Représentation géométrique d un nombre complexe

Dimension: px
Commencer à balayer dès la page:

Download "Représentation géométrique d un nombre complexe"

Transcription

1 CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres qui s écrivent a + ib où a et b sont des nombres réels.. Représentation géométrique d un nombre complexe Dans le plan muni d un repère orthonormé ( O ; u, v), à tout point M de coordonnées ( a, b), on associe le nombre complexe tel que = a + ib. On dit que M est l image du nombre complexe et que le nombre est l affixe du point M. De même, le vecteur OM est l image de et est l affixe de OM. L écriture a + ib est l écriture algébrique du nombre complexe L abscisse du point M est la partie réelle de notée Re( ). L ordonnée du point M est la partie imaginaire de notée Im( ). Remarque : Les parties réelle et imaginaire d un nombre complexe sont des nombres réels Conséquences M( a, b) et M ( a, b ) confondus a = a et b = b = a+ ib et = a + ib égaux M = O a = 0 et b = 0 = 0. M ( O, u ) b = 0 Im( ) = 0. L axe ( O, u ) est appelé l axe réel. M ( O, v ) a = 0 Re( ) = 0 i. Dans ce cas on dit que est un imaginaire pur et que l axe ( O, v ) des imaginaires ou l axe des imaginaires purs. est l axe

2 cours savoir-faire exercices corrigés Les points M( a, b) et M ( a, b) sont symétriques par rapport à O, leurs affixes sont opposées. Le point N( a, b) est l image du nombre complexe appelé conjugué de et noté. Les points M( a, b) et N( a, b) sont symétriques par rapport à l axe réel. b M( ) axe réel v O u a M ( ) axe imaginaire N( ) exemple d application 1. Écrire les nombres complexes, affixes respectives des points : A(0 ; ) ; B( ; 0) ; C(3 ; ) ; D(3 ; ) et E(0 ; ).. Reconnaître s il y a lieu des nombres conjugués. 1. L affixe du point A est = i ; l affixe du point B est B = ; A celle de C est C = 3 i ; celle de D est D = 3+ i et celle de E est E = i.. = et C = D. A E 11

3 CHAPITRE 1 NOMBRES COMPLEXES Formes trigonométriques 1. Formes trigonométriques Soit un repère ( O ; u, v) orthonormé du plan. Un point M distinct de O est repéré de deux façons, soit par ses coordonnées cartésiennes ( a, b) soit par ses coordonnées polaires ( r, θ). Soit M l image du nombre complexe tel que = a + ib. On pose OM = r avec r 0. Le nombre positif r est appelé module de et noté. Le nombre réel θ est une mesure de l angle ( u, OM). Cette mesure est définie à k près avec k et est appelée argument de et on écrit : arg = θ ( ). Remarque : La notion d angle de vecteurs nécessite une orientation du plan (l orientation trigonométrique est la plus souvent utilisée.) + b M En projetant M sur chacun des axes, on obtient : a = rcosq et b = rsinq r d où = r( cosθ + i sinθ) et d après le théorème de v Pythagore = a + b θ O a ( r = OM = OM = ). u Sachant que r 0, on appelle forme trigonométrique du nombre complexe l écriture r( cosθ + i sinθ).. Propriétés du module et d un argument d un nombre complexe = 0 = 0. = = =, quel que soit. L argument de éro n est pas déterminé. Si 0, Si 0, arg( ) arg( ) = = arg + arg. ( ). = r = r r( cosθ + i sinθ) = r ( cosθ + i sinθ ) θ = θ ( ). 1

4 cours savoir-faire exercices corrigés 3. Passage de l écriture algébrique à une forme trigonométrique = a+ ib avec a b a b = +, d où = i a + b a + b Soit θ le nombre exprimé en radians tel que : a cosθ = a + b alors = ( cosθ + i sinθ). b sinθ = a + b Remarque : Il est nécessaire d avoir en tête les sinus et cosinus des valeurs particulières des angles. exemple d application Placer dans le plan complexe rapporté à un repère orthonormé ( O ; u, v) les points M, N et R définis par OM = et ( u, OM) = -- [] ; ON = 1 et 4 ( u, ON) = -- [] et OR = 3 et ( u, OR) = []. 3 Le point M appartient au cercle de centre O et de rayon et à la bissectrice du premier quadrant. Le point N appartient au cercle trigonométrique et à la demi-droite [Oy ). Sur le cercle de centre O et de rayon 3, on reporte deux fois le rayon à partir de A(3 ; 0) dans le sens trigonométrique, on obtient ainsi le point R. R v O y N u y M A 13

5 CHAPITRE 1 NOMBRES COMPLEXES 3 Opérations dans 1. Addition des nombres complexes L addition des nombres complexes possède les mêmes propriétés que l addition dans. L ensemble est contenu dans. Tout nombre réel est un nombre complexe dont la partie imaginaire est nulle. Soit les vecteurs OM et OM d affixes respectives a + ib et a + ib. Le vecteur ( OM + OM ) a pour coordonnées ( a+ a, b+ b ) donc si = a+ ib et = a + ib, le nombre complexe + est tel que Re( + ) = a+ a et Im( + ) = b+ b d où + = ( a+ a ) + i( b+ b ). OS est l image de +. b+ b S MM. est l image de b M b v M O u a a a+ a + = + ; + = Re( ) ; = i Im( ).. Multiplication des nombres complexes La multiplication des nombres complexes possède les mêmes propriétés que la multiplication dans. = ( a + ib) ( a + ib ) = aa bb + i( ba + ab ). Remarque : aye toujours à l esprit que i = 1 et que i ne doit pas figurer dans un résultat ni aucune autre puissance de i. = ; = a + b = 14

6 cours savoir-faire exercices corrigés Si 0 et 0 et = r( cosθ + i sinθ) et = r ( cosθ + i sinθ ), alors = rr ( cos( θ + θ ) + i sin( θ + θ )). Donc : = et arg( ) = arg+ arg ( ) 3. Division de deux nombres complexes La division de deux nombres complexes a les mêmes propriétés que la division dans. 1 Tout nombre complexe non nul admet un inverse -- tel que : 1 1 a b -- = = i a + ib a + b a + b Remarque : cette écriture algébrique s obtient en multipliant numérateur et dénominateur par le conjugué du dénominateur. Si 0, = --- = aa + bb a b ab i a + b a + b Si 0, --- = donc, si 0, 1 -- et arg --- = arg arg ( ), 1 1 = ---- et arg -- = arg ( ). --- = --- Exemple d application 4 3i Soit Z le nombre complexe tel que Z = i Calculer Z et donner l écriture algébrique de Z. Indication : On applique la propriété --- = i 4 Z = = = = d où : Z = i Indication : On applique la propriété ---. = i 4+ 3i 4+ 3i ( 4+ 3i) ( 1 i) 7 Z = = = = d où : Z = i. i + i 1 ( + i) 4 4 Conseil : N oublie pas que = donc que ( 1+ i) ( 1 i) s écrit sans calcul. On pouvait aussi mettre Z sous forme algébrique et écrire ensuite Z. 15

7 CHAPITRE 1 NOMBRES COMPLEXES 4 Formes exponentielles 1. Formes exponentielles Soit la fonction f : θ cosθ + i sinθ. f( θ) f( θ ) = ( cosθ + i sinθ) ( cosθ + i sinθ ) f( θ) f( θ ) = ( cosθcosθ sinθ sinθ ) + i( sinθ sinθ + cosθ cosθ ) f( θ) f( θ ) = cos( θ + θ ) + i sin( θ + θ ). Donc f( θ) f( θ ) = f( θ + θ ). Cette relation fonctionnelle étant caractéristique des fonctions exponentielles on pose : Tout nombre complexe non nul de module r est tel que = r( sinθ + i sinθ). re iθ L écriture est une forme exponentielle du nombre complexe. Remarques : Cette écriture est à privilégier dans des calculs de quotients ou de puissances de nombres complexes. Tous les nombres complexes e iθ ont pour module un et pour images des points du cercle trigonométrique. De part l introduction de l écriture exponentielle : e iθ e iθ = e i( θ + θ ) ; = e i( θ θ ) ; ( e iθ ) n = e inθ avec n. Formules d Euler : e iθ e iθ e iθ = sinθ + i sinθ cosθ e iθ e iθ + e iθ e = ; sinθ = iθ. i re iθ = r e iθ r = r θ = θ ( ).. Résolution d une équation de type n = a Si n avec n, et a, on écrit et a sous forme exponentielle. 16

8 cours savoir-faire exercices corrigés Soit = re iθ et a = ρe iα. n = a r n e inθ = ρe iα r n = ρ nθ = α + k avec k r n = ρ soit α θ = -- + k avec k. n n L équation admet alors n solutions en donnant à k, n valeurs consécutives. exemple d application Résoudre dans l équation 3 = 8i. Donner les solutions sous forme algébrique. On pose = re iθ avec r 0 et i = e i = 8i r 3 e i3θ = 8e i -- r 3 = 8 3θ = -- + k avec k r = soit θ = -- + k , k. 6 3 Pour k = 0, e i 6 -- = = cos -- + i sin = 3+ i ; pour k = 1, e i = = cos i sin = 3 + i ; 6 6 pour k =, e i = = cos i sin = i. S = { i ; 3+ i ; 3 + i}. 17

9 CHAPITRE 1 NOMBRES COMPLEXES 5 Résolutions d équations dans 1. Équations du premier degré Toute équation du premier degré d inconnue se ramène à a + b = 0 avec a et b. b Cette équation a pour solution = --. a Remarque : Il est souvent inutile de poser = x+ iy et de déterminer ensuite x et y par identification des parties réelles et imaginaires. Donner la solution sous une des trois formes algébrique, trigonométrique ou exponentielle.. Équations du second degré à coefficients réels Toute équation du second degré d inconnue se ramène à avec a, b et c. a + b + c = 0 Discriminant Solutions 0 = 0 0 b + x = x = a x = x = b a b x = x = a b + i a b i a Remarques : Si 0, les solutions sont des nombres complexes conjugués non réels. Veille à ne pas introduire le nombre complexe i sous un radical. existe si 0, on peut aussi écrire Équations dont le degré est strictement supérieur à Les méthodes de résolution sont souvent les mêmes que dans : il faut d abord essayer de factoriser, voir s il y a une identité remarquable, chercher une racine évidente. On désire donc se ramener à des produits de facteurs du premier degré ou du second degré. Remarque : il faut penser que 1 = i et donc que + 1 est factorisable dans alors qu il ne l est pas dans.

10 cours savoir-faire exercices corrigés Résoudre dans l équation exemples d application On regroupe les termes faisant intervenir : Indication : on calcule on peut écrire ( 1 i) + 3 = + i. ( 1 i)+ = 3 + i soit ( i) = 3 + i 3 + i ( 3 + i) ( + i) 7 1 d où = = = -- --i. i S = -- --i 5. 5 Résoudre dans l équation + 1 = 0. = 3i. = b 4ac = 1 4 = 3, 0 ; Indication : on sait alors que les solutions de l équation sont deux nombres complexes conjugués. Conseil : ne pas oublier la valeur absolue. 1 b + i 1+ i 3 = = a 1 i 3 = 1 = i 3 S ; 1 i 3 =

11 CHAPITRE 1 NOMBRES COMPLEXES 6 Transformations ponctuelles 1. Transformation et application associée Soit f une application définie par : f( ). Le point M étant l image de et M l image de tel que = f ( ), on définit dans le plan la transformation T associée à f, qui à M fait correspondre M.. Transformations usuelles Soit un repère orthonormé ( O ; u, v) direct. Transformation T Éléments caractéristiques Définitions de T avec M = T( M) Écritures complexes de T avec M( ) et M ( ) Translation Un vecteur non nul d affixe u u MM = u = + u Homothétie Un point Ω d affixe ω et un réel k 0 ΩM = kωm ω = k ( ω) ou bien = k + b avec b Rotation Un point Ω d affixe ω et un angle de mesure θ à près ΩM = ΩM ( ΩM, ΩM ) = θ ω = e iθ ( ω) ou bien = e iθ + b avec b. Symétrie d axe réel L axe réel OM = OM ( u, OM) = ( u, OM ) = 0

12 cours savoir-faire exercices corrigés exemple d application Parmi les écritures complexes suivantes, reconnaître les transformations et donner pour chacune d elles les éléments caractéristiques Indication : comme le coefficient de est 6, alors la transformation associée est une homothétie de rapport 6. Pour trouver son centre, qui est le seul point invariant de la transformation, on résout «l équation aux points fixes» c est-à-dire celle traduisant M = M donc =. Par suite = 6 + 3i soit 7 = 3i, 3 d où = -- --i L homothétie est celle de rapport 6 et de centre W d affixe -- --i Indication : comme le coefficient de est le nombre complexe i dont l écriture exponentielle est e i 6 --, alors la transformation associée à l écriture complexe est une rotation d angle Pour trouver son centre, on résout «l équation aux points fixes». = e i i soit i 4 + i = 4 + i d où = , i soit d où = 6 + 3i. 3 1 = i 4 + i. ( 4 + i) i = = i , = 4 3 i ( 3+ 3). La rotation est celle de centre Ω d affixe 4 3 i ( 3+ 3) et d angle

13 CHAPITRE 1 NOMBRES COMPLEXES 7 Interprétations géométriques On se place dans un repère orthonormal ( O ; u, v). 1. Interprétation géométrique d une égalité de modules Soit A, B et M trois points d affixes respectives a, b et m. Si m a = m b, alors AM = MB ce qui signifie que le point M appartient à la médiatrice du segment [ AB]. Si m a = r, avec r +, AM = r donc le point M appartient au cercle de centre A et de rayon r.. Interprétation géométrique du quotient de deux nombres complexes Les points M et M ont pour affixes respectives et. Soit Z = --- avec 0 et 0. argz = arg arg = ( u, OM) ( u, OM ) () argz = ( u, OM) + ( OM, u ) = ( OM, OM) (). Remarque : un argument d un quotient de deux nombres complexes non nuls est un angle de vecteurs. Soit les points A( A ), B( B ), C( C ) et D( D ) avec A B et C D. Alors : A C arg B D = ( DC, BA) ( ) 3. Figures particulières (ABC est un triangle rectangle et isocèle direct en B) A B C B = e i -- = i. (ABC est un triangle équilatéral) B A = C B = C A. (ABC est un triangle équilatéral direct) C A B A = e i (ABC est un triangle équilatéral direct) C A arg = -- et A B arg = --. B A 3 C B 3 (ABCD est un parallélogramme) AB = DC B A = C D.

14 cours savoir-faire exercices corrigés exemples d application Quelle est la nature du triangle ABO sachant que les points A et B ont pour affixes respectives 3+ i et i? 0 A Indication : on explicite le complexe Z tel que Z = , puis on en détermine son module et un argument. B A Indication : les nombres complexes 3 i et 3 + i sont conjugués donc leurs modules sont égaux et leurs arguments opposés, donc Z = 1 soit : 0 A = B A OA = OB. arg( 3 i) i 5 = arg = (), 6 or argz = arg( 3 i) arg( 3 + i) = arg( 3 i), soit argz 5 = () d où argz = -- (). 6 3 soit argz = ( u, AO) ( u, AB) = ( AB, AO) d où ( AB, AO) = -- (). 3 Par suite le triangle AOB est équilatéral. Soit A, B et C les points d affixes respectives 1 + i, + i et 1 i. Quelle est la nature du triangle ABC? AO AB 3 i 3 i Z = = i 3 i 3 + i De plus argz = arg = arg( ) arg( ) AO AB Il est souhaitable de placer les points dans un repère pour bien poser le problème. BA On calcule le nombre complexe Z tel que Z = BC 1+ i ( + i) 3+ i ( 3+ i) ( 1+ 3i) Z = = = , 1 i ( + i) 1 3i 10 10i d où = = i ; on en déduit que ( BC, BA) = -- (). 10 De plus i = 1 BA = BC BA = BC. Le triangle ABC est donc rectangle et isocèle en B. 3

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Séquence 6 Ensemble des nombres complexes Sommaire Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Cette séquence est une brève introduction à un nouvel ensemble de nombres, ensemble

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Cours de mathématiques. Chapitre 9 : Nombres complexes

Cours de mathématiques. Chapitre 9 : Nombres complexes Cours de mathématiques Terminale S1 Chapitre 9 : Nombres complexes Année scolaire 2008-2009 mise à jour 15 février 2009 Fig. 1 Gerolamo Cardano Médecin et mathématicien italien qui ne redoutait pas les

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Nombres complexes et géométrie euclidienne

Nombres complexes et géométrie euclidienne 19 Nombres complexes et géométrie euclidienne Le corps C des nombres complexes est supposé construit voir le chapitre 7. On rappelle que C est un corps commutatif et un R-espace vectoriel de dimension,

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Nombres complexes Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin 1, Olivier Hervé 2 Dernière révision : 22 mai 2008 Document diffusé via le site www.bacamaths.net de Gilles Costantini

Plus en détail

Fiche 17 Nombres complexes

Fiche 17 Nombres complexes Fiche 7 Nombres complexes Objectifs : Connaître les différentes définitions Savoir passer d une notation à l autre Savoir simplifier des nombres et effectuer les opérations élémentaires. Définitions On

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Annexe D: Les nombres complexes

Annexe D: Les nombres complexes Annexe D: Les nombres complexes L'équation t + 1 = 0 n'a pas de solution dans les nombres réels. Pourtant, vous verrez lors de vos études qu'il est très pratique de pouvoir résoudre des équations de ce

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

13. Géométrie analytique

13. Géométrie analytique 13. Géométrie analytique La géométrie analytique permet de résoudre par le calcul des problèmes de géométrie. Il convient toutefois de ne pas perdre de vue que la géométrie analytique est d abord de la

Plus en détail

Collège Jean-Baptiste Clément

Collège Jean-Baptiste Clément Collège Jean-Baptiste Clément 5-7, rue Albert Chardavoine 93440 DUGNY réalisés par M. LENZEN. Également disponibles en consultation sur son site internet http://www.capes-de-maths.com/ 01.43.11.11.40 01.48.37.46.59

Plus en détail

Mathématiques Secondes

Mathématiques Secondes Mathématiques Secondes 2 Table des matières 0 Algorithmique 5 1 Repérage 9 2 Équations et Inéquations du premier degré 13 3 Géométrie dans l espace 17 4 Généralités sur les fonctions 19 5 Statistiques

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Notes de cours L1 MATH120. Hervé Le Dret

Notes de cours L1 MATH120. Hervé Le Dret Notes de cours L1 MATH120 Hervé Le Dret 11 septembre 2006 2 Chapitre 1 Rappels sur les nombres complexes Dans ces notes de cours, on travaillera essentiellement à l aide de nombres réels, dont les propriétés

Plus en détail

TRIGONOMETRIE - EXERCICES CORRIGES

TRIGONOMETRIE - EXERCICES CORRIGES Cours et eercices de mathématiques TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Eercice n. Compléter les égalités en respectant bien les notations de l énoncé cos ABC = sin ABC = tan ABC

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES ANNALES DE MATHEMATIQUES TERMINALE S LYCEE LOUIS ARMAND Année scolaire 1999/2000 Annales du baccalauréat S 2000 2 Lycée Louis Armand Annales du baccalauréat S 2000 TABLE DES MATIÈRES Table des matières

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Cours de mathématiques. Thomas Rey

Cours de mathématiques. Thomas Rey Cours de mathématiques Thomas Rey Classe de seconde le 29 août 2010 «Ce qui est affirmé sans preuve peut être nié sans preuve.» EUCLIDE D ALEXANDRIE Table des matières 1 Fonctions numériques 5 1.1 Notion

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Révisions Maths Terminale S - Cours

Révisions Maths Terminale S - Cours Révisions Maths Terminale S - Cours M. CHATEAU David 24/09/2009 Résumé Les résultats demandés ici sont à connaître parfaitement. Le nombre de réponses attendues est parfois indiqué entre parenthèses. Les

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Cours polycopié pour le module L1 SFA Mathématiques I Analyse

Cours polycopié pour le module L1 SFA Mathématiques I Analyse i Cours polycopié pour le module L1 SFA Mathématiques I Analyse [60h de cours/td] À propos de ce module Programme prévu : nombres complexes, polynômes, fractions rationnelles, fonctions réelles usuelles

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Trigonométrie Résolution d équation trigonométrique Exercices corrigés

Trigonométrie Résolution d équation trigonométrique Exercices corrigés Trigonométrie Résolution d équation trigonométrique Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : résolution d équation trigonométrique dans en utilisant les valeurs remarquables du cosinus

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BCPST 851. Cours de MATHÉMATIQUES. Jean-Baptiste Bianquis. jb.bianquis@gmail.com

BCPST 851. Cours de MATHÉMATIQUES. Jean-Baptiste Bianquis. jb.bianquis@gmail.com BCPST 851 Cours de MATHÉMATIQUES 2012 2013 Jean-Baptiste Bianquis jb.bianquis@gmail.com LISTE DES CHAPITRES 1 Logique et calcul algébrique 3 2 Nombres complexes et trigonométrie 32 3 Suites réelles 46

Plus en détail

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Méthodes Mathématiques pour l Ingénieur, Istil 1ère année Corrigé de la feuille 4 1 Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 4 1 appel : formule des ésidus Soit F

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Rapide rappel de mathématiques. BA1 en chimie, mathématiques et physique.

Rapide rappel de mathématiques. BA1 en chimie, mathématiques et physique. Rapide rappel de mathématiques BA1 en chimie, mathématiques et physique. Quelques mots... Les étudiants qui rentrent à l université proviennent d horizons parfois fort différents, c est évident. Cela

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h

Athénée Royal d'uccle 1. Cours de Mathématique 5 ème année Les bases pour les math 6h Athénée Royal d'uccle 1 Cours de Mathématique 5 ème année Les bases pour les math 6h A.Droesbeke Version : 015 Table des matières I Algèbre 1 1 Rappel du cours de 3 ème 3 1.1 Les exposants......................................

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Notes de cours de mathématiques en Seconde générale O. Lader

Notes de cours de mathématiques en Seconde générale O. Lader Seconde générale Lycée Georges Imbert 05/06 Notes de cours de mathématiques en Seconde générale O. Lader Table des matières Développer factoriser pour résoudre (S). Calcul algébrique.................................................

Plus en détail

TAGE 2 FICHE DE COURS N 1 MÉMO MATHÉMATIQUE

TAGE 2 FICHE DE COURS N 1 MÉMO MATHÉMATIQUE TAGE FICHE DE COURS N MÉMO MATHÉMATIQUE Tous droits réservés Page Ce mémo mathématique balaye le champ des connaissances requises pour les sous-tests de calcul, conditions minimales, logique et raisonnement

Plus en détail

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier

maths Cours de mathématiques 2010-2011 Seconde F.Lagrave - Lycée Beaussier maths Seconde Cours de mathématiques 2010-2011 F.Lagrave - Lycée Beaussier cours de mathématiques cours avec exercices T A B L E D E S M A T I È R E S 1 Généralités sur les fonctions 7 1.1 Notion de

Plus en détail

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques

Mathématiques. Classe de seconde. Introduction. Objectif général. Raisonnement et langage mathématiques Mathématiques Classe de seconde Introduction La seconde est une classe de détermination. Le programme de mathématiques y a pour fonction : de conforter l acquisition par chaque élève de la culture mathématique

Plus en détail

Prise en main du logiciel GeoGebra

Prise en main du logiciel GeoGebra Prise en main du logiciel GeoGebra 1 Introduction 1.1 Principes GeoGebra est un logiciel de géométrie dynamique permettant d effectuer des constructions de figures de façon purement géométrique mais également

Plus en détail

Produit scalaire. Définition : Soient un vecteur. On appelle carré scalaire de (noté ):. On appelle norme de et on note :.

Produit scalaire. Définition : Soient un vecteur. On appelle carré scalaire de (noté ):. On appelle norme de et on note :. Produit scalaire 1 Produit scalaire de deux vecteurs 11 Définition Définition : Soient deux vecteurs non nuls Soient A, B C des points tels que : Soit H le projé orthogonal de C sur (AB) On appelle produit

Plus en détail