier les cas où deux de ces points sont confondus. L équation z = z a pour solution z = et z = 0. L équation z = z 4 a pour solutions z = 0 et z =, j, j. L équation z = z 4 a pour solutions z = 0, i, i. On suppose désormais que z est différent des nombres précédemment trouvés, et on remarque que les points sont alignés si et seulement si z 4 z arg z = 0 [π] z4 z z z z R. Or, en notant z = x + iy, on a z 4 z z z = zz z + z + = z + z + = x y + x + + iyx +. zz Ainsi, on en déduit que, dans ce cas, les points z, z et z 4 sont alignés si et seulement si y = 0 ou x = /, c est-à-dire si et seulement si z est réel ou sa partie réelle vaut /. 7

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Fiche 17 Nombres complexes

Fiche 17 Nombres complexes Fiche 7 Nombres complexes Objectifs : Connaître les différentes définitions Savoir passer d une notation à l autre Savoir simplifier des nombres et effectuer les opérations élémentaires. Définitions On

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Méthodes Mathématiques pour l Ingénieur, Istil 1ère année Corrigé de la feuille 4 1 Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 4 1 appel : formule des ésidus Soit F

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Exercices : Nombres complexes

Exercices : Nombres complexes Exercices : Nombres complexes Exercice Calculer le module et un argument des nombres complexes suivants: z = i, z = e iθ + e iθ, z = i ( + i) Exercice Soit z le complexe défini par. Mettre z sous forme

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

Cours de mathématiques. Chapitre 9 : Nombres complexes

Cours de mathématiques. Chapitre 9 : Nombres complexes Cours de mathématiques Terminale S1 Chapitre 9 : Nombres complexes Année scolaire 2008-2009 mise à jour 15 février 2009 Fig. 1 Gerolamo Cardano Médecin et mathématicien italien qui ne redoutait pas les

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Séquence 6 Ensemble des nombres complexes Sommaire Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Cette séquence est une brève introduction à un nouvel ensemble de nombres, ensemble

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

Annexe D: Les nombres complexes

Annexe D: Les nombres complexes Annexe D: Les nombres complexes L'équation t + 1 = 0 n'a pas de solution dans les nombres réels. Pourtant, vous verrez lors de vos études qu'il est très pratique de pouvoir résoudre des équations de ce

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Cours polycopié pour le module L1 SFA Mathématiques I Analyse

Cours polycopié pour le module L1 SFA Mathématiques I Analyse i Cours polycopié pour le module L1 SFA Mathématiques I Analyse [60h de cours/td] À propos de ce module Programme prévu : nombres complexes, polynômes, fractions rationnelles, fonctions réelles usuelles

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

NOMBRES COMPLEXES (Partie 3)

NOMBRES COMPLEXES (Partie 3) NOMBRES COMPLEXES (Partie 3) 1 Dans tout le chapitre, on munit le plan d'un repère orthonormé direct ( O; u! ; v! ). I. Forme exponentielle d un nombre complexe 1) Définition Posons f (θ) = cosθ + isinθ.

Plus en détail

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i NOMBRES COMPLEXES 1 Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i z = 1 i z = 1 + i z 4 = 1 + i 1 i Calculer les nombres complexes suivants : w 1 = (1 + i) 1 w = ( 1 + i

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes Chapitre Nombres complexes Sommaire I Écriture algébrique........................................... 11 1) L ensemble des complexes................................... 11 ) Partie réelle, partie imaginaire.................................

Plus en détail

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre.

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre. 1A 010-011 LES COMPLEXES Objectifs Connaître les diérentes formes d'un nombre complexe. Savoir résoudre une équation complexe. Savoir linéariser un sinus ou un cosinus. Dénition 1. On note C l'ensemble

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

Révisions Maths Terminale S - Cours

Révisions Maths Terminale S - Cours Révisions Maths Terminale S - Cours M. CHATEAU David 24/09/2009 Résumé Les résultats demandés ici sont à connaître parfaitement. Le nombre de réponses attendues est parfois indiqué entre parenthèses. Les

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin 1, Olivier Hervé 2 Dernière révision : 22 mai 2008 Document diffusé via le site www.bacamaths.net de Gilles Costantini

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3.

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3. BCPST. Année 00-0 Lycée Pierre de Fermat Toulouse Fiche n o Nombres complexes Exercice. On considère les nombres complexes a = + i et b = 3 i. a Déterminer la forme trigonométrique de a, b, et de ab. b

Plus en détail

.:: Module Mathématiques I : Algèbre ::.

.:: Module Mathématiques I : Algèbre ::. Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc.:: Module Mathématiques I : Algèbre ::. Filière : Sciences de

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Argument d un nombre complexe

Argument d un nombre complexe Argument d un nombre complexe Dans ce chapître, nous allons introduire les éléments indispensables à la résolution de notre grand problème : montrer la clôture algébrique de C, c està-dire le fait que

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Université Joseph Fourier, Grenoble. Calcul Algébrique. Eric Dumas, Emmanuel Peyre, Bernard Ycart

Université Joseph Fourier, Grenoble. Calcul Algébrique. Eric Dumas, Emmanuel Peyre, Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Calcul Algébrique Eric Dumas, Emmanuel Peyre, Bernard Ycart Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables

Plus en détail

Cours d analyse L1S1P. Analyse L1S1 P

Cours d analyse L1S1P. Analyse L1S1 P Cours d analyse L1S1P 017 Objectifs : 1 Apprendre à calculer avec des formules : domaines de définition, dérivées primitives développements limités Se désinhiber face auxdites formules. À la fin de ce

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois.

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Mathématiques Exercices incontournables MPSI PCSI PTSI Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Jérôme Poineau polytechnicien,

Plus en détail

1 Forme cartésienne, forme polaire

1 Forme cartésienne, forme polaire AMU 015-016 Licence MI 1ère année-s1 GÉOMÉTRIE ET ARITHMÉTIQUE Planche : Nombres complexes 1 Forme cartésienne, forme polaire EXERCICE 1 ( 3+6i Mettre sous la forme a+ib (a,b R) les nombres : 3 4i, 1+i

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

Exercices 2. Trigonométrie et nombres complexes... Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques.

Exercices 2. Trigonométrie et nombres complexes... Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques. Exercices Trigonométrie et nombres complexes Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques. Trigonométrie et nombres complexes....................................................

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2 Maths PCSI Cours Table des matières Corps des complexes 1 Calculs dans C 1.1 Le corps C............................................... 1. Module, conjugaison......................................... 1.3

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 11 septembre 2006 2 Chapitre 1 Rappels sur les nombres complexes Dans ces notes de cours, on travaillera essentiellement à l aide de nombres réels, dont les propriétés

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Nombres complexes - Partie 2

Nombres complexes - Partie 2 Chapitre F Nombres complexes - Partie 2 Contenus Capacités attendues Commentaires Forme trigonométrique : module et argument, interprétation géométrique dans un repère orthonormé direct ; notation exponentielle.

Plus en détail

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Nombres complexes I Trigonométrie Exercice 1. 1. Déterminer les valeurs exactes de cos π, sin π et tan π (on pourra utiliser les 12 12 12 valeurs connues

Plus en détail

Fiche d exercices 8 : Nombres complexes

Fiche d exercices 8 : Nombres complexes Fiche d exercices 8 : Nombres complexes Ecriture algébrique Exercice 1 1. Donner l écriture algébrique des nombres complexes ci-dessous : i a. z = 1+ 1 + i 1 b. z = c. z3 = i 1 i + i. On considère les

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

Module : Algèbre 1 (S1)

Module : Algèbre 1 (S1) Université Mohammed V Faculté des Sciences-Rabat Département de Mathématiques ---------------------------------------------------------------------------------------------------------------------- Module

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques MPSI-2 Lycée Fermat Alain Soyeur Table des matières 1 Raisonnement, ensembles 7 1.1 Logique................................................... 7 1.2 Ensembles.................................................

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

1.1.1.1 La construction algébrique de C et correspondance géométrique

1.1.1.1 La construction algébrique de C et correspondance géométrique Chapitre 1 Nombres Complexes 1.1 Le Corps C des complexes 1.1.1 Ecriture algébrique et correspondance Géométrique 1.1.1.1 La construction algébrique de C et correspondance géométrique Il y a plusieurs

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail