Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Chafa Azzedine - Faculté de Physique U.S.T.H.B 1"

Transcription

1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

2 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes qui les prooquent. Chafa Azzedine - Faculté de Physique U.S.T.H.B

3 NOTION DE REPÈRE Point matériel Un point matériel est un objet infiniment petit deant les distances caractéristiques du mouement pour être considéré comme ponctuel. D D Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

4 NOTION DE REPÈRE z y terre soleil x Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

5 NOTION DE REPÈRE Pour repérer la position d un point matériel dans l espace, on se donne un repère d espace, c est-à-dire: - un point O origine des coordonnées - trois axes de coordonnées orientés et munis d une unité de mesure (par exemple le mètre) Pour des raisons de commodité, on choisit un repère orthonormé O, i, j, k direct Un point M de l espace est repéré par ses coordonnées x, y et z tel que: OM xi yj zk Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

6 NOTION DE MOUVEMENT Un objet est mouement par rapport à un autre si sa position change au cours du temps Un point M est dit fixe par rapport au repère R(O, x, y, z) si ses coordonnées ne changent pas. Le point M est en mouement si au moins une de ses coordonnées change dans le temps. La notion de mouement est relatie. En effet un point peut être en mouement par rapport à un repère R Et au repos par rapport à un second repère R Chafa Azzedine - Faculté de Physique U.S.T.H.B 6

7 NOTION DE MOUVEMENT On distingue essentiellement trois type de mouements : Translation Rotation Vibration Ou une combinaison de deux de ces mouements Chafa Azzedine - Faculté de Physique U.S.T.H.B 7

8 NOTION DE TRAJECTOIRE Définition : C est le lieu géométrique des positions successies occupées par le point matériel au cours du temps Exemple : un mobile est repéré par les coordonnées suiantes : X (t) = A cos wt Y (t) = A sin wt En supprimant le temps, on obtient : x y A La trajectoire est donc un cercle de centre O et de rayon A L équation de la trajectoire est une relation qui lie les coordonnées du point entre elles Chafa Azzedine - Faculté de Physique U.S.T.H.B 8

9 MOUVEMENT RECTILIGNE La trajectoire d un mouement rectiligne est une droite. Vecteur position OM x() t i C est le ecteur qui désigne la distance qui sépare le mobile M du point O pris comme origine. O i OM 1 M 1 OM M OM 3 M 3 x x(t) est appelée équation horaire du mouement Chafa Azzedine - Faculté de Physique U.S.T.H.B 9

10 Notion de diagramme des espaces Si on reporte les positions successies du mobile en fonction du temps, on obtient une courbe appelée : Diagramme des espaces x(m) t(s) Remarque: Il ne faut pas confondre trajectoire et diagramme des espaces Chafa Azzedine - Faculté de Physique U.S.T.H.B 10

11 Vecteur déplacement (m): O i OM 1 M 1 OM OM M x Le ecteur déplacement est la distance parcourue entre deux instants M M OM OM OM ( x x ) i Vecteur itesse (m/s): Vecteur itesse moyenne: t t t1 M1 M Si est le temps mis entre et, la itesse moyenne est : M M OM OM OM x x x m ou encore i i t t t t t t t m Chafa Azzedine - Faculté de Physique U.S.T.H.B

12 Vecteur itesse instantanée: Si on diminue l interalle de temps, on obtient la itesse instantanée : OM dom x dx i lim ou i lim i i t0 t t0 t dx Le terme possède deux significations : dx 1- Si on a l expression de x(t), alors désigne la dériée de x(t): Exemple: 3 x( t) 3x x 5 dx ( t) 9x 4x Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

13 dx - Si on a le graphe de x(t), alors désigne la pente de la tangente à la courbe x(t) Exemple: Problème!!! x(m) + A + dx tan AC BC B t C t(s) Chafa Azzedine - Faculté de Physique U.S.T.H.B 13

14 On a donc calculer la itesse instantanée à partir de la itesse moyenne Il y a deux cas ou la itesse moyenne est confondue aec la itesse moyenne 1 er cas: Mouement rectiligne uniforme: x x(m) x1 t1 t t(s) m x x x t t t 1 1 dx x x tan t t 1 1 m Chafa Azzedine - Faculté de Physique U.S.T.H.B 14

15 ème cas: mouement rectiligne quelconque: x(m) t t t 1 ( ) m1 t m t m1 m m3 m4 m m3 + m V(t) t(s) t1 t3 t5 t7 t t8 t6 t4 t Conclusion : La itesse instantanée à l instant t est assimilée à la itesse moyenne entre deux instants t1 et t tel que t est milieu de t1 et t aec t 15

16 Vecteur accélération (m/s): Vecteur accélération moyenne: O i OM 1 M 1 OM M 1 x a m am et t t t1 1 Sont dans le même sens et direction Vecteur accélération instantanée: 1 1 a ai lim t 0 t d Chafa Azzedine - Faculté de Physique U.S.T.H.B 16

17 a d Comme pour la itesse le terme possède deux significations : d 1- Si a l expression de (t), alors désigne la dériée de (t): Exemple: 3 x( t) 3x x 5 dx d d x a( t) 18x 4 ( t) 9x 4x Chafa Azzedine - Faculté de Physique U.S.T.H.B 17

18 d - Si a le graphe de (t), alors désigne la pente de la tangente à la courbe (t) (m/s) A B C t(s) t En procédant de la même façon que pour la itesse on en déduit que: Conclusion : L accélération instantanée à l instant t est assimilée à l accélération moyenne entre deux instants t1 et t tel que t est milieu de t1 et t aec t Chafa Azzedine - Faculté de Physique U.S.T.H.B 18

19 Mouement rectiligne uniforme : cons tan te et a 0 Mouement rectiligne uniformément accéléré : a cons tan te et a. 0 Mouement rectiligne uniformément retardé ou décéléré : a cons tan te et a. 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 19

20 Exemple : Soit une oiture se déplaçant sur une route rectiligne repérée par les positions M1, M, M3 et M4 aux instants t1= 0s, t=s, t3 = 4s et t4= 5s OM1 1i OM 10i OM 3 i OM 4 i respectiement tel que :,, et M 1 M M 3 i M 4 x OM 1 OM OM 4 OM3 O 1- Calculer les ecteurs déplacements : MM, 1 MM et 3 M3M4 M M OM OM ( x x ) i ( 10 ( 1)) i i M M OM OM ( x x ) i ( ( 10)) i 1i M M OM OM ( x x ) i ( ()) i 4i Déterminer les ecteurs itesses moyennes entre M1 et M et entre M3 et M4 M M ( x x ) M M ( x x ) 4 ( / ) 1 1 m i i i m s t ( t t1) ( 0) m i i i m s t ( t4 t3) (5 4) 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 4 ( / )

21 3- Déterminer le ecteur accélération moyenne entre et 6 s, (s) = 4m/s et (6s) = m/s O i OM 1 M 1 OM 3 M 3 ( s ) (6 s) x (6 s) ( s) (6 s) ( ( s)) 1 1 a m (6 s) ( s) ( (6 s) ( s)) ( 4) 1 am i 0.5 i ( m / s ) t ( t t1) (6 ) Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

22 Calcul Intégral: Jusqu à présent on a u comment passer de la position x(t) à la itesse (t) puis à l accélération a(t) Nous maintenant étudier le problème inerse pour passer de l accélération à la itesse puis à la position Passage de la itesse à la position: 1 er Cas: Mouement uniforme (m/s) Dans ce cas: x x x m t t t 1 1 x x ( t t ) 1 1 t1 t t(s) Et donc: x ( t t ) x 1 1 x ( t t ) correspond à l aire sous la courbe (t) 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B

23 ème Cas général : (m/s) On partage l interalle entre t1 et t en plusieurs petits =cte dx dx = aire sous la courbe (t) sur l interalle t1 x t En faisant la somme des petits interalles entre t1 et t : t(s) x x dx x 1 t1 t alors: t 1 x x t1 x est donc l aire sous la courbe (t) entre t1 et t. Remarque : Il ne faut pas confondre entre position et distance parcourue -La position est l aire sous (t) en aleur algébrique -La distance parcourue est l aire sous (t) en aleur absolue Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

24 Exemple: (m/s) 0 40 t(s) 1-position du mobile à t = 40 s -distance parcourue entre 0 et 40 s t=0 s, x = 0 m 1- position du mobile: x 40 x dx 10(0 0) 10(40 0) 0 m x(40 s) 0m distance parcourue par le mobile: D x1 x 10(0 0) 10(40 0) 40m Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

25 Passage de l accélération à la itesse: a( m / s ) On partage en plusieurs interalle a=cte d a d a t1 t t(s) d a 1 t1 t est donc l aire sous la courbe a(t) entre t1 et t. Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

26 Étude de quelques mouements particuliers Mouement rectiligne uniforme: a( m / s ) ts () aire sous a( t) 0 0 d a () t a ( m / s) 0 cons tan te 0 xm ( ) ts () a 0 ( t) a cons tante dx dx dx 0 x aire sous () t t x t x x( t) x t x( t) t x x 0 ts () x() t est une droite 6 Chafa Azzedine - Faculté de Physique U.S.T.H.B

27 Mouement rectiligne uniformément arié: a=cte, t = 0s, 0 et x0 a 0 x 0 a( m / s ) ( m / s) xm ( ) A A1 t t ts () a cons tan te aire sous a() t at at ts () () t est une droite x aire sous () t A A 1 A1 0t A ( 0 ) t (( at 0) 0) t at 1 x x x0 at 0t ts () 0 d a d a 0 t t () t at a t at dx dx x() t at 0t x0 t t x x( t) x ( at ) Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 7

28 Relation entre a, et x: d a d a On multiplie chaque membre par d a d adx On intègre de chaque côté x x d adx a dx x x ( ) ( ) 0 0 a x x a( x x ) 0 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 8

29 Exemples d étude de mouement Chafa Azzedine - Faculté de Physique U.S.T.H.B 9

30 Mouement dans l espace ou curiligne : Position d un point : On peut définir la position d un point dans l espace de deux manières - A : En repérant le point par rapport à un repère orthonormé x i z r 1 k r y j r 3 r 4 Le ecteur position s écrit : OM ( t) r ( t) Chafa Azzedine - Faculté de Physique U.S.T.H.B 30

31 - B : En considérant un point sur la trajectoire pris comme origine MM 0 1 On parle d abscisse curiligne notée : s() t M M 0 1 La loi décriant s(t) en fonction du temps est appelée équation horaire Chafa Azzedine - Faculté de Physique U.S.T.H.B 31

32 Vecteur déplacement : k z x i j y C est la distance pour aller du point M1 au point M. M1M OM ( t) r ( t) Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

33 Vecteur itesse d un point : Vecteur itesse moyenne : m x z k i y j MM 1 OM ( t) r ( t) t t t Le ecteur itesse moyenne est parallèle au ecteur déplacement Vecteur itesse instantanée : m Chafa Azzedine - Faculté de Physique U.S.T.H.B OM ( t) r ( t) dr lim lim t0 t t0 t 33

34 Construction géométrique de et m : On calcule la itesse instantanée à partir de la itesse moyenne m1 MM t 10 m MM t ' 3 9 m1 m3 MM t " 4 8 m m3 m4 m4 MM t ''' 5 7 Conclusion: la itesse instantanée à l instant t est assimilée à la itesse moyenne 34 entre deux instants t1 et t, tel que t est milieu de [t1, t] et t petit.

35 Vecteur accélération : Accélération moyenne : Elle caractérise la ariation du ecteur itesse am a m t t t 1 1 a le même sens et direction que Accélération instantanée : a ai lim t 0 t d On peut confondre l accélération instantanée et l accélération moyenne au milieu de l interalle de temps si est très petit. Chafa Azzedine - Faculté de Physique U.S.T.H.B 35

36 Construction géométrique de aet a : On cherche l accélération à t7 =0.6 s (correspond au point 7) aec t= 0.1 s m m a 7 m t 8 6 t ( ) a m m 7 Chafa Azzedine - Faculté de Physique U.S.T.H.B 8 36

37 Étude de et a dans différents systèmes de coordonnées : Coordonnées cartésiennes : Vecteur position : OM xi yj zk x(t), y(t) et z(t) sont les équations paramétriques du mouement Vecteur itesse : Vitesse moyenne: OM r x y z m i j k mxi my j mzk t t t t t Vitesse instantanée: dom dr dx dy dz m i j k xi y j zk37

38 Vecteur accélération : Accélération moyenne : x y z am i j k amxi amy j amzk t t t t Accélération instantanée : d d d d x y z a i j k axi ay j azk Chafa Azzedine - Faculté de Physique U.S.T.H.B 38

39 Coordonnées curilignes ou intrinsèques : u T Abscisse curiligne: u N OM s() t Vitesse : On définit deux ecteurs unitaires: u T: porté par la tangente à la trajectoire en M est orienté dans le sens positif: u : porté par la perpendiculaire à la trajectoire et dirigée ers l intérieur N ds u u Donc : T T u T Chafa Azzedine - Faculté de Physique U.S.T.H.B u N 39

40 Accélération : u T a u N N a T a d d( ut) d du a ut Or: d d a u u a u a u Donc: T N T T N N Aec: a T d et a N d dut d un T Chafa Azzedine - Faculté de Physique U.S.T.H.B 40

41 r u N u T d ds Et donc: ds ds rd r d 1 ds r r d an r d Chafa Azzedine - Faculté de Physique U.S.T.H.B 41

42 Coordonnées polaires : u y M j OM r () t O u r i Position: On repère le point M par la distance OM=r et l angle x OM rt () () t r(t) et (t) sont les équations paramétriques en coordonnées polaires On prend deux ecteurs noueaux unitaires ur et u OM r() t u r Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

43 Vitesse: Nous dérions le ecteur position dom d( r( t) ur) dr() t du ur r dur d u dr() t d ur r u Et comme : Alors : On décompose la itesse suiant les deux axes : u u r r r u y j OM r () t O u r i M r x Par identification on a : r dr et d r Chafa Azzedine - Faculté de Physique U.S.T.H.B 43

44 Accélération: On dérie le ecteur itesse dr() t d d d( ur r u ) a a d r dr dur dr d d d du a u r u r u r Or on sait que : dur d u et du d u r a a u a u r r Chafa Azzedine - Faculté de Physique U.S.T.H.B 44

45 d r dr d dr d d d d a u r u u r u r u r d r d dr d a r u d r r u On décompose l accélération suiant les deux axes: Par identification on a: a a u a u r r a r d r d r a dr d r d Chafa Azzedine - Faculté de Physique U.S.T.H.B 45

46 Exemple: En coordonnées polaires le mouement d un mobile est décrit par les équations OM t rt () () t t 4 Dessiner les ecteurs position, itesse et accélération à t = 1s dr d t d r d Chafa Azzedine - Faculté de Physique U.S.T.H.B 46

47 Vecteur position: À t = 1s OM (1 s) 1 r( t) 0.5 () t 4 m Echelle: 1 cm 0. m 1 cm 0.4 m/s 1 cm 0.7 m/s Vecteur itesse: dr r t r (1 s) 1 m / s d t (1) 0.39 m / s r 8 8 Vecteur accélération: d r d ar r dr d d a r t ar 1 3 ar 0.69 m / s t a 1.57 m / s a Chafa Azzedine - Faculté de Physique U.S.T.H.B y j OM r () t O a (1 s) i 4 a(1 s) (1 s) u M u r ar x (1 s) r (1 s) 47 (1 s)

48 Coordonnées cylindriques : P est la projection de P dans le plan xoy Vecteur position: Vecteur itesse: OM u zk y dom d( u zk ) x P' d d dz u u k u u k z Chafa Azzedine - Faculté de Physique U.S.T.H.B 48

49 Vecteur accélération: d d d d dz a u u k d d d d d d z a u u k a a u a u a k z Chafa Azzedine - Faculté de Physique U.S.T.H.B 49

50 Coordonnées sphériques : Vecteur position: x rsincos OM y r sinsin z rcos Chafa Azzedine - Faculté de Physique U.S.T.H.B 50

51 Changement de repère ou mouement relatif: x x k j i x x ' k ' i x ' j ' ' x ' Vecteur position: OM OO ' O' M Dans R: OM xi yj zk Dans R : O ' M x ' i ' y ' j ' z ' k ' 51

52 Vecteur itesse: La itesse dans R est dite absolue et notée a = M/R La itesse dans R est dite relatie et notée r = M/R Vitesse absolue: Vitesse relatie : dom dx dy dz a i j k dx ' dy ' dz ' r i ' j ' k ' Calcul de la itesse : dom doo ' do ' M Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

53 doo ' do ' M doo ' d( x ' i ' y ' j ' z ' k ') d OO ' dx ' di ' dy ' dj ' dz ' dk ' i ' x ' j ' y ' k ' z ' dx ' dy ' dz ' d OO ' di ' dj ' dk ' i ' j ' k ' x' y ' z ' a r e M / R M / R' R / R' Vitesse d entrainement: doo ' di ' dj ' dk ' e x ' y ' z ' Chafa Azzedine - Faculté de Physique U.S.T.H.B 53

54 Cas particuliers: * Si R décrit un mouement de translation donc les dériées des ecteurs unitaires sont nulles: di ' dj ' dk ' 0 doo ' e *Si R et R se déplacent à la même itesse : a r Chafa Azzedine - Faculté de Physique U.S.T.H.B 54

55 Vecteur accélération: En dériant on obtient : a d d d a r e a a a a a a a a a r e c M / R M / R' R'/ R c Accélération absolue: Accélération relatie: Accélération entrainement: d OM d x d y d z aa i j k d x ' d y ' d z ' ar i ' j ' k ' d OO ' d i ' d j ' d k ' ae x ' y ' z ' Accélération Coriolis: a c dx ' di ' dy ' dj ' dz ' dk ' Chafa Azzedine - Faculté de Physique U.S.T.H.B 55

56 Cas particuliers: * Si R décrit un mouement de translation donc les dériées des ecteurs unitaires sont nulles: d OO ' ae et a 0 c Si en plus le mouement de R est uniforme alors : a 0 et a 0 a a e c a r Chafa Azzedine - Faculté de Physique U.S.T.H.B 56

NOTION DE REPÈRE. z y. terre. soleil

NOTION DE REPÈRE. z y. terre. soleil 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes qui les prooquent. NOTION DE REPÈRE Point matériel

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

A. CINEMATIQUE ET DYNAMIQUE

A. CINEMATIQUE ET DYNAMIQUE A. CINEMATIQUE ET DYNAMIQUE 1. Grandeurs cinématiques a. Rappels et définitions La cinématique étudie les mouvements sans se préoccuper de leurs causes (c est-à-dire des forces) Le mouvement est le changement

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au 1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Chapitre 3 : Dynamique du point matériel

Chapitre 3 : Dynamique du point matériel Cours de Mécanique du Point matériel Chapitre 3 : Dynamique SMPC1 Chapitre 3 : Dynamique du point matériel I Lois fondamentales de la dynamiques I.1)- Définitions Le Référentiel de Copernic: Le référentiel

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu

Lancer de poids. TS Chimie aux championnats du monde. Exercice résolu P a e 1 TS Chimie Le lancer de poids aux championnats du monde Exercice résolu Enoncé Lors des championnats du monde d'athlétisme qui eurent lieu à Paris en août 3, le ainqueur de l'épreue du lancer du

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Chapitre 7 Leschangementsde référentiels

Chapitre 7 Leschangementsde référentiels Chapitre 7 Leschangementsde référentiels 59 7.1. Introduction 7.1.1. Position du problème L étude des trajectoires di ère selon le référentiel dans lequel on se place. Par exemple, observons la valve d

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Chapitre 8 - Trigonométrie

Chapitre 8 - Trigonométrie Chapitre 8 - Trigonométrie A) Rappels et compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le cercle de centre O et de rayon dans un repère orthonormal (O, I, J),

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011

Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 2010-2011 Résumé de cours sur les coniques. Lycée Brizeux - PCSI B. Année 010-011 novembre 010 I Définition d une conique en terme d équation cartésienne On se place dans le repère orthonormé direct (0, i, j ).

Plus en détail

Théorème d Ampère et applications

Théorème d Ampère et applications 6 Théorème d Ampère et applications 1 Théorème d Ampère Equivalent du théorème de Gauss pour l électrostatique. Permet de calculer des champs simplement en utilisant la symétrie des courants. Mais il faut

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

1 ère S La petite voiture Physique Mécanique

1 ère S La petite voiture Physique Mécanique Page 1 sur 5 1 ère S Physique Mécanique - Enoncé - Remarques préliminaires : - n prendra g = 9,8 N.kg -1. - n traaille dans un référentiel terrestre supposé galiléen. Un jouet, une «petite oiture», est

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

Chapitre n 1 : CINEMATIQUE DE NEWTON

Chapitre n 1 : CINEMATIQUE DE NEWTON Physique - 6 ème année - Ecole Européenne Chapitre n 1 : CINEMATIQUE DE NEWTON La cinématique étudie la description du mouvement des mobiles sans en chercher les causes. Le but de la leçon est d'introduire

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Trigonométrie dans le cercle

Trigonométrie dans le cercle DERNIÈRE IMPRESSIN LE 8 août 0 à :5 Trigonométrie dans le cercle Table des matières Angles dans un cercle. Cercle trigonométrique........................... Le radian...................................

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

CINEMATIQUE GRAPHIQUE 2D Polycopié sans trous

CINEMATIQUE GRAPHIQUE 2D Polycopié sans trous Cours ENSIS MEC101 Mécanique des systèmes et des milieux déformables CINEMTIQUE GRPHIQUE 2D Polycopié sans trous 1/20 I) MOUVEMENT D'UN SOLIDE 1.1. Solide du point de vue cinématique Un mécanisme est composé

Plus en détail

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles

Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles Contrôle des spécifications dimensionnelles et géométriques sur Machines à Mesurer Tridimensionnelles 1 Inspection d une spécification portée sur un dessin Les étapes : Définir selon la norme (ISO) la

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Chapitre 7 - Relativité du mouvement

Chapitre 7 - Relativité du mouvement Un bus roule lentement dans une ville. Alain (A) est assis dans le bus, Brigitte (B) marche dans l'allée vers l'arrière du bus pour faire des signes à Claude (C) qui est au bord de la route. Brigitte marche

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

Cercle trigonométrique et mesures d angles

Cercle trigonométrique et mesures d angles Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Corrigés du Thème 1 :

Corrigés du Thème 1 : Thème 1 : Corrigés des exercices Page 1 sur 9 Corrigés du Thème 1 : Création : juin 2 003 Dernière modification : juin 2005 Exercice T1_01 : Evaluation de la taille d une molécule d eau Dans 1g ( 1 cm

Plus en détail

La Mesure du Temps. et Temps Solaire Moyen H m.

La Mesure du Temps. et Temps Solaire Moyen H m. La Mesure du Temps Unité de temps du Système International. C est la seconde, de symbole s. Sa définition actuelle a été établie en 1967 par la 13 ème Conférence des Poids et Mesures : la seconde est la

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

CINÉMATIQUE DU POINT

CINÉMATIQUE DU POINT CINÉATIQUE DU POINT La cinématique est la partie de la mécanique qui étudie les mouvements, indépendamment des causes qui les provoquent. 1. RAPPELS 1.1 Caractère relatif du mouvement a. Observations Considérons

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle.

TP force centrifuge. Ce TP est évalué à l'aide d'un questionnaire moodle. TP force centrifuge Ce TP est évalué à l'aide d'un questionnaire moodle. Objectif : Étudier la force centrifuge dans le cas d un objet ponctuel en rotation uniforme autour d un axe fixe. 1 Présentation

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne

Chapitre 1. Cinématique et Dynamique. 1.1 Grandeurs cinématiques. 1.1.1 Base cartésienne Chapitre 1 Cinématique et Dynamique 1.1 Grandeurs cinématiques En classe de 2 e nous avons introduit les grandeurs cinématiques utilisées pour décrire le mouvement d un point matériel : l abscisse curviligne,

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

Mécanisme d essuie glace Bosch

Mécanisme d essuie glace Bosch 1- Montrer que V ( 3/ 0) 0,5 m/ s 30 mm On mesure sur le document réponses : O mes = 30 mm L échelle est de 1/ 2 donc O reelle = 30 1.4 = 42mm 2π V ( 3/ 0) = O Ω (3/ 0) = 0.042 114 = 0.5 m/ s 60 V ( 3/

Plus en détail

Force de tension d une corde

Force de tension d une corde Force de tension d une corde 1.a. Deux façons de répondre à la question : 25 images 1 seconde 1 image T T = 1/25 = 0,04 s. 25 images par seconde représente la fréquence de prise de vue. Or T = 1/f donc

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter.

Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Comment faire du dessin technique Principe de cette projection Soit un objet technique à projeter. Veuillez visionner le document sur la formation en ligne. Corniche : objet technique à dessiner. Plaçons

Plus en détail

MOBILITE ET HYPERSTATISME

MOBILITE ET HYPERSTATISME MOBILITE ET HPERSTATISME 1- Objectifs : Le cours sur les chaînes de solides nous a permis de déterminer le degré de mobilité et le degré d hyperstatisme pour un mécanisme donné : m = Nc - rc et h = Ns

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

X LENTILLES SPHERIQUES MINCES

X LENTILLES SPHERIQUES MINCES X LENTILLES SPHERIQUES MINCES Exercices de niveau Dans ces exercices vous apprendrez à manipuler correctement les relations de conjugaison et de grandissement, d abord dans des cas très simples puis plus

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Son et Lumière. L optique géométrique

Son et Lumière. L optique géométrique Son et Lumière Leçon N 3 L optique géométrique Introdution Nous allons au cours de cette leçon poser les bases de l optique géométrique en en rappelant les principes fondamentaux pour ensuite nous concentrer

Plus en détail

Les fonction affines

Les fonction affines Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus

Plus en détail

Système des satellites de Jupiter sous Géogébra Partie II - vu de la Terre

Système des satellites de Jupiter sous Géogébra Partie II - vu de la Terre ystème des satellites de upiter sous Géogébra Partie II - vu de la Terre Les satellites de upiter représentent une très bonne illustration d un système képlérien simple si l on ne prend pas en compte les

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail