Développements limités usuels en 0

Dimension: px
Commencer à balayer dès la page:

Download "Développements limités usuels en 0"

Transcription

1 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n + )! + O ( x n+3) = x! + x4 xn + + ( )n 4! (n)! + O ( x n+) ( + x) α = + αx + x α(α )! x + + = + x + x + x x n + O ( x n+) α(α ) (α n + ) n! ln( x) = x x x3 3 x4 4 xn n + O ( x n+) + x ln( + x) = + x = x + x x ( ) n x n + O ( x n+) x x + x3 3 x4 xn + + ( )n 4 n + O ( x n+) x = + x 8 x n + O ( x n+) 3 (n 3) + + ( )n x n + O ( x n+) 4 n = x + x x + ( ) n 3 (n ) x n + O ( x n+) 4 n Arctan x = x x ( )n xn+ n + + O ( x n+3) Argth x = x + x xn+ n + + O ( x n+3) Arcsin x = x + x 3 3 Argsh x = x x 3 3 th x (n ) 4 n x n+ + + ( )n 3 (n ) 4 n = x x x x7 + O ( x 9) tan x = x + 3 x3 + 5 x x7 + O ( x 9) n + + O ( x n+3) x n+ n + + O ( x n+3)

2 Développements en série entière usuels e ax = a n n! xn a C, x sh x = (n + )! xn+ x ch x = (n)! xn x sin x = ( ) n (n + )! xn+ x cos x = ( ) n (n)! ( + x) α = + a x n= x n α(α ) (α n + ) n! x x n (α ) x ] ; [ = a n+ xn (a C ) x ] a ; a [ = (a x) = (a x) k ln( x) = ln( + x) = n + a n+ xn (a C ) x ] a ; a [ C k n+k a n+k x n (a C ) x ] a ; a [ n xn x [ ; [ n= n= ( ) n n x n x ] ; ] x + x = + + n 3 (n 3) ( ) x n x ] ; [ n= 4 (n) = + ( ) n 3 (n ) x n x ] ; [ + x 4 (n) n= Arctan x = ( ) n n + xn+ x [ ; ] Argth x = n + xn+ x ] ; [ Arcsin x = x + n= 3 (n ) 4 (n) x n+ n + Argsh x = x + ( ) n 3 (n ) 4 (n) n= x n+ n + x ] ; [ x ] ; [

3 3 Dérivées usuelles Fonction Dérivée Dérivabilité x n n Z nx n x α α αx α + e αx α C αe αx a x a + a x lna ln x log a x a + {} x xlna cosx sinx sin x cosx tan x + tan x = cos x cotan x cotan x = sin x { π } + kπ k Z πz ch x sh x sh x ch x th x th x = ch x coth x coth x = Arcsin x x sh x ] ; [ Arccos x x ] ; [ Arctan x Argsh x + x x + Argch x x ] ; + [ Argth x x ] ; [

4 4 Primitives usuelles I Polynômes et fractions simples Fonction Primitive Intervalles (x x 0 ) n x 0 n Z { } (x x 0 ) α x 0 α C { } (x z 0 ) n z 0 C n Z { } x a x (a + ib) (x x 0 ) n+ n + (x x 0 ) α+ α + (x z 0 ) n+ n + n N : x n Z (N { }) : x ] ; x 0 [, ] x 0 ; + [ ] x 0 ; + [ a ln x a ] ; a [, ] a ; + [ a, b ln[ (x a) + b ] + i Arctan x a b II Fonctions usuelles Fonction Primitive Intervalles lnx x(ln x ) ]0 ; + [ e αx α C α eαx sin x cosx cosx sin x tan x ln cosx ] π + kπ ; π [ + kπ cotan x ln sinx ] kπ ; (k + )π [ sh x ch x ch x sh x th x ln(ch x) coth x ln sh x ] ; 0 [, ] 0 ; + [

5 Primitives usuelles 5 III Puissances et inverses de fonctions usuelles Fonction Primitive Intervalles sin x cos x tan x x sin x 4 x sin x + 4 tan x x ] π + kπ ; π + kπ [ cotan x cotan x x ] kπ ; (k + )π [ sh x ch x sh x 4 sh x 4 x + x th x x th x coth x x coth x ] ; 0 [, ] 0 ; + [ sin x cosx sh x ch x ln tan x ] kπ ; (k + )π [ ( x ln tan + π ) ] π 4 + kπ ; π [ + kπ ln th x ] ; 0 [, ] 0 ; + [ Arctan e x sin x = + cotan x cotan x ] kπ ; (k + )π [ cos x = + tan x tanx ] π + kπ ; π + kπ [ sh x = coth x coth x ] ; 0 [, ] 0 ; + [ ch x = th x th x sin 4 x cos 4 x cotan x cotan 3 x 3 tanx + tan3 x 3 ] kπ ; (k + )π [ ] π + kπ ; π + kπ [

6 6 Primitives usuelles IV Fonctions dérivées de fonctions réciproques Fonction Primitive Intervalles + x Arctan x a + x a a Arctan x a x a x a Argth x ln + x x a Argth x a a ln a + x a x ] ; [ ] ; [, ] ; [, ] ; + [ ] a ; a [ ] ; a [, ] a ; a [, ] a ; + [ x Arcsin x ] ; [ a x a Arcsin x a ] a ; a [ x + Argsh x = ln ( x + x + ) x x + a a Argch x Argch( x) ln x + x ln x + x + a ] ; + [ ] ; [ ] ; [ ou ] ; + [ a > 0 : a < ] 0 : ; a [ ou ] a;+ [ (x + ) Arctan x + x (x + ) x (x + ) Arctan x x (x + )

7 7 Trigonométrie I Fonctions circulaires Premières propriétés Ensemble de définition sin x cos x tan x cotan x { π } + kπ k Z πz Période π π π π Parité impaire paire impaire impaire f(π x) sin x cosx tanx cotan x f(π + x) sinx cosx tan x cotan x ( π ) f x cos x sin x cotan x tan x ( π ) f + x cosx sinx cotan x tanx Ensemble de dérivabilité { π } + kπ k Z Dérivée cosx sinx + tan x = cos x πz cotan x = sin x Valeurs remarquables π π π 3 π 4 π 6 sin x cotan x tan x 3 0 cosx 0

8 8 Trigonométrie 0 π/6 π/4 π/3 π/ sinx 0 / / 3/ cosx 3/ / / 0 tanx 0 / 3 3 indéfini cotan x indéfini 3 / 3 0 II Fonctions réciproques des fonctions circulaires Définition Les périodicités et les symétries des fonctions trigonométriques introduisent une difficulté pour résoudre les équations du type sin x = λ. Par exemple, π/6, 5π/6 et π/6 + 4π ont tous la même image par la fonction sinus. Les «fonctions circulaires réciproques» Arcsin, Arccos, Arctan et Arccot ne sont pas de vraies réciproques, puisque les fonctions de départ ne sont pas des bijections ; ajoutons qu elles ne sont pas périodiques. Il faut les combiner avec la périodicité et, pour sinus et cosinus, avec les symétries par rapport à l axe des ordonnées et l axe des abscisses respectivement. Si sin x = λ [ ; ], alors x = Arcsin λ mod π ou x = π Arcsin λ mod π Si cosx = λ [ ; ], alors x = Arccos λ mod π ou x = Arcsin λ mod π Si tan x = λ, alors x = Arctan λ mod π Si cotan x = λ, alors x = Arccot λ mod π Le problème réciproque est, lui, sans difficulté : si x = Arcsin λ, alors sin x = λ. Propriétés Ensemble de définition Ensemble image Arcsin x Arccos x Arctan x Arccot x [ ; ] [ ; ] [ π/ ; π/ ] [ 0 ; π ] ] π/ ; π/ [ ] 0 ; π [ Période aucune aucune aucune aucune Parité impaire aucune impaire aucune Ensemble de dérivabilité ] ; [ ] ; [ Dérivée x x + x + x

9 Trigonométrie 9 3 elations Arccos x + Arcsin x = π/ Arctan x + Arctan y = Arctan x + y 0 si xy < + επ où ε = si xy > et x, y 0 xy si xy > et x, y 0 Arctan x + Arccot x = π/ { Arctan /x si x > 0 Arccot x = π + Arctan /x si x < 0 Arctan x + Arctan /x = sign(x) π/ III Formules Corollaires du théorème de Pythagore cos x + sin x = cos x = sin x = + tan x + cot x = tan x + tan x Addition des arcs cos(a + b) = cosacosb sin a sin b sin(a + b) = sinacosb + sin b cosa tan(a + b)= tan a + tanb tan a tan b cos(a b) = cosacosb + sin a sin b sin(a b) = sinacosb sin b cosa tan(a b)= tan a tan b + tanatan b 3 Arc double, arc moitié cosx = cos x sin x = cos x = sin x sin x = sinxcosx tan x = tanx tan x cosp + cosq = cos p + q sinp + sinq = sin p + q tanp + tanq = sin(p + q) cospcosq sinp sinq = sin p q cosp cosq = sin p + q tanp tanq = cos x = + cosx sin x = cosx tan x = sin(p q) cospcosq cos p q cos p q cos p + q sin p q sin x + cosx = cosx sin x

10 0 Trigonométrie En notant t = tan x comme dans les règles de Bioche, on a : sinx = t + t cosx = t + t 4 Formule de Moivre (cosa + i sina) n = cosna + i sinna d où cos3a = cos 3 a 3 cosa sin a = 4 cos 3 a 3 cosa sin 3a = 3 cos a sin a sin 3 a = 3 sin a 4 sin 3 a tan 3a = 3 tan a tan3 a 3 tan a 5 Arcs en progression arithmétique n sin kx = k=0 sin nx sin (n + )x sin x n coskx = k=0 cos nx (n + )x sin sin x IV Trigonométrie hyperbolique ch x sh x = ch (a + b)= ch a ch b + sh a sh b sh (a + b)= sh a ch b + sh b ch a th (a + b)= th a + th b + th a th b ch (a b)= ch a ch b sh a sh b sh (a b)= sh a ch b sh b ch a th (a b)= th a th b th a th b ch p + ch q = ch p + q sh p + sh q = sh p + q th p + th q = sh (p + q) ch p ch q ch p ch q = sh p + q sh p sh q = sh p q th p th q = sh (p q) ch p ch q ch p q ch p q sh p q ch p + q ch x= ch x + sh x ch x= = ch x = + sh x sh x= sh xch x sh x= th x= th x + th x th x= ch x + ch x sh x ch x = ch x + sh x

11 Trigonométrie En notant t = th x, on a : sh x = t t ch x = + t t (ch a + sh a) n = ch na + sh na d où ch 3a = ch 3 a + 3 ch a sh a = 4 ch 3 a 3 ch a sh 3a = 3 ch a sh a + sh 3 a = 4 sh 3 a + 3 sh a th 3a = 3 th a + th 3 a + 3 th a

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité!

Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! PSI Septembre 0 MATHEMATIQUES Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! Table des matières Nombres complexes 3. Cours...................................... 3. Exercices

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Formulaire. 1 Trigonométrie circulaire. Lycée Pierre de Fermat MPSI 1. R [ 1, 1] et. sont définies sur R et 2π-périodiques. Les fonctions. y = 1.

Formulaire. 1 Trigonométrie circulaire. Lycée Pierre de Fermat MPSI 1. R [ 1, 1] et. sont définies sur R et 2π-périodiques. Les fonctions. y = 1. Lycée Pierre de Fermat MPSI Formulaire Trigonométrie circulaire Formulaire Les fonctions { R [, ] x cosx et { R [, ] x sinx sont définies sur R et -périodiques. y = cos x y = sin x y = y = Deux inégalités

Plus en détail

Etude des fonctions trigonométriques

Etude des fonctions trigonométriques Chapitre Dans ce chapitre, nous continuons le travail sur les fonctions usuelles en introduisant les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

Calcul de primitives

Calcul de primitives Calcul de primitives Dans ce document, la notation désigne Cette notation désigne une fonction F (x Formules de bases f(x dx désigne une primitive de la fonction f; x a f(t dt (où a est un réel. Voici

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques Ecole Polytechnique, 009-00 EV- Mathématiques Appliquées Fiche de cours 3 : Fonctions usuelles, Développements ités, Équivalents, Séries Numériques Fonctions usuelles. Quelques rappels Théorème. (Fonctions

Plus en détail

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle 40 Chapitre 7 Fonctions usuelles. 7. Les fonctions trigonométriques inverses. tan :] π/, π/[ R est strictement croissante car sa dérivée + tan est strictement positive. La fonction tg est donc bijective

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

Annales de mathématiques

Annales de mathématiques Année Promotion de re année I.U.T. Saint-Omer Dunkerque Département G.T.E. Annales de mathématiques Denis Bitouzé Avant-propos Ces annales sont un recueil des énoncés et des corrigés de certains des contrôles

Plus en détail

Leçons de choses. 1. Travailler avec les vidéos. Exo7. 1.1. Les vidéos. 1.2. Pour les cours

Leçons de choses. 1. Travailler avec les vidéos. Exo7. 1.1. Les vidéos. 1.2. Pour les cours Eo7 Leçons de choses Vidéo partie. L'alphabet grec Vidéo partie. LATEX en cinq minutes Vidéo partie 4. Formules de trigonométrie : sinus, cosinus, tangente Vidéo partie 5. Formulaire: trigonométrie circulaire

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien La fonction exponentielle est continue strictement croissante sur R à valeurs dans ]0; + [. Elle définit donc une bijection de R sur ]0; + [, c est-à-dire que quel que soit

Plus en détail

Fonctions. Chapitre IV. Généralités

Fonctions. Chapitre IV. Généralités Chapitre IV Fonctions IV.a. Généralités En termes vagues, une fonction f associe à tout élément x un ensemble A au plus un élément f (x) un ensemble B. Plus formellement, on éfinit une fonction comme ceci

Plus en détail

FICHE 5.6 : COMMENT DÉRIVER LES FONCTIONS DE BASE?

FICHE 5.6 : COMMENT DÉRIVER LES FONCTIONS DE BASE? FICHE 5.6 : COMMENT DÉRIVER LES FONCTIONS DE BASE? Mise à jour : 2/02/2 Après avoir compris ce qu est une dérivée, il faut évidemment ne pas rater la pratique. C est bien de comprendre «à quoi ça sert»,

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Les fonctions usuelles

Les fonctions usuelles Les fonctions usuelles Objectif : Connaître les représentations graphiques de ces fonctions et leurs propriétés s principales Les fonctions usuelles vues en terminale Logarithme et exponentielle f(x)=ln(x)

Plus en détail

1 Premières propriétés de cos, sin et tan

1 Premières propriétés de cos, sin et tan Lycée Roland Garros Mathématiques BCPST 1ère année 2013-2014 Chapitre n o 3 : Trigonométrie 1 Premières propriétés de cos, sin et tan Dénition 1. Soit x R. Dans un plan muni d'un repère orthonormé (O,

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques MPSI-2 Lycée Fermat Alain Soyeur Table des matières 1 Raisonnement, ensembles 7 1.1 Logique................................................... 7 1.2 Ensembles.................................................

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges Mathématiques Résumé du cours en fiches MPsi MP Daniel Fredon Ancien maître de conférences à l université de Limoges Dunod, Paris, 2010. ISBN 978-2-10-055590-1 Table des matières Partie 1 Analyse dans

Plus en détail

AN 1 FONCTIONS USUELLES et RÉCIPROQUES

AN 1 FONCTIONS USUELLES et RÉCIPROQUES Analyse /0 AN FONCTIONS USUELLES et ÉCIPOQUES Les notions de limites, dérivées, primitives, continuité sont supposées connues, elles seront revues ultérieurement THEOEMES FONDAMENTAUX D ANALYSE Théorème

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE

COURS L1 PREPA AGRO VETO 2012. Claire CHRISTOPHE COURS L PREPA AGRO VETO 202 Claire CHRISTOPHE 8 avril 203 2 Table des matières I ANALYSE 5 Fonctions numériques de la variable réelle 7. Complément sur l étude des fonctions..................................

Plus en détail

Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND. Mathématiques. Analyse. en 30 fiches

Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND. Mathématiques. Analyse. en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Analyse en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Analyse en 30 fiches Dunod, Paris, 009 ISBN

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Fonctions usuelles Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Eercice **I * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 005 - Gérard Lavau - http://perso.wanadoo.fr/lavau/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

Révisions Maths Terminale S - Cours

Révisions Maths Terminale S - Cours Révisions Maths Terminale S - Cours M. CHATEAU David 24/09/2009 Résumé Les résultats demandés ici sont à connaître parfaitement. Le nombre de réponses attendues est parfois indiqué entre parenthèses. Les

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

COURS N 1 DU SAMEDI 8 JANVIER 2O11.

COURS N 1 DU SAMEDI 8 JANVIER 2O11. COURS N 1 DU SAMEDI 8 JANVIER 2O11 -*Définitions des notions de fonctions et d applications -*Etudes des Domaines de Définition et de Continuité, prolongement par continuité -*Etude de la monotonie, lien

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

CALCUL DE PRIMITIVES, V Primitives de fonctions usuelles. Arcsin(x) 1 x 2 1 x x x 2 ( x 1) 1

CALCUL DE PRIMITIVES, V Primitives de fonctions usuelles. Arcsin(x) 1 x 2 1 x x x 2 ( x 1) 1 L Math MA/MG Intégrale CALCUL DE PRIMITIVES, V0. Avertissement : ce document a été tapé trop rapidement et inclut donc un nombre conséquent d erreurs en tout genre. L auteur décline toute responsabilité

Plus en détail

... donc le SUP est atteint. Cours de mathématiques SUP

... donc le SUP est atteint. Cours de mathématiques SUP ... donc le SUP est atteint Cours de mathématiques SUP Par : L. PETIT [loic.petit@gmail.com] D après les cours de : H. CHAKROUN Date : avril 5 Ce document est une reproduction des cours de Mr Chakroun

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

Trigonométrie circulaire

Trigonométrie circulaire Trigonométrie circulaire On rappelle ici et on complète les résultats énoncés au lycée. L objectif à viser est la technicité. Pour cela, il faut : ➀ connaître par cœur les différentes formules de trigonométrie,

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

1 Fonction valeur absolue

1 Fonction valeur absolue ISEL - Année Mathématiques FONCTIONS USUELLES Fonction valeur absolue Dénition La valeur absolue d'un nombre réel est = ma(, ) = Propriété Soient a et b deu réels, on a: a = a ; a b b a b; a b a b ou a

Plus en détail

1 Fonctions trigonométriques : Formules à connaître.

1 Fonctions trigonométriques : Formules à connaître. Université de Provence Mathématiques Générales - Parcours PEI Fonctions Usuelles Fonctions trigonométriques : Formules à connaître. Formules de duplication. Pour tous x, y R, cos(x + y) = cos x cos y sin

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo Trigonométrie hyperbolique Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois.

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Mathématiques Exercices incontournables MPSI PCSI PTSI Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Jérôme Poineau polytechnicien,

Plus en détail

Journal de bord. Vendredi novembre. Lundi 9 novembre. Samedi 7 novembre. Vendredi 6 novembre. Mercredi 4 novembre. Lundi 2 novembre.

Journal de bord. Vendredi novembre. Lundi 9 novembre. Samedi 7 novembre. Vendredi 6 novembre. Mercredi 4 novembre. Lundi 2 novembre. Journal de bord Vendredi novembre. Matin : Recherche d'une solution particulière dans le cas d'un second membre de la forme e αx. Puis dans le cas d'une excitation périodique. Théorème de synthèse. Exercices

Plus en détail

TD 1 : Introduction à Maple

TD 1 : Introduction à Maple TD 1 : Septembre-Octobre 2011 Maple, qu est-ce que c est? Maple est - en gros - une calculatrice très évoluée. Au contraire de vos petites machines portables, il sait non seulement manipuler les nombres,

Plus en détail

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse Faculté des Sciences de Luminy Année 20 202 Licence MASS Unité Mat8 Exercices d analyse A.BROGLIO TD : Révisions.. Domaine de définition. Déterminer pour chaque valeur de f ci-dessous le domaine de définition

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Outils mathématiques pour la physique et la chimie. Introduction. 1.1 Espaces vectoriels. Nicolas Chéron : nicolas.cheron@ens-lyon.

Outils mathématiques pour la physique et la chimie. Introduction. 1.1 Espaces vectoriels. Nicolas Chéron : nicolas.cheron@ens-lyon. Nicolas Chéron : nicolas.cheron@ens-lyon.fr Tél : 87 14 Outils mathématiques pour la physique et la chimie Introduction Ce document est un rappel de notions de mathématiques de base (i.e. niveau L1/L).

Plus en détail

Planche n o 02. Trigonométrie circulaire réciproque. Trigonométrie hyperbolique. Corrigé

Planche n o 02. Trigonométrie circulaire réciproque. Trigonométrie hyperbolique. Corrigé Planche n o Trigonométrie circulaire réciproque Trigonométrie hyperbolique Corrigé n o ) Arcsin eiste si et seulement si est dans, Donc, sinarcsin) eiste si et seulement si est dans, et pour dans,, sinarcsin

Plus en détail

Les différentes méthodes de calcul intégral

Les différentes méthodes de calcul intégral Les différentes méthodes de calcul intégral Connaissances de primitives Le calcul d une intégrale est immédiat quand on connaît une primitive de la fonction à intégrer. Tableau des primitives usuelles

Plus en détail

MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia

MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia MATHEMATIQUES 1ère ANNEE : Cours de remise niveau de mathématiques élémentaires pour les étudiants de 1ère année de l UCTM - Sofia Philippe MORVAN Dimitar KOLEV Rennes/Sofia 2007 Table des matières 1

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

cos x = eix + e ix cos 2x = 2 cos 2 x 1 cos 2 x = cos a + cos b = 2 cos cos 2 cos a cos b = 2 sin sin sin a + sin b = 2 sin cos

cos x = eix + e ix cos 2x = 2 cos 2 x 1 cos 2 x = cos a + cos b = 2 cos cos 2 cos a cos b = 2 sin sin sin a + sin b = 2 sin cos Formulaire Trigonométrie Définition cos ei + e i sin ei e i i cos n + i sin n (cos + i sin ) n Angle double cos cos sin tan θ sin θ cos θ Angles opposés et cotan θ tan θ cos θ sin θ cos(θ) cos( θ) cos(π

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

Fonctions réciproques

Fonctions réciproques Fonctions réciproques X =message coage y=f() Y y=message coé - = g(y)= f (y) écoage =message B. Aoubiza IUT Belfort-Montbéliar Département GTR 6 janvier 3 Table es matières.fonctionsréciproques... 3..

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Analyse. Gaëtan Bisson. bisson@gaati.org

Analyse. Gaëtan Bisson. bisson@gaati.org Analyse Gaëtan Bisson bisson@gaati.org Table des matières Nombres réels 4. Construction........................................ 4. Densité et distance..................................... 6.3 Exercices...........................................

Plus en détail

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences

Département Licence Sciences et Technologies Année 2013-2014. Exercices MAT11a: analyse mathématique pour les sciences Université Joseph Fourier, Parcours BIO, CHB, SVT Département Licence Sciences et Technologies Année 23-24 Exercices MATa: analyse mathématique pour les sciences Chapitre A Fondements Exercice On se donne

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE Exercice Longueur de l arc de spirale logarithmique défini par r = e t pour t a, puis limite quand a tend vers + Exercice Longueur de l astroïde

Plus en détail

Problèmes de Mathématiques MPSI. Erwan Biland

Problèmes de Mathématiques MPSI. Erwan Biland Problèmes de Mathématiques MPSI Erwan Biland Lycée Stanislas, classe de MPSI 1, 2009/2010 Ce recueil réunit une partie des problèmes posés aux élèves de PCSI 1 puis MPSI 1, en temps libre ou en temps limité,

Plus en détail

Mathématiques. Partie C: Compléments. Lycée L.-G. Damas, Cayenne. Leibniz, l un des fondateur du calcul infinitésimal.

Mathématiques. Partie C: Compléments. Lycée L.-G. Damas, Cayenne. Leibniz, l un des fondateur du calcul infinitésimal. Lycée L.-G. Damas, Cayenne Mathématiques Partie C: Compléments Leibniz, l un des fondateur du calcul infinitésimal. Table des matières Partie A : Obligatoire Partie B : Spécialité Version du : 1 er juin

Plus en détail

Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1.

Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. 1) Soit x R. Linéariser cos 3 (x) sin (x) ) Résoudre dans C les équations suivantes : a) (1 i)z + z + 5 + 5i = 0 b) z z + 1 i = 0 1) Soit x R. Linéariser cos 3 (x) sin (x) ) Résoudre dans C les équations

Plus en détail

Développements limités

Développements limités Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre

Plus en détail

Fiche méthodologique Trigonométrie Réelle

Fiche méthodologique Trigonométrie Réelle Fiche méthodologique Trigonométrie Réelle BCPST Lycée Hoche $\ CC BY: = Pelletier Sylvain Dans cette fiche, on revoit ce qu il faut savoir sur les fonctions trigonométriques Fonction tangente On rappelle

Plus en détail

( ) et orienté dans le

( ) et orienté dans le FONCTIONS COSINUS ET SINUS I. Rappels ) Définitions : Dans le plan muni d un repère!! ortonormé O ; i ; j ( ) et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout

Plus en détail

Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses.

Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses. Corrigé de la Feuille 7. Fonctions trigonométriques et trigonométriques hyperboliques inverses. Simplifier des expressions sin(arcsin(x)) : arcsin est la fonction réciproque de la fonction sin de l intervalle

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx.

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx. Lycée Joffre Année 05-06 PCSI Feuille 9 TD n 9: Analyse et fonctions usuelles Fonctions trigonométriques Exercice Résoudre les équations suivantes : cos (x sin (x = 0 4sin(xcos(x = cos (x+cos(x = 4 4 cos(x

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Fonctions usuelles. 1 Fonctions trigonométriques réciproques.

Fonctions usuelles. 1 Fonctions trigonométriques réciproques. Fonctions usuelles Arthur LANNUZEL http ://mathutbmal.free.fr le 8 Janvier 009 Fonctions usuelles Fonctions trigonométriques réciproques.. arcsin(.). sin : [ π, π ] R est continue strictement croissante.

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS DÉVELOPPEMENTS LIMITÉS Définitions et premières propriétés Définition. Développement limité Soient f une fonction définie au voisinage de a R (éventuellement non définie en a) et n N. On dit que f possède

Plus en détail

Chapitre 1.1 Fonctions trigonométriques.

Chapitre 1.1 Fonctions trigonométriques. Chapitre. Fonctions trigonométriques. Exercice. Formules de somme et de différence En remplaçant a et b par des valeurs particulières complèter le tableau suivant avec les résultats donnés ci-après : cos

Plus en détail

Option Maths Année 2015-2016 PLAN

Option Maths Année 2015-2016 PLAN Option Maths Année 5-6 PLAN Table des matières Nombres et fonctions - Quantifier, identifier, suivre 3. nombres et opérations élémentaires............................. 3.. ensemble des entiers naturels

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3 Alexandre VIDAL Dernière modification : 11 janvier 2011 Table des matières I Généralités et rappels sur les fonctions 1 I.1 Définition....................................

Plus en détail

BCPST 851. Cours de MATHÉMATIQUES. Jean-Baptiste Bianquis. jb.bianquis@gmail.com

BCPST 851. Cours de MATHÉMATIQUES. Jean-Baptiste Bianquis. jb.bianquis@gmail.com BCPST 851 Cours de MATHÉMATIQUES 2012 2013 Jean-Baptiste Bianquis jb.bianquis@gmail.com LISTE DES CHAPITRES 1 Logique et calcul algébrique 3 2 Nombres complexes et trigonométrie 32 3 Suites réelles 46

Plus en détail

(0) e iθ = e iθ = (e iθ ) 1

(0) e iθ = e iθ = (e iθ ) 1 hapitre Trigonométrie Dans tout ce chapitre nous allons utiliser de l exponentielle complexe et deux de ses propriétés fondamentales ainsi que celles qui s en déduisent) : Pour tout θ et φ réels on a :

Plus en détail

Chapitre 3 : Trigonométrie

Chapitre 3 : Trigonométrie Chapitre : Trigonométrie PTSI B Lycée Eiffel septembre Quel est le comble pour un cosinus? Attraper une sinusite! Pour compléter le chapître précédent consacré au fonctions usuelles, un chapître à part

Plus en détail