Représentation géométrique d un nombre complexe

Dimension: px
Commencer à balayer dès la page:

Download "Représentation géométrique d un nombre complexe"

Transcription

1 CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres qui s écrivent a + ib où a et b sont des nombres réels.. Représentation géométrique d un nombre complexe Dans le plan muni d un repère orthonormé ( O ; u, v), à tout point M de coordonnées ( a, b), on associe le nombre complexe tel que = a + ib. On dit que M est l image du nombre complexe et que le nombre est l affixe du point M. De même, le vecteur OM est l image de et est l affixe de OM. L écriture a + ib est l écriture algébrique du nombre complexe L abscisse du point M est la partie réelle de notée Re( ). L ordonnée du point M est la partie imaginaire de notée Im( ). Remarque : Les parties réelle et imaginaire d un nombre complexe sont des nombres réels Conséquences M( a, b) et M ( a, b ) confondus a = a et b = b = a+ ib et = a + ib égaux M = O a = 0 et b = 0 = 0. M ( O, u ) b = 0 Im( ) = 0. L axe ( O, u ) est appelé l axe réel. M ( O, v ) a = 0 Re( ) = 0 i. Dans ce cas on dit que est un imaginaire pur et que l axe ( O, v ) des imaginaires ou l axe des imaginaires purs. est l axe

2 cours savoir-faire exercices corrigés Les points M( a, b) et M ( a, b) sont symétriques par rapport à O, leurs affixes sont opposées. Le point N( a, b) est l image du nombre complexe appelé conjugué de et noté. Les points M( a, b) et N( a, b) sont symétriques par rapport à l axe réel. b M( ) axe réel v O u a M ( ) axe imaginaire N( ) exemple d application 1. Écrire les nombres complexes, affixes respectives des points : A(0 ; ) ; B( ; 0) ; C(3 ; ) ; D(3 ; ) et E(0 ; ).. Reconnaître s il y a lieu des nombres conjugués. 1. L affixe du point A est = i ; l affixe du point B est B = ; A celle de C est C = 3 i ; celle de D est D = 3+ i et celle de E est E = i.. = et C = D. A E 11

3 CHAPITRE 1 NOMBRES COMPLEXES Formes trigonométriques 1. Formes trigonométriques Soit un repère ( O ; u, v) orthonormé du plan. Un point M distinct de O est repéré de deux façons, soit par ses coordonnées cartésiennes ( a, b) soit par ses coordonnées polaires ( r, θ). Soit M l image du nombre complexe tel que = a + ib. On pose OM = r avec r 0. Le nombre positif r est appelé module de et noté. Le nombre réel θ est une mesure de l angle ( u, OM). Cette mesure est définie à k près avec k et est appelée argument de et on écrit : arg = θ ( ). Remarque : La notion d angle de vecteurs nécessite une orientation du plan (l orientation trigonométrique est la plus souvent utilisée.) + b M En projetant M sur chacun des axes, on obtient : a = rcosq et b = rsinq r d où = r( cosθ + i sinθ) et d après le théorème de v Pythagore = a + b θ O a ( r = OM = OM = ). u Sachant que r 0, on appelle forme trigonométrique du nombre complexe l écriture r( cosθ + i sinθ).. Propriétés du module et d un argument d un nombre complexe = 0 = 0. = = =, quel que soit. L argument de éro n est pas déterminé. Si 0, Si 0, arg( ) arg( ) = = arg + arg. ( ). = r = r r( cosθ + i sinθ) = r ( cosθ + i sinθ ) θ = θ ( ). 1

4 cours savoir-faire exercices corrigés 3. Passage de l écriture algébrique à une forme trigonométrique = a+ ib avec a b a b = +, d où = i a + b a + b Soit θ le nombre exprimé en radians tel que : a cosθ = a + b alors = ( cosθ + i sinθ). b sinθ = a + b Remarque : Il est nécessaire d avoir en tête les sinus et cosinus des valeurs particulières des angles. exemple d application Placer dans le plan complexe rapporté à un repère orthonormé ( O ; u, v) les points M, N et R définis par OM = et ( u, OM) = -- [] ; ON = 1 et 4 ( u, ON) = -- [] et OR = 3 et ( u, OR) = []. 3 Le point M appartient au cercle de centre O et de rayon et à la bissectrice du premier quadrant. Le point N appartient au cercle trigonométrique et à la demi-droite [Oy ). Sur le cercle de centre O et de rayon 3, on reporte deux fois le rayon à partir de A(3 ; 0) dans le sens trigonométrique, on obtient ainsi le point R. R v O y N u y M A 13

5 CHAPITRE 1 NOMBRES COMPLEXES 3 Opérations dans 1. Addition des nombres complexes L addition des nombres complexes possède les mêmes propriétés que l addition dans. L ensemble est contenu dans. Tout nombre réel est un nombre complexe dont la partie imaginaire est nulle. Soit les vecteurs OM et OM d affixes respectives a + ib et a + ib. Le vecteur ( OM + OM ) a pour coordonnées ( a+ a, b+ b ) donc si = a+ ib et = a + ib, le nombre complexe + est tel que Re( + ) = a+ a et Im( + ) = b+ b d où + = ( a+ a ) + i( b+ b ). OS est l image de +. b+ b S MM. est l image de b M b v M O u a a a+ a + = + ; + = Re( ) ; = i Im( ).. Multiplication des nombres complexes La multiplication des nombres complexes possède les mêmes propriétés que la multiplication dans. = ( a + ib) ( a + ib ) = aa bb + i( ba + ab ). Remarque : aye toujours à l esprit que i = 1 et que i ne doit pas figurer dans un résultat ni aucune autre puissance de i. = ; = a + b = 14

6 cours savoir-faire exercices corrigés Si 0 et 0 et = r( cosθ + i sinθ) et = r ( cosθ + i sinθ ), alors = rr ( cos( θ + θ ) + i sin( θ + θ )). Donc : = et arg( ) = arg+ arg ( ) 3. Division de deux nombres complexes La division de deux nombres complexes a les mêmes propriétés que la division dans. 1 Tout nombre complexe non nul admet un inverse -- tel que : 1 1 a b -- = = i a + ib a + b a + b Remarque : cette écriture algébrique s obtient en multipliant numérateur et dénominateur par le conjugué du dénominateur. Si 0, = --- = aa + bb a b ab i a + b a + b Si 0, --- = donc, si 0, 1 -- et arg --- = arg arg ( ), 1 1 = ---- et arg -- = arg ( ). --- = --- Exemple d application 4 3i Soit Z le nombre complexe tel que Z = i Calculer Z et donner l écriture algébrique de Z. Indication : On applique la propriété --- = i 4 Z = = = = d où : Z = i Indication : On applique la propriété ---. = i 4+ 3i 4+ 3i ( 4+ 3i) ( 1 i) 7 Z = = = = d où : Z = i. i + i 1 ( + i) 4 4 Conseil : N oublie pas que = donc que ( 1+ i) ( 1 i) s écrit sans calcul. On pouvait aussi mettre Z sous forme algébrique et écrire ensuite Z. 15

7 CHAPITRE 1 NOMBRES COMPLEXES 4 Formes exponentielles 1. Formes exponentielles Soit la fonction f : θ cosθ + i sinθ. f( θ) f( θ ) = ( cosθ + i sinθ) ( cosθ + i sinθ ) f( θ) f( θ ) = ( cosθcosθ sinθ sinθ ) + i( sinθ sinθ + cosθ cosθ ) f( θ) f( θ ) = cos( θ + θ ) + i sin( θ + θ ). Donc f( θ) f( θ ) = f( θ + θ ). Cette relation fonctionnelle étant caractéristique des fonctions exponentielles on pose : Tout nombre complexe non nul de module r est tel que = r( sinθ + i sinθ). re iθ L écriture est une forme exponentielle du nombre complexe. Remarques : Cette écriture est à privilégier dans des calculs de quotients ou de puissances de nombres complexes. Tous les nombres complexes e iθ ont pour module un et pour images des points du cercle trigonométrique. De part l introduction de l écriture exponentielle : e iθ e iθ = e i( θ + θ ) ; = e i( θ θ ) ; ( e iθ ) n = e inθ avec n. Formules d Euler : e iθ e iθ e iθ = sinθ + i sinθ cosθ e iθ e iθ + e iθ e = ; sinθ = iθ. i re iθ = r e iθ r = r θ = θ ( ).. Résolution d une équation de type n = a Si n avec n, et a, on écrit et a sous forme exponentielle. 16

8 cours savoir-faire exercices corrigés Soit = re iθ et a = ρe iα. n = a r n e inθ = ρe iα r n = ρ nθ = α + k avec k r n = ρ soit α θ = -- + k avec k. n n L équation admet alors n solutions en donnant à k, n valeurs consécutives. exemple d application Résoudre dans l équation 3 = 8i. Donner les solutions sous forme algébrique. On pose = re iθ avec r 0 et i = e i = 8i r 3 e i3θ = 8e i -- r 3 = 8 3θ = -- + k avec k r = soit θ = -- + k , k. 6 3 Pour k = 0, e i 6 -- = = cos -- + i sin = 3+ i ; pour k = 1, e i = = cos i sin = 3 + i ; 6 6 pour k =, e i = = cos i sin = i. S = { i ; 3+ i ; 3 + i}. 17

9 CHAPITRE 1 NOMBRES COMPLEXES 5 Résolutions d équations dans 1. Équations du premier degré Toute équation du premier degré d inconnue se ramène à a + b = 0 avec a et b. b Cette équation a pour solution = --. a Remarque : Il est souvent inutile de poser = x+ iy et de déterminer ensuite x et y par identification des parties réelles et imaginaires. Donner la solution sous une des trois formes algébrique, trigonométrique ou exponentielle.. Équations du second degré à coefficients réels Toute équation du second degré d inconnue se ramène à avec a, b et c. a + b + c = 0 Discriminant Solutions 0 = 0 0 b + x = x = a x = x = b a b x = x = a b + i a b i a Remarques : Si 0, les solutions sont des nombres complexes conjugués non réels. Veille à ne pas introduire le nombre complexe i sous un radical. existe si 0, on peut aussi écrire Équations dont le degré est strictement supérieur à Les méthodes de résolution sont souvent les mêmes que dans : il faut d abord essayer de factoriser, voir s il y a une identité remarquable, chercher une racine évidente. On désire donc se ramener à des produits de facteurs du premier degré ou du second degré. Remarque : il faut penser que 1 = i et donc que + 1 est factorisable dans alors qu il ne l est pas dans.

10 cours savoir-faire exercices corrigés Résoudre dans l équation exemples d application On regroupe les termes faisant intervenir : Indication : on calcule on peut écrire ( 1 i) + 3 = + i. ( 1 i)+ = 3 + i soit ( i) = 3 + i 3 + i ( 3 + i) ( + i) 7 1 d où = = = -- --i. i S = -- --i 5. 5 Résoudre dans l équation + 1 = 0. = 3i. = b 4ac = 1 4 = 3, 0 ; Indication : on sait alors que les solutions de l équation sont deux nombres complexes conjugués. Conseil : ne pas oublier la valeur absolue. 1 b + i 1+ i 3 = = a 1 i 3 = 1 = i 3 S ; 1 i 3 =

11 CHAPITRE 1 NOMBRES COMPLEXES 6 Transformations ponctuelles 1. Transformation et application associée Soit f une application définie par : f( ). Le point M étant l image de et M l image de tel que = f ( ), on définit dans le plan la transformation T associée à f, qui à M fait correspondre M.. Transformations usuelles Soit un repère orthonormé ( O ; u, v) direct. Transformation T Éléments caractéristiques Définitions de T avec M = T( M) Écritures complexes de T avec M( ) et M ( ) Translation Un vecteur non nul d affixe u u MM = u = + u Homothétie Un point Ω d affixe ω et un réel k 0 ΩM = kωm ω = k ( ω) ou bien = k + b avec b Rotation Un point Ω d affixe ω et un angle de mesure θ à près ΩM = ΩM ( ΩM, ΩM ) = θ ω = e iθ ( ω) ou bien = e iθ + b avec b. Symétrie d axe réel L axe réel OM = OM ( u, OM) = ( u, OM ) = 0

12 cours savoir-faire exercices corrigés exemple d application Parmi les écritures complexes suivantes, reconnaître les transformations et donner pour chacune d elles les éléments caractéristiques Indication : comme le coefficient de est 6, alors la transformation associée est une homothétie de rapport 6. Pour trouver son centre, qui est le seul point invariant de la transformation, on résout «l équation aux points fixes» c est-à-dire celle traduisant M = M donc =. Par suite = 6 + 3i soit 7 = 3i, 3 d où = -- --i L homothétie est celle de rapport 6 et de centre W d affixe -- --i Indication : comme le coefficient de est le nombre complexe i dont l écriture exponentielle est e i 6 --, alors la transformation associée à l écriture complexe est une rotation d angle Pour trouver son centre, on résout «l équation aux points fixes». = e i i soit i 4 + i = 4 + i d où = , i soit d où = 6 + 3i. 3 1 = i 4 + i. ( 4 + i) i = = i , = 4 3 i ( 3+ 3). La rotation est celle de centre Ω d affixe 4 3 i ( 3+ 3) et d angle

13 CHAPITRE 1 NOMBRES COMPLEXES 7 Interprétations géométriques On se place dans un repère orthonormal ( O ; u, v). 1. Interprétation géométrique d une égalité de modules Soit A, B et M trois points d affixes respectives a, b et m. Si m a = m b, alors AM = MB ce qui signifie que le point M appartient à la médiatrice du segment [ AB]. Si m a = r, avec r +, AM = r donc le point M appartient au cercle de centre A et de rayon r.. Interprétation géométrique du quotient de deux nombres complexes Les points M et M ont pour affixes respectives et. Soit Z = --- avec 0 et 0. argz = arg arg = ( u, OM) ( u, OM ) () argz = ( u, OM) + ( OM, u ) = ( OM, OM) (). Remarque : un argument d un quotient de deux nombres complexes non nuls est un angle de vecteurs. Soit les points A( A ), B( B ), C( C ) et D( D ) avec A B et C D. Alors : A C arg B D = ( DC, BA) ( ) 3. Figures particulières (ABC est un triangle rectangle et isocèle direct en B) A B C B = e i -- = i. (ABC est un triangle équilatéral) B A = C B = C A. (ABC est un triangle équilatéral direct) C A B A = e i (ABC est un triangle équilatéral direct) C A arg = -- et A B arg = --. B A 3 C B 3 (ABCD est un parallélogramme) AB = DC B A = C D.

14 cours savoir-faire exercices corrigés exemples d application Quelle est la nature du triangle ABO sachant que les points A et B ont pour affixes respectives 3+ i et i? 0 A Indication : on explicite le complexe Z tel que Z = , puis on en détermine son module et un argument. B A Indication : les nombres complexes 3 i et 3 + i sont conjugués donc leurs modules sont égaux et leurs arguments opposés, donc Z = 1 soit : 0 A = B A OA = OB. arg( 3 i) i 5 = arg = (), 6 or argz = arg( 3 i) arg( 3 + i) = arg( 3 i), soit argz 5 = () d où argz = -- (). 6 3 soit argz = ( u, AO) ( u, AB) = ( AB, AO) d où ( AB, AO) = -- (). 3 Par suite le triangle AOB est équilatéral. Soit A, B et C les points d affixes respectives 1 + i, + i et 1 i. Quelle est la nature du triangle ABC? AO AB 3 i 3 i Z = = i 3 i 3 + i De plus argz = arg = arg( ) arg( ) AO AB Il est souhaitable de placer les points dans un repère pour bien poser le problème. BA On calcule le nombre complexe Z tel que Z = BC 1+ i ( + i) 3+ i ( 3+ i) ( 1+ 3i) Z = = = , 1 i ( + i) 1 3i 10 10i d où = = i ; on en déduit que ( BC, BA) = -- (). 10 De plus i = 1 BA = BC BA = BC. Le triangle ABC est donc rectangle et isocèle en B. 3

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

COMPOSITION DE MATHÉMATIQUES

COMPOSITION DE MATHÉMATIQUES CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2001 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) Durée : 5 heures La calculatrice de poche est autorisée. La clarté et la précision de la rédaction seront prises

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES

Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Programme de Mathématiques Années 1-3 du Secondaire

Programme de Mathématiques Années 1-3 du Secondaire Schola Europaea Bureau du Secrétaire Général Ref. : 2007-D-3310-fr-3 Orig. : EN Programme de Mathématiques Années 1-3 du Secondaire APPROUVE PAR LE CONSEIL SUPERIEUR DES ECOLES EUROPÉENNES DES 22 ET 23

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.

I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a. OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail