Les fonction affines

Dimension: px
Commencer à balayer dès la page:

Download "Les fonction affines"

Transcription

1 Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus pour la semaine de location) : La fonction f est une fonction constante : La fonction g est définie par morceaux : f (x) = 850 si x 2000 on a : g(x) = 700 si x > 2000 on a : g(x) = , 3(x 2000) = , 3x 0, = , 3x La fonction h est une fonction affine : h(x) = , 28x = , 28x 2) Représenter graphiquement ces trois formules de location, dans le cas décrit à la question précédente, dans un même repère. PAUL MILAN 1/ 7 3 février 2010

2 Pour représenter la fonction f entre 0 et 3000 km, on trace une droite parallèle à l axe des abscisses qui passe par les points A et B Pour représenter la fonction g, il faut calculer trois immages : g(0) = 700 g(2000) = 700 g(3000) = , = 1000 On obtient alors les trois points C(0, 700), D(2000, 700), E(3000, 1000). Pour représenter la fonction h, il faut calculer deux images : h(0) = 371 h(3000) = , = 1211 On obtient alors les deux points F(0, 371) et G(3000, 1211). 3) Déterminer la formule la plus avantageuse pour une semaine de location en fonction du nombre de kilomètres parcourus de deux manières différentes a) avec le graphique On détermine graphiquement les abscisses des point I et J. on trouve alors : Si on effectue moins de 1175 km, la formule 3 est plus avantageuse. Si on effectue entre 1175 et 2500 km, la formule 2 est plus avantageuse. Si on effectue plus de 3000 km, la formule 1 est plus avantageuse. b) par le calcul. Pour déterminer l abscisse du point I, il faut résoudre : h(x) = g(x) , 28x = 700 0, 28x = x = 329 0, 28 = 1175 PAUL MILAN 2/ 7 3 février 2010

3 Pour déterminer l abscisse du point J, il faut résoudre : g(x) = f (x) 0, 3x = 850 x = 750 0, 3 = ) Un client a choisi la formule 1 pour deux semaines de vacances. Il a parcouru 4500 kilomètres. A-t-il fait le bon choix? Calculons le prix pour deux semaines avec 4500 km pour le trois trois formule. Formule 1 : on a deux forfaits à 850 soit 1700 e Formule 2 : on a deux forfaits à 700 et 500 km à 0,30 soit : , 3 = 1550 e Formule 3 : on a deux forfaits à 371 et 4500 km à 0,28 soit : , 28 = 2002 e Le client aurait dû choisir la formule 2. EXERCICE 3 : Changement d unité de température. 1) Reproduire sur la copie sous forme d un schéma le tube de thermomètre figurant cidessous. a) Indiquer, à droite du tube, les valeurs correspondantes de l échelle Fahrenheit. Expliciter votre démarche. On calcule l écart entre deux graduations en fahrenheit : = 18 On complète ensuite le schéma : PAUL MILAN 3/ 7 3 février 2010

4 b) Existe-t-il une relation de proportionnalité entre les deux suites de nombres figurant sur votre dessin (échelle Fahrenheit et échelle Celsius)? Justifier. L origine des graduations ne correspondant pas, les graduations ne sont pas proportionnelles. 2) Montrer que : T = 1, 8t La relation entre T et t est du type : T = ax + b. On sait que si t = 0 alors T = 32, on en déduit que b = 32. On sait que si t = 100 alors T = 212, on obtient alors : On obtient bien : T = 1, 8t ) Le thermomètre indique 25 C. 212 = a a = = 1, a) Calculer la valeur correspondante en F. Si t = 25 alors T = 1, = 77 La valeur correspondantes à 25 C est 77 F. b) Expliquez comment vous pouvez vérifier ce résultat sur votre dessin. 25 C est le milieu entre 20 et 30 C. Donc la valeur correspondante se situe au milieu de 68 et 86 F, donc : = ) Calculer la température à laquelle les deux échelles donnent la même valeur. Vérifier ce résultat sur le dessin. Si la température est identique sur le deux échelles, on a T = t, on a alors : t 1, 8t = 32 t = 1, 8t , 8t = 32 Ce résultat est bien vérifié sur le graphique. EXERCICE 4 : Heure de rencontre t = 32 0, 8 = 40 Deux robots, Arthur et Boz, sont placés aux deux extrémités d une piste rectiligne de 300 mètres de long qui relie un point A à un point B. Arthur est placé au point A et Boz au point B. On les fait partir l un vers l autre à 9 heures précises. Arthur se déplace à la vitesse constante de 6 km/h et Boz à la vitesse constante de 24 km/h. 1. Exprimer ces deux vitesses en mètre par minute. PAUL MILAN 4/ 7 3 février 2010

5 2. On veut déterminer l heure de rencontre des deux robots. a) Représenter dans un même repère les déplacements des deux robots. b) Par lecture graphique, estimer l heure de la rencontre. 3. Déterminer par le calcul, l heure de rencontre des deux robots. Pour la troisième question, on pouvait avoir une approche arithmétique. Puisque Boz, a une vitesse 4 fois supérieure à Arthur (24 km/h et 6 km/h), au point de rencontre I, Boz aura parcouru 4 fois plus de distance que Arthur. Il se rencontre au cinquième de la distance, comme le montre le schéma suivant : Le point I se trouve à : 300 = 60 m du point A. 5 Comme la vitesse d Arthur est de 100 m/min, il arrivera au point I au bout de : t = EXERCICE 5 : Optimisation bis : énoncé 2001 en euro! = 0, 6 min soit 0, 6 60 = 36 secondes Un client s adresse à une agence de location de camping-car pour organiser ses vacances. Trois formules lui sont proposées Formule 1 : forfait hebdomadaire de 850 e, kilométrage illimité. Formule 2 : forfait hebdomadaire de 700e, avec 2000 kilomètres inclus et 0,30 e par kilomètre parcouru au-delà de 2000 kilomètres. Formule 3 : forfait journalier de 53 e et 0,28 e par kilomètre parcouru, toute semaine entamée étant payée intégralement. 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus pour la semaine de location) : y = f (x), pour la formule 1, y = g(x), pour la formule 2, y = h(x), pour la formule 3. Vérifier, en particulier, que pour x > 2000, on a : g(x) = , 3x. 2) Représenter graphiquement ces trois formules de location, dans le cas décrit à la question précédente, dans un même repère. 3) Déterminer la formule la plus avantageuse pour une semaine de location en fonction du nombre de kilomètres parcourus de deux manières différentes a) avec le graphique b) par le calcul. 4) Un client a choisi la formule 1 pour deux semaines de vacances. Il a parcouru 4500 kilomètres. A-t-il fait le bon choix? PAUL MILAN 5/ 7 3 février 2010

6 1. On a trouvé les expressions suivantes : f (x) = 850 Si x 2000 g(x) = 700 Si x > 2000 g(x) = , 3x h(x) = , 28x 2. On obtient la représentation suivante : a) D après le graphique : Si x est inférieur à 1180 km, la troisième formule est plus avantageuse. Si x est compris entre 1180 et 2500 km, la deuxième formule est plus avantageuse. Si x est supérieur à 2500 km, la première formule est plus avantageuse. b) Pour retrouver les abscisses des points I et J, il faut résoudre les équations suivantes : Pour I : h(x) = g(x) , 28x = x = 0, 28 = 1175 Pour J : g(x) = f (x) , 3x = x = 0, 3 = 2500 PAUL MILAN 6/ 7 3 février 2010

7 3. Pour deux semaines avec 4500 km, on a les tarifs suivants pour les trois formeules : Formule 1 Formule 2 Formule 3 : = , 3 = , 28 = 2002 Il n a donc pas fait le bon choix. Il aurait du choisir la deuxième formule. PAUL MILAN 7/ 7 3 février 2010

Notion de fonction. Résolution graphique Fonction affine

Notion de fonction. Résolution graphique Fonction affine Eercices 6 décembre 0 Notion de fonction. Résolution graphique Fonction affine Eercice Représentation d une fonction Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

PROPORTIONNALITE. Durée (en s) 0 12 24 33 36 Hauteur d'eau (en cm) 0 10 20 27,5 30

PROPORTIONNALITE. Durée (en s) 0 12 24 33 36 Hauteur d'eau (en cm) 0 10 20 27,5 30 PROPORTIONNALITE I) Définition : Définition: Dans un tableau, si les quotients d un nombre de la seconde ligne par le nombre correspondant de la première ligne sont égaux alors : On dit que les nombres

Plus en détail

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a :

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : Proportionnalité I) Proportionnalité et produit en croix 1) Propriété Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : a b c

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Les droites dans un repère

Les droites dans un repère R.Oppé Chapitre Bac Pro Les droites dans un repère Les apprentissages : Comment construire une droite? Comment trouver l équation d une droite? Les outils et leurs modes d emploi : ( à consulter chaque

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S

D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S D R O I T E S, E Q U A T I O N S E T I N E Q U A T I O N S b.delap@wanadoo.fr Utiliser un graphique pour résoudre des inéquations à une seule inconnue. 1 er cas : les valeurs sont toutes positives : Sur

Plus en détail

On présente souvent les grandeurs proportionnelles dans un tableau de proportionnalité.

On présente souvent les grandeurs proportionnelles dans un tableau de proportionnalité. 3 ème A Fiche D1 - a proportionnalité 1. Rappels : *Exemples de situation de proportionnalité dans la vie courante : 1 ) le prix des fruits au kilo. + on achète de fruits + c est cher. e prix est proportionnel

Plus en détail

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x FONCTION LINEAIRE & FONCTION AFFINE 3 e I. Fonction linéaire a désigne un nombre relatif. Définition La fonction qui, à tout nombre x, associe le produit de a par x est appelée fonction linéaire de coefficient

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Fonctions Affines. 1. Activité 1

Fonctions Affines. 1. Activité 1 1. Activité 1 Fonctions Affines La centrale PS10 en Espagne (Séville) produit de l électricité au moyen de 624 miroirs de 120 m 2 chacun qui concentrent les rayons du soleil au sommet d une tour de 115

Plus en détail

Temps Distance Vitesse

Temps Distance Vitesse Temps Distance Vitesse Jean-Noël Gers Février 2005 CUEEP Département Mathématiques p1/27 Ce dossier contient un certain nombre de problèmes classiques sur la rencontre de mobiles évoluant à vitesse constante.

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

DIPLÔME NATIONAL DU BREVET. Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS :

DIPLÔME NATIONAL DU BREVET. Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS : Session 2009 DIPLÔME NATIONAL DU BREVET Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS : 1. L'usage des calculatrices est autorisé, toutefois, il est strictement interdit

Plus en détail

Exercice N 1 : Extrait du BEP secteur 1 session 2005

Exercice N 1 : Extrait du BEP secteur 1 session 2005 Exercice N 1 : Extrait du BEP secteur 1 session 2005 Tarifs Sam souhaite aller à la piscine municipale dont les tarifs sont présentés dans le tableau ci-contre : Normal 3,80 Groupe 3 On note x le nombre

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal.

Exercice 1 /6 Calculer et donner le résultat sous la forme d une fraction irréductible ou d un nombre décimal. NOM : Prénom : Classe : Observations : Compétences testées lors de ce devoir Rechercher, extraire et organiser l information utile. Raisonner, argumenter, pratiquer une démarche expérimentale ou technologique,

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Ministère de l éducation nationale CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ÉCOLES

Ministère de l éducation nationale CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ÉCOLES Ministère de l éducation nationale Session 2008 MAT-08-PG2 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ÉCOLES Mercredi 30 avril 2008 - de 8h 30 à 11h 30 Deuxième épreuve d

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h.

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h. THEME : VITESSE UTILISATION DES FORMULES 2 Exercice 4 : La vitesse moyenne d'un cycliste est de 30 km.h -1 sur un parcours aller de 60 km. Au retour, la vitesse moyenne de ce même cycliste est de 20 km.h

Plus en détail

Forfait kilométrique pour une journée

Forfait kilométrique pour une journée Forfait kilométrique pour une journée Mercredi (période scolaire) Vacances scolaires 0 à 10 kms 11 à 40 kms 41 à 70 kms 71 à 100 kms 101 à 200 kms au-delà de 200 kms Ces prix sont réputés comprendre toutes

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

C H A P I T R E 8 A P P L I C A T I O N S A F F I N E S

C H A P I T R E 8 A P P L I C A T I O N S A F F I N E S Classe de Troisième C H A P I T R E 8 A P P L I C A T I O N S A F F I N E S COMPARER DEUX QUANTITÉS... 186 EXEMPLES D'APPLICATIONS LINÉAIRES... 188 APPLICATIONS AFFINES... 191 LA LEÇON... 193 EXERCICES...

Plus en détail

Equations de droites. Coefficient directeur

Equations de droites. Coefficient directeur Equations de droites. Coefficient directeur I) Caractérisation analytique d une droite m, p et c désignent des nombres réels. 1) Propriété : Dans un repère l ensemble des points M de coordonnées ( ; )

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

EQUATIONS. Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la. (d étant la distance parcourue en kilomètres)

EQUATIONS. Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la. (d étant la distance parcourue en kilomètres) EQUATIONS Activité n 1 Dans l agence LOC AUTO, le coût d une location de voiture est calculé avec la formule suivante : 2,5d + 40 (d étant la distance parcourue en kilomètres) Monsieur DUPUIS paie pour

Plus en détail

Première partie Proportionnalité

Première partie Proportionnalité Première partie Proportionnalité 1 Calculer une distance avec une échelle............ 7 2 Calculer un pourcentage..................... 9 3 Calculer le pourcentage relatif à un caractère d un groupe constitué

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Brevet des Collèges Centre étranger juin 2014 Correction

Brevet des Collèges Centre étranger juin 2014 Correction Brevet des Collèges Centre étranger juin 2014 Correction EXERCICE 1 6 points Voici une feuille de calcul obtenue à l aide d un tableur. Dans cet exercice, on cherche à comprendre comment cette feuille

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5.

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5. ÉRIE : GÉNÉRALITÉSG ÉNÉRALITÉS SUR LES FONCTIONS LINÉAIRES Complète le tableau en indiquant les fonctions linéaires et leur coefficient. f : k : 7 g : h : j : Fonction linéaire Coefficient l :, m : ( n

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

1 élève. 0 8 12 16 20 Note

1 élève. 0 8 12 16 20 Note L'histogramme est utilisé dans le cas d'une série regroupée en classe. Pour construire un histogramme, on porte les classes en abscisse et sur chacune d'elles pris comme base, on construit un rectangle

Plus en détail

Baccalauréat L Enseignement de spécialité Asie Juin 2010

Baccalauréat L Enseignement de spécialité Asie Juin 2010 Baccalauréat L Enseignement de spécialité Asie Juin 2010 EXERCICE 1 Il s agit de remplir la grille suivante dont chaque case blanche doit contenir exactement un chiffre (entre 0 et 9). 1. Pour y parvenir,

Plus en détail

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Résoudre des problèmes simples

Résoudre des problèmes simples Résoudre des problèmes simples Objectif: Acquérir une méthodologie générale de résolution de problèmes. Résoudre des problèmes additifs et soustractifs en une étape. Résoudre des problèmes simples Objectif:

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

BEP Secteur 7 Outremer juin 2009

BEP Secteur 7 Outremer juin 2009 BEP Secteur 7 Outremer juin 2009 EXERCICE 1 4 points Le tableau ci-dessous indique l évolution sur une période de 5 ans, du prix (en dollars U.S.) du baril de pétrole brut à New York. Pour la première

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Ce que l élève doit retenir La distance d arrêt d un véhicule est la somme de la distance parcourue pendant le temps de réaction du conducteur et de la distance de freinage.

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Devoir à la maison. Bon travail et bonnes vacances! Mme FORCONI.

Devoir à la maison. Bon travail et bonnes vacances! Mme FORCONI. Lycée International Victor Hugo. Classe : 3 ème Enseignante : Marie-Tatiana FORCONI. marie-tatiana.forconi@vhugo.eu Devoir à la maison. A faire comme un DM, pendant les vacances de la Toussaint, pour le

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen)

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Problème 1 Partie A On peut remarquer que la définition de Da est très ambigüe : l expression «le moment ou le conducteur voit

Plus en détail

M M (maxi) + MS MS (maxi) 189Nm nominal 16.2Nm pour 10 000km. 639Nm nominal 54Nm pour 10 000km

M M (maxi) + MS MS (maxi) 189Nm nominal 16.2Nm pour 10 000km. 639Nm nominal 54Nm pour 10 000km HepcoMotion SBD Calcul de la durée de vie La durée de vie d une unité SBD est définie par le nombre de kilomètres qui peut être accompli avant que le guidage à billes atteigne sa durée de vie théorique.

Plus en détail

Classe(s) : Seconde, première

Classe(s) : Seconde, première Le fantôme Classe(s) : Seconde, première Utilisation d un logiciel de tracé de courbes. Fonctions définies sur un intervalle. Fonctions associées. 1) Objectifs Mathématiques : - Fonctions polynômes du

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET REPÈRE 13DNBPROMATMEAG3 DIPLÔME NATIONAL DU BREVET SESSION 2013 Épreuve de : MATHÉMATIQUES SÉRIE PROFESSIONNELLE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

MATHÉMATIQUES. entrants en seconde - rentrée 2015 DEVOIR DE VACANCES

MATHÉMATIQUES. entrants en seconde - rentrée 2015 DEVOIR DE VACANCES Nom et Prénom :.............................................................................................. MATHÉMATIQUES entrants en seconde - rentrée 2015 DEVOIR DE VACANCES Ce devoir, à traiter vers

Plus en détail

Représentations graphiques Page 219

Représentations graphiques Page 219 Classe de sixième C HAPITRE 10 R EPRESENTATIONS GRAPHIQUES 10.1.POINTS DANS UN REPERE 220 10.2. ÉTUDE DE GRAPHIQUES 222 10.3. REPRESENTER GRAPHIQUEMENT 224 10.4. REPRESENTER LA PROPORTIONNALITE 228 10.5.

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Statistique à deux variables

Statistique à deux variables Statistique à deux variables 1 Étendue en millions de kilomètres carrés 14 13,5 13 12,5 12 11,5 11 10,5 10 1978 y = 0,0424x + 96,522 1983 1988 1993 1998 2003 2008 Quel avenir pour l ours polaire? Le graphique

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

Chapitre 7 Proportionnalité.

Chapitre 7 Proportionnalité. Chapitre 7 Proportionnalité. Voir 5 ème, chapitres 5 et 7 ; 4 ème, chapitres 4, 5 et 12. I) Pourcentages, indices A) Augmentation (ou diminution) Eemple : Le pri d un objet est passé de à 14. Calculer

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

géométrique et u n = 3(2) n. Cela donne au total :

géométrique et u n = 3(2) n. Cela donne au total : Leçon N 2 : Les suites Rappels importants Il y a deux façons de décrire une suite On nous donne la fonction qui permet de fabriquer ces termes : u n = f (n), n N. Exemple : u n = n² n N, cela donne 0 ;

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation. Exercice 1 : brevet centre étrangers, juin 2012 (4 points : 1+3) 1 ) Calculer 2 ) Au goûter, Lise mange du paquet de gâteaux qu elle vient d ouvrir. De retour du collège, sa sœur Agathe mange les des gâteaux

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Révisions Mathématiques CAP-BEP

Révisions Mathématiques CAP-BEP Révisions Mathématiques CAP-BEP Exercice 1 : On considère le triangle ABC rectangle en A. C 1 / Si AB = 12 et AC = 5, calculer BC....... 2 / Si AB = 7 et BC = 9,22, calculer AC. Exercice 2 : Dans un CFA,

Plus en détail

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES

1ES DS commun du jeudi 5 mai 2011. MATHEMATIQUES 1ES DS commun du jeudi 5 mai 011. MATHEMATIQUES NOM. Exercice 1 (8 points/40) Cet exercice est un QCM. Pour chaque question une seule réponse est exacte. On demande d entourer la bonne réponse et aucune

Plus en détail

Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes?

Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes? EXERCICES SUR LE MOUVEMENT RECTILIGNE UNIFORME Exercice 1 Un automobiliste roulant à 120 km/h effectue un parcours de 300 km. Quelle est la durée du trajet en heures et minutes? (D après sujet de Dominante

Plus en détail

Situation d évaluation de Mathématiques SUJET DESTINÉ AU CANDIDAT

Situation d évaluation de Mathématiques SUJET DESTINÉ AU CANDIDAT BACCALAURÉAT PROFESSIONNEL Secrétariat Diplôme intermédiaire Contrôle en cours de formation BEP Secrétariat Epreuve EG2 - Mathématiques Coef. 2 Situation d évaluation de Mathématiques Année scolaire 2009-2010

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

PROPORTIONNALITE VITESSE MOYENNE

PROPORTIONNALITE VITESSE MOYENNE PROPORTIONNALITE VITESSE MOYENNE 1) Remplir un tableau de proportionnalité (Rappels) 3 kg de pommes coûtent 5,40. Combien coûtent 5 kg de pommes? Les grandeurs en jeu sont : la masse des pommes en kg ;

Plus en détail

66 exercices de mathématiques pour Terminale ES

66 exercices de mathématiques pour Terminale ES 3 novembre 205 66 exercices de mathématiques pour Terminale ES Stéphane PASQUET Sommaire Disponible sur http: // www. mathweb. fr 3 novembre 205 I Suites........................................ I. Suite

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

4. Proportions et pourcentages

4. Proportions et pourcentages - 1 - Proportions et pourcentages 4. Proportions et pourcentages 4.1 Grandeurs directement proportionnelles Exemple : Un ouvrier gagne 152 Fr. pour 8 heures de travail. Pour doubler, tripler, son salaire,

Plus en détail

Mathématiques 11 Avril 2013. Année scolaire 2012-2013

Mathématiques 11 Avril 2013. Année scolaire 2012-2013 Année scolaire 2012-201 Mathématiques 11 Avril 201 Classe de ème Brevet Blanc N 2 Durée : 1h50min Les calculatrices sont autorisées ainsi que les instruments usuels de dessin 4 points sont réservés à la

Plus en détail